COURSE TITLE: FISH GEAR DESIGN AND PRODUCTION

COURSE CODE: FIS 304

COURSE UNITS: 3

COURSE LECTURERS: 1. DR. ODULATE, D. O.

2. DR. ABDUL, W. O.

Definition of Common Terms in Fishing Gear Technology

The Terms:

- 1. Fisheries
- 3. Fishing
- 5. Mesh (and types)
- 7. Fisherman's needle
- 9. Bar length

- 2. Fishery
- 4. Fishing technology
- 6. Mesh size
- 8. Webbing/Netting
- 10. knots

TWINE WORK

Tools for making nets:

- a. Needle: It is used to hand-knit webbing. It can be constructed by using materials like wood, plastic and metal.
- b. Mesh gauge: It is helps to make equal-sized meshes during knitting.

Width of gauge $(G_w) = (M/2 - 2T)$

where M = desired mesh size

T = thickness of gauge

c. Sharp knife: Needed for trimming and cutting of knots preferably pocket knife.

CLASSIFICATION AND TYPES OF FIBRE

Types of fishing fibers:

group.

- Natural fibers: Thy are fibers obtained from plants and
- animals. They are predominantly vegetable fibres.
- heir characteristics and examples (e.g. coir, manila etc).
- reservation of natural fibers.
- Synthetic fibers: They are man-made materials made
- from simple basic substances via chemical process.
- Advantages of synthetic fibers: They are have high
- strengh, abrasion resistance and rot resistance.
- Classification of synthetic fibers and examples of each

YSICAL PROPERTIES AND FORMS OF SYNTHETIC FIBRE AND STRAND SYSTEM

cal properties of synthetic fibers include the following:

ticity *Resistance to abrasion

aking strength *Elongation

*Changes in water

ength

AS: There are various types or forms of synthetic fibres nich provide different properties. The most common ms of synthetic fibers are:

ontinuous fiber 2. Stable fiber

AND SYSTEM:

Two-yarn system

Three-yarn system

Four-yarn system

NS AND TWINES

Fibers Yarns Twines

Twines

Types of twine: a. twisted "Z" Twist

Soft Na aliana

DESIGNATION OF FISHING TWINE

- ypes of numbering system:
- * DIRECT METHODS: British and Metric systems
- * INDIRECT METHODS: Denier and Tex systems

ndardization:

- rect methods → (a) British system: 840 yards = 1 pound
 - (b) Metric system: 1000 m = 1 Kg
- lirect methods (a) Denier system: A unit of denier refers to the weight in grams of 9000 meters of a yarn or single filament i.e. 1 denier = 1 g/

9000 m.

(b) Tex system: 1 tex = 1 g/ 1000 m e.g 23 tex twine means a single yarn of which 1000 m has a mass of 23 g. Example: 23 tex x 3.

onversion from Denier system to Tex system and ce versa.

alculation of runnage (kg/m) and twine diameter mm)

NETTING

nition: A netting is a meshed structure of indefinite shape d size composed of one yarn (monofilament) or one or one systems of yarns joined or interlaced. It is also called ebbing' or simply 'web'.

ength: It is the distance between the center two knots easured in mm. ${}^{\mathcal{B}_{ar}}_{len_{gth}}$

size: It is the distance from the center of one knot to e center of the opposite knot when the mesh is fully etched. It is also measured in mm. 2 bar length = 1 mesh

e. \parallel Mesh size \longrightarrow \parallel

rmation on the netting label:

dard length = 91.5m

h = 100 meshes

e size = 210D/18

n size 20mm

ur = white

91.5 m

100 meshes

MOUNTING

- nition: It is the fixing of the head, foot and sides pes (if any) to the netting. Mounting can be done the or without loops. Important factors to be nsidered include
- rimary hanging coefficient = % of hanging (E₁)
- nounted length/stretched length
- ercentage of looseness = excess length/stretched ngth
- of hanging + % of looseness = 100%
- condary hanging coefficient (E₂)

ctitious area (A_f): It is an area of unmounted etting. $A_f = L_0 \times H_0 \text{ m}^2$

ere Lo = no of meshes along the length x mesh size

Ho = no of meshes along the depth x mesh size

ea of a mounted netting (Aw) is referred to as

tual working area.

 $A_w = L_w \times H_w m^2$

ere $L_w = no$ of meshes along the length x mesh size x E_1

 $H_w = \text{no of meshes along the depth x mesh size x } E_2$ ing utilization coefficient (E_u) defines how well

etting materials are used in fabrication.

erials for further reading: