
Computer Technology and Application 2 (2011) 730-735

Multi-Level Cryptographic Functions for the
Functionalities of Open Database System

Akinwale Taofiki Adio, Adekoya Felix Adebayo and Ooju Emmanuel Oluwafemi
Department of Computer Science, University of Agriculture, Abeokuta, Nigeria

Received: July 26, 2011 / Accepted: August 08, 2011 / Published: September 25, 2011.

Abstract: The purpose of this paper is to design and implement a secure open database system for organizations that are increasingly
opened up their information for easy access by different users. The work proposed some functionalities such as open password entry
with active boxes, combined encryption methods and agent that can be incorporated into an open database system. It designed and
implemented an algorithm that would not allow users to have free access into open database system. A user entering his password only
needs to carefully study the sequence of codes and active boxes that describe his password and then enter these codes in place of his
active boxes. The approach does not require the input code to be hidden from anyone or converted to place holder characters for
security reasons. Integrating this scheme into an open database system is viable in practice in term of easy use and will improve security
level of information.

Key words: Database system, cryptography, agent, random number, peer-to-peer, algorithm.

1. Introduction

An open system does not comprise of central
administration components like intranet and internet. It
is a system that regularly exchanges feedback with its
external environment (i.e., the users communicating
with the system). Any system termed “open” has its
boundaries through which feedback can readily be
exchanged and understood porous and security
insensitive. In this kind of system, authenticated users
must be able to access the system at any time and be
able to retrieve information from the database based on
a pre-defined authorization, without restriction. Recent
research shows that databases in any organization are
increasingly opened up to multiplicity of suppliers,
customers, partners and employees—a feat that seemed
unachievable years back. Many applications and their
associated data are now possibly accessed by different
users requiring different level of access via different
devices and channels.

Corresponding author: Akinwale Taofiki Adio, Ph.D.,
research field: database system. E-mail:
aatakinwale@yahoo.com.

Open network database system entails leaving our
database open on the internet, intranet, etc. for users to
access, but one question that comes to mind remains. Is
the information in this open database fully secured and
thoroughly protected from it being compromised and
manipulated for other benefits outside the proposed
purpose? Is the system user(s) solely in control as
regards the issuance of information? If the answer to
these questions is no, then what security measure
should be put in place and what is its strength? Since
the database is left open and proper security is not
placed on it and the operations to be performed on it,
how secure and protected is the system?

Having known that open system allows for free
access to database, bearing in mind its integrity
preservation, the functionality of this database system
must incorporate the capability of management
security and prevent it from unauthorized modification
or extraction. All these form the basis for the research
aimed at actualizing a conceptualized security measure
that can be integrated into such database systems. The
need to secure and protect relational database system

Multi-Level Cryptographic Functions for the Functionalities of Open Database System

731

for open system, say, Peer-to-Peer, is growing beyond
imagination. While the importance of security and
privacy is generally taken strict, it is still largely
ignored as a result of the problem being considered
impractical to solve, given the limited computational
resources available at user level. The crucial aim of this
paper is to design an application to simulate how open
database network system can be secured and prevented
from been compromised, using a multi-level hash
function. The remaining part of the paper is structured
as follows: Section 2 presents literature review on open
database system. In section 3, the methodology of the
system is presented while implementation environment
is also described in section 4. Evaluation of the system
is in section 5 and conclusion is presented in section 6.

2. Literature Review

Security and functionality of applications and
computer system are critical aspect of any information
technology strategy and must be taken very serious
with all measures. Beyond ensuring the security of
the host operating system, a database administrator
needs to ensure that the database management software
itself is secure, and that it provides the full complement
of features to enable the security [1]. Database usually
contains an organization’s (e.g., banks, schools,
companies, etc.) most valuable information assets, and
if compromised, could cause disaster [2]. Hence
securing a database allows organization to protect the
corporate data from threats and external sources.
Database security is a serious issue, and if not
implemented correctly, the consequence can be costly
to organizations if their vital data is hacked into, or
their clients’ data leaks out, which can even lead to
cases of identity theft [3].

Data accessibility is a major concern in database
security. Many organizations cannot work properly if
their databases are down: They are what we know as
critical-mission systems. To make the data available
implies to provide the security mechanisms to ensure
authentication, authorization and auditing procedures

[4]. According to Ref. [5], securing database entails:
(1) Preventing unauthorized access to classified data

by just anybody;
(2) Preventing unauthorized users from committing

mischief through malicious deletion, update or
tampering of data;

(3) Monitoring user access of data through auditing
techniques.

One of the most basic concepts in database security
is authentication, which is quite a simple process by
which a system verifies a user’s identity. According to
Ref. [6], the first step in encryption project is to
determine what data to protect and from whom to
protect it. The sensitivity of data will logically
determine the need for the use of encryption. There are
things to consider when thinking of implementing
encryption:

• Will the data stored in the database need be
encrypted or just the user password?

• Will you need to encrypt the data only in the local
instance of the database or do you need to also encrypt
in transit? [7]

All users and systems create traces of their activity in
the form of log files. Logs are generated at an
astounding rate by information technology components
such as firewalls, routers, server and client operating
systems, databases, and even business applications as
usefulness for detecting and troubleshooting security
and system operations issues. Dynamically monitoring
log data will help protect businesses not only from
external security threats but also from potential threats
lingering inside the organization [8].

3. Methodology

Multi-level cryptographic hash functions such as
Rivest, Shamir and Adleman (RSA) algorithm and
Secure Hash Algorithm (SHA-512) were employed to
encrypt not only the password and user identity but also
all the information about every peer in the database
including the message that can be shared within the
members if necessary. The essence of this is to prevent

Multi-Level Cryptographic Functions for the Functionalities of Open Database System

732

any fraudulent member who might have access to the
database server from retrieving others’ security accounts,
thereby hacking into others’ personal information,
editing details, backdating events and the likes.

3.1 SHA-512 Algorithms

SHA-512 can be used to hash a message, M, having
a length of N bits, where 0≤N<2128. The algorithm uses
a message schedule of eight 64-bit words and eight
working variables of 64 bits each together with a hash
value of eight 64-bit words. The final result of
SHA-512 is a 512-bit message digest. The words of the
message schedule are labeled W0, W1, … , W79. The
eight working variables are labeled a, b, c, d, e, f, g and
h. The words of the hash value are labeled H (i), H1

(i), ... ,
H7

(i), which will hold the initial hash value, H(0),
replaced by each successive intermediate hash value
(after each message block is processed), H(i), and
ending with the final hash value, H(N). SHA-512 also
uses two temporary words, T1 and T2 [9]. The logic in
each of the 80 rounds of the processing of one 512-bit
block is defined by the following set of equations:

T1 = h + Ch (e, f, g) + (∑1
512 e) + Wt + Kt

T2 = (∑0
512 a) + Maj (a, b, c)

a =T1 + T2; b = a; c = b; d = c; e = d + T1; f = e; g =
f; h = g.

3.2 RSA Algorithm

The RSA Scheme is a block cipher in which makes
use of an expression with exponentials. The plaintext is
encrypted in blocks, with each block having a binary
value less than some number n, most preferably 1,024.
That is, the block size must be less than or equal to
log2(n). In practice, the block size is i bits, where 2i < n
<= 2i+1. Encryption and decryption are of the following
form, for some plaintext block M and ciphertext block C:

C = Me mod n
M = Cd mod n = (Me)d mod n
Both sender and receiver must know the value of n.

The sender knows the value of e, and only the receiver
knows the value of d. Thus, this is a public key (PU

algorithm with PU = {e,n} and a primary key (PR) =
{d,n}[10].

Further research into the security strength of open
database management system shows that leaving
information shared among users open may later pose
security threats despite the secured open password
applied, and therefore, we thought it well a good
research to fortify the security level of the most recent
of the models of the open database in peer-to-peer by
employing the algorithms of RSA and SHA-512.
Consequent upon this, all the information about all
users or peers is being double encrypted, first by RSA,
then by SHA-512 before they are sent to the database.
This ensures that even if the system is hacked, it will be
very difficult for the hacker to record a successful
cryptanalysis and understand what is kept in the
database. Each level of encryption/decryption requires
different keys. These keys are given to the users at the
point of registration made available whenever it is
required or needed.

