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FISH POPULATION DYNAMICS 

Definition: 

Population is a group of interbreeding organs of the same species whose breeding is localized 

in time and space such that they are substantially reproductively isolated from other 

geographically isolated individuals. 

 

Characteristics of fish population: 

i. Presence of birth and death rates 

ii.  Presence of growth rate – number of biomass  

iii.  Presence of age class structure 

iv. Presence of sex ratio 

v. Presence of density 

vi. Presence of pattern of distribution during its life span spawning ground nursery, 

feeding ground, etc  
 

For a proper management of the fishery, there is a need for knowledge of the dynamics of 

fish population being managed. 

There are various methods of fish population estimation and the use of anyone of the methods 

will depend on a number of factors which include: 

i. The biology of fish 

ii.  The characteristics of the habitat 

iii.  The resources available 

iv. Objectives of the study 

 

States of fish stocks: 

i. Steady: fish population is the same year after year 

ii.  Cyclical:  fish population is variable but catches are predictable  

iii.  Irregular: catches of fish are very unpredictable 

iv. Spasmodic: stocks develop and collapse and reappear some other time. 

 

Primary objective of fish stock Assessment. 

The basic is to provide  advice on the optimum exploitation of aquatic living resources e.g. 

fish 

 



Since living resources are limited but renewable, therefore fish stock assessment (FSA) is the 

search for the exploitation level which in the long-run gives the maximum yield in weight 

from the fishery? 
 

The concept of stock dynamics: 

When describing the dynamics of an exploited aquatic resource, a fundamental concept is that 

of the stock 

STOCK. is a subset of a species, which is generally considered as the basic taxonomic unit. 

i.e a sub-set of one species having the same growth and  mortality parameters, and inhabiting 

a particular geographical area. 
 

Stock shows the following features; 

I.         Little mixing with the adjacent groups  

ii .       Growth and mortality parameters remain 

iii. Belongs to the race within the species i.e share a common gene pool 

 

A       Growth parameters; 

There are numerical values in an equation by which we can predict the body size of a fish 

when it reaches a certain age. 

B  Mortality parameters; 

The rate at which the animals die i.e the number of death per time unit. e.g fishing and natural 

mortalities 

 

MODELS 

A fishery consists of three(3) basic elements. 

i the input (the fishing effort e.g number of fishing days) 

ii the output (the fish landed) and 

iii the process which links input and output 

 

Types of models; 

 i Analytical models 

ii Holistic models 

  

 

 



Analytical models 

These models require the age composition of catches to be known e.g the numbers of 1 year 

old with caught, the number of 2year old fish caught, e.t.c 

 The basic ideas of the models may be expressed as follows; 

i If  there are ‘too few old fish’ the stock is overfished and the fishing pressure on the 

stock should be reduced. 

ii If  there are ‘very many old fish’ the stock is underfished and more fish should be 

caught in order to maximize the yield. 

Therefore, one can say analytical models are age structured models working with concepts 

such as mortality rates and individual body growth rates. 

While the basic concept in age-structured models is that of a COHORT. 

A COHORT of  fish is a group of fish all of the same age belongings to the same stock. 

. 

Holistic models  

These are less data demanding methods of assessing fish stocks. These methods disregard 

many of the details of the analytical models. They do not use age or length structures in the 

description of the stocks but consider a stock as a homogeneous biomass 

. 

Types of holistic models 

i. Swept area model 

ii. Surplus production model 

 

The swept area model: 

This model is based on research trawl survey catches per unit of area. From the densities of 

fish observed (the weight of the fish caught in the area swept by the trawl) we obtain an 

estimate of the biomass in the sea from which an estimate of the MSY is obtained.  

 

The surplus production model: 

This uses catch per unit effort (e.g. Kg of fish caught per hour trawling) as input. The data 

usually represent a time series of years. 

 

ESTIMATION OF FISH ABUNDANCE 

Estimation of abundance is one of the most interesting aspects of fish biology. The mobility 

of the fishes, coupled with their invisibility” due to cover, habitat preference or occupation of 



spaces or water bodies that can only be surveyed on a piecemeal basis, presents an enormous 

challenge to the biologist who must know how many fishes are present in a given population. 

Because direct enumeration is rarely possible, biologists generally use estimates of 

population size based upon some kinds of survey procedures rather than a census. The 

diversity of life histories, social and behavioural habits of the fishes often present special 

opportunities for the biologists to estimate population size. Often too, these characteristics 

intervene to make population estimation particularly biased or imprecise. 

 

GENERAL METHODS OF ESTIMATING NUMERIC ABUNDANCE OF FISH 

1. Estimation from catch statistics  

2.  Correlated population method 

3. Direct enumeration 

4. Change-in-ratio-methods (survey-removal methods) 

5. Mark-recapture methods 

 

1. ESTIMATE FROM CATCH STATISTICS 

Imagine a fishery in which a sequence of identical fishing operations successively removes 

catches of fish from the population. These catches should decline in a regular manner (i.e. 

apart from random variation due to “Sampling”) 
 

If q1 is the probability of individual fish being captured, then (1 – q1) is the probability of 

escaping capture. In this case a fishing event is considered a “trial” then, a proportion of the 

original stock will be captured in the first trial, and a proportion will survive. Then the 

“expected” catches will be: 

* E (C1) = Nq1 Survivors = N (1 – q1)   

* E (C2) = Nq1(1 – q1)  Survivors = N (1 – q1) (1 – q1) 

* E (C3) = Nq1(1 – q1)2  Survivors = N (1 – q1) (1 – q1) 

 

Therefore, E (Cn) = Nq1(1 – q1) n – 1  Survivors = ± N (1 – q1) (1 – q1)n 

This is the sequence of expected catches assuming that the fisherman does not change tactics 

from one trial to the next and that the fish react independently to each trial  

Setting up the expected catches in a ratio, we have: 

 

 



[E (C1)]
2    = N2 (1 – q1) 

E (C1) – E(C2)     Nq1 – N q1 (1 – q1) 

The final equation represents a useful formulation of the population estimate, given any two 

catches in succession  

 

II. ABUNDANCE ESTIMATED BY CHANGE IN CATCH PER UNIT  OF EFFORT 

The basic assumption is that the fishing mortality coefficient is proportional to the fishing 

effort.  

                                                       F = qf.  

The constant of proportionality, is called the catchability coefficient. 

In general, a population is fished until enough fish are removed to significantly reduce the 

catch per unit of effort, C/F, or, CPUE.  

Example: If removal of 10tons of fish reduces C/F by a quarter, the original stock must have 

been 10/0.25 or 40tons. 

 

METHODS : 

1. Leslie– plots of CPUE against cumulative catch, and 

2. Delury – log of CPUE is plotted against cumulative effort. 

 

Leslie Derivation: 

 Ct  =  qNt  by definition ……………………………….. (i) 
 Ft   

At the time Kt fish have been caught, the population Nt is: 

 Nt = No – Kt ………………………..…………………….. (ii) 

 
 Ct  =  qNo – qKt  
 Ft   

where q is the catchability coefficient. 

This is the basic Leslie formulation use to estimate initial population size (x – intercept) and 

catchability coefficient. 

 From Y = a + bX (linear model) 

The equation above when rewritten becomes………………………..(iii) 

 Ct  =  qNo   Nt 
 Ft     No ………………………………………(iv) 

 



From which the loge form 

Loge Ct  =  Loge (qNo) + Loge   Nt  
 Ft       No     ………………………….(v) 

 

Delury Derivation: 

 When the fraction of the stock taken by a single unit of effort in small (say less than 

2%0 it can be used as an exponential index to show the fraction of the stock remaining after 

Et units (of effort) have been expended. 

 

  Nt  =   е– qEt 

  No 

 Substituting into the logarithmic equation above……………………………..(v) 

 Loge   Ct = loge (qNo) - qEt 
           Ft 

From this both q and No may be estimated. 

 

III. CORRELATED POPULATION METHOD: 

In this method, it may be possible to estimate population size from the production of eggs or 

the number of nexts. For some species of fish, the tecundity of the species together with the 

size of femelas and sex composition of the population, and an estimate of the number of eggs 

deposited would provide the basic information required to estimate population size. The 

simplest models is: 

 

    N = r n Ê   and           rn = N ƒ + Nm + N1 
      ê                Nƒ    

Where: Nƒ, Nm, N1 are the numbers of mature fish of each sex and the number of immature 

fish beyond a certain age or size, E is the total number of eggs spawned in the season and e is 

the mean number of eggs spawned per mature female. 
 

This estimation procedure requires that the ratio (rn) be obtained from an experimental survey 

or from sampling the commercial catch. The total number of eggs spawned involves taking 

samples of known volumes of water (for pelagic eggs or of known areas of bottom (for 

benthic eggs) 

 

 



IV. ESTIMATION BY DIRECT ENUMERATION: 

Suppose we know the boundaries of a total population space, but we do not know how the 

population is distributed in this space. We arbitrarily divide the space into A equal spaces and 

select “a” of these to enumerate completely. The experiment yields error free numbers. 

N1, N2, N3  ……………………. Na for the spaces 1, 2, 3…………………..a  

 

 

Where  N = ∑    Ni 
      i =1 
 
Our estimate of N becomes: 

   

Where  N = ∑    Ni 
     i=1    a 
                    
 

This estimate is valid whether the population is randomly dispersed is space or contagiously 

distributed (i.e. – “over – dispersed”) or uniformly distributed (“under – dispersed”) 

 

 

 

 

Two applications of this method are used in fisheries using acoustic methods: 

(a) Mobile sector – scanning sonar – may be applied by running the vessel along 

randomly chosen transects and enumerating the sonar blips 

(b) Sonar Scanner – placing sonar scanners in migration path and enumerate the blips 

as the fish pass the station. 