3.3 Open Login Details for Open Database System

Having known that access to the database system in
question is thrown open, a means of ensuring that the
system is not misused is to apply:

An open system where all alphanumeric keys of the
keyboard can be seen on the screen by everyone who
tries to register for access to the system. This is to
ensure that users do not have access to the system in a
simple way. It would therefore be assumed that
anybody that can go through the rigour of registering
possesses level of trust to use the system. Detail input
segmentation where the users will have to calculate
which of the input field he will have to input the details
string given him in the above process.

3.4 Algorithm for Details Input Segmentation

Step 1: Let the any of the Details (i.e., User Name,
Peer Id and Password) = A; where A is a string with a
minimum of eight characters.

Step 2: Let the Randomized generated Details = B.

Multi-Level Cryptographic Functions for the Functionalities of Open Database System

733

Step 3: Let Details integer = C; where C ∈ segments
1 to 25.

Step 4: The segment C is randomly generated that is
at each key stroke, it is sure of having eight (8) even
and four (4) old segment and vice versa.

Step 5: Repeat if Details generated is odd, input it
into C odd segment and if details generated is even,
input it into C even segment.

Step 6: Repeat two (2) times minimum, else put the
details in an available segment.

3.5 Creation of Register Database

The register database which is the peer-to-peer
information table of the database contains the
information of any peer that has interest in using the
system. The first time user is required to fill the
necessary information in the registration form. After
registration, when the peers demand for access to be
granted to the system they will be asked to provide
some vital information in a given form provided. The
system then compares the information in the register
database with the newly provided one, if it matches, the
access is granted else access is denied.

3.6 Creation of Log File

In this system, the log in time, log out time, and time
used by different users are documented in
correspondence to their usernames. This helps in
tracing, tracking and auditing any suspicious activity or
unauthorized action by any user, who logs in within

that range of time in question. As soon as a user starts
using the system, his/her username, the system present
time, the system time and the computer system media
access control address number when he/she logged
out is recorded in the log file. During the tracking, any
user found responsible, will be barred from using the
system by granting a denial of service to such user.

3.7 An Agent

An agent in this system is an object program that
decides who should be registered as a user. The agent is
an intermediary between the user and the database
system and between users to users. There are few
functions assign to the agent, among which are

(1) It decides if a new user qualified for registration
or not;

(2) It checks if any posted data/file is relevant, if not
it discard it;

(3) It is the one who makes sure the information are
been multi-leveled encrypted; and

(4) It alerts the administration if there is an update
request. Figs. 1-2 show other functions to be performed
by the agent.

4. Implementation Environment

Java programming language was used for the
implementation of RSA, SHA-512 and input
segmentation algorithms, creation of agent, log files,
register files and open login detail interface. From the
algorithm, a form interface was generated which shows

Fig. 1 Registration architecture.

Fill a form and answer some questions

membership
no

yes

membership accepted

Registration

Is he/she
qualified?

Multi-Level Cryptographic Functions for the Functionalities of Open Database System

734

Fig. 2 File/Data transfer architecture.

the password. The interface contains alphanumeric
A-Z, a-z, 0-9 and special characters (&, %, $ @, …)
each of which is labeled with a single numeric digit
code between 0 and 9. The single digit labels are
generated randomly and are equally distributed. Any
user must study the interface form carefully because of
its openness and then enter the numeric digits
corresponding to his actual details. Upon completion of
the input the user hits the enter key. This triggers the
algorithm to regenerate a new input form followed by
authentication of the last input details.

The input interface form regeneration is necessary to
harden the details entry system and make it extremely
difficult, if not impossible for attackers to spy. For
example, there are twelve boxes for both peer_Id and
password where five of the input fields are dormant
while the remaining seven are active for peer_Id. Also,
there are twenty-five boxes for the User Name where
nine of the input fields are dormant while the remaining
sixteen are active. The position of these fields is not
fixed. Inputting into these fields requires little

calculation, that is, if the first number given to you by
the above process is even, then check the first
available even active box and input it and vice versa if
it is odd. Repeat this process until the given values for
the details are exhausted. Sample of the input form is
shown in Fig. 3. The agent performs multilevel
encryption form for storage as shown in Fig. 4 and all
other functions as illustrated in Figs. 1-2.

5. Evaluation of the System

This open system security proposed and implemented
can be evaluated and graded by its security potentials
against possible attacks or threats. These security
parameters are hereby looked into. According to Ref.
[11], if the size of a hash value is n, the brute force attack
on that hash will require 2n/2 attempts to yield a possible
collision. Therefore, since the size of our hash value is
512, a brute force attack on it will require 2256 attempts to
yield a collision. From the birthday paradox in
probability [12], which questions that “given a hash
function H, with n possible outputs and a specific value

Fig. 3 Input interface for login.

A
G

E
N

T

MESSAGE OR FILE

IS
MESSAGE
A JUNK?

YES

MESSAGE
OR

FILE

NO
Multi-level

Cryptographic
Functions [RSA
and SHA-512]

RECEIVER

MESSAGE
OR

FILE

DECRYPT
with keys

Multi-Level Cryptographic Functions for the Functionalities of Open Database System

735

Fig. 4 Encryption of user details using RSA and SHA-512.

H(x), if H is applied to k random inputs, what must be
the value of k so that the probability that at least one
input y satisfies H(x) = H(y) is 0.5? The solution to this
problem is solved to be k = 2m-1 for an m-bit hash code
with 2m possible code. Hence, this attack requires 2511
possibilities to yield a collision.

For a large n with large prime factors, factoring will
be hard. This keeps the RSA safe today until a better
provable research can break this resistance.

6. Conclusions

For any information stored in a database to be
security guaranteed, if the database will be left under an
open architecture, functionalities like the creation of
register database, application of multi-level
cryptographic functions, application of activity
manager and agents should be properly integrated.
These features must be regularly checked to ensure
efficiency, and new techniques need to be discovered
and implemented where these features seem to be
failing because as technology advances loopholes are
discovered and fixed. Integrating these ideas into open
database system in network environment will definitely
guarantee a high degree of safety and functionalities of
the system.

References
[1] Red Hat Database: Open Source Database and Security,

Red Hat Inc., United States, 2002.
[2] W. Duane, Making Your Network Safe for Database,

International Business Machine Corporation, 2001.
[3] B.S. Akshava, Database Security, Information

Technology Toolbox, Toolbox Co. LLC, USA, 2008.
[4] A.T. Joaquin, Database Security in High Risk Environment,

International Business Machine Corporation, USA, 2001.
[5] P. Zikopoulous, The Database Security Blanket,

International Business Machine Corporation, USA, 2001.
[6] R. Mogul, The Ins and Outs of Database Encryption, Tech

Target Security Media, 2008.
[7] K. Westphal, Secure Mysql Database Design Security

Focus, available online at: http://www.securityfocus.com,
2003.

[8] A. Chuvakin, Network database and system log
management: the what, why and how, Computer
Technology Review, USA, 2008.

[9] FIPS, PUB 180-4, Secure Hash Standards, Federal
Information Processing Standards Publication, Information
Technology Laboratory, National Institute of Standards and
Technology, Gaithersburg, MD 20899-8900, 2008.

[10] R.S. Rivest, A. Shamir, L.M. Adleman, On digital
signatures and public key cryptosystems, MIT Laboratory
for Computer Science, Technical Report, IT/LCS/TR-212,
1979.

[11] W. Stallings, Cryptography and Network Security,
Revised Edition, Englewood Cliffs N.J., Prentice Hall Inc.,
USA, 2005.

[12] K.H. Rosen, Discrete Mathematics and Its Applications,
4th ed., McGraw-Hill, 1999.