 

V. CHANGE-IN-RATIO ESTIMATORS 

Methods of this type have been variously known as change-of-composition, survey-removal 

or dichotomy methods. The basis for the methods is an observed change in the relative 

abundance of two classes of animals within a population. The classes may be naturally 

occurring groups such as age, species, or sex classes, or they may be artificially constructed 

classes change-in-ratio of the classes allows us to estimate population abundance and 

survived. 

Example: 

A 

A 



In a situation where males or females might be selectively removed is evident here in the 

equation. 

Proportion males in    (# males before removal) – (#males removed) 

Population after removal =  (Pop. Size before removal) – (Total # animals removed0 

 

Note that the signs in the word equation depend upon whether fish are entering or leaving the 

population. 

N1 =  Rx – P2R  for estimate population abundance  

 P2 – P1  

Number of X-type fish in the population at t1.  

 X  = P1 (Rx – P2R) 

             P2 – P1  

 Where P1 – proportion of X – types of fish at time t (1, 2) which is equal to        

      Pi =          Yi  where Ni = Xi + Yi  

             Ni 

Ni   = total no of all fish,           Xi = total number of X- fish 

   

RX = Net change in numbers of X – type of fish in the population between t1 and t2  
R = Rx + Ry = Net removal (– ) or addition (f) to the population between t1 and t2 
 

VI. MARK – RECAPTURE METHODS: 

In 1896, C.G.T. Petersen (Danish biologist) used this method to compute the rate of 

exploitation and, subsequently the total population of a group of fish. Ten years later Knut 

Dahl employed the method to estimate a trout population in Norway. 

 

General Considerations: 

Mark recapture models for estimating abundance depend upon capturing a portion of a stock, 

marking it and releasing the marked fish, some of which are subsequently caught in the next 

capture event. 

 
Factors to consider include: 

1. How many fish can be marked in a single event? 

2. How many can be recaptured? 

3. Are Unique identifiers required or will batch – marked do an well. 

4. Will there be losses on capture? 



There are two types of mark-recapture methods 

i. Single mark – recapture. 

ii.  Multiple mark – recapture 

 

Single Mark-recapture 

 N  =     MC   
  r  

 

Where: N is the total population  

m = number of marked fish in population   

c = number of fish in the sample of population  

r = number of marked fish in C 

 

V(N) = N2(N –m) (N – C) 
        mc (N – 1) 
 
at 95% Cl . P = N + 1.96V (N) 
  
 

Multiple mark – Recapture method 

 N = ∑mici 

         ∑Ri 

 

 

i mi ci Ri Newly 
marked& 
released 

mici 

1 O 44 0 44 0 
2 44 53 4 49 2332 
3 93 58 4 49 5394 
4 145 47 11 36 6815 
5 181 52 17 35 9412 
6 216 46 18 28 9936 
Total  56  33889  
 

N =  N = ∑mici 

         ∑Ri  = 33889 / 56 = 605.2 

 

 



Class work: 

300 fish were marked and released in June 1. on September 25, 75 were marked differently 

and released. On October. 1, 250 fish were caught of which 35 bore the June mark and 12 

bone the September mark. Estimate the survival of this MR survey. 

 

Solution  

N1=         300 x 250 

          35  = 2143 

 

N2 = 75 x 250                   1563 

 12                        =   580 

580  x      100 
2143          1  = 27% mortality  

Therefore, survival is 73%. 

 

ESTIMATION OF GROWTH PARAMETERS 

The study of growth means basically the determination of the body size as a function of age. 

Therefore all stock assessment methods work essentially with age composition data. In 

temperate waters such data can usually be obtained through the counting of year rings on 

hard parts such as scales and otoliths. These rings are formed due to strong fluctuations in 

environmental conditions from summer to winter and vice versa. In tropical areas such drastic 

changes do not occur and it is therefore very difficult, if not impossible to use this kind of 

seasonal rings for age determination.  

Only recently methods have been developed to use much finer structures, so-called daily 

rings, to count the age of the fish in number of days. These methods, however, require special 

expensive equipment and a lot of manpower, and it is therefore not likely that they will be 

applied on a routine basis in many places.  

Fortunately several numerical methods have been developed which allow the conversion of 

length-frequency data into age composition. Although these methods do not require the 

reading of rings on hard parts, the final interpretation of the results becomes much more 

reliable if at least some direct age readings are available. The best compromise for stock 



assessment of tropical species is therefore an analy

data combined with a small number of age readings on the basis of daily rings.

 

Mathematically von Bertalanffy equation
the fish, t:  

                                            L(t) = L

The parameters can to some extent be interpreted biologically. L

length of very old (strictly: infinitely old) fish

"curvature parameter" (Figure 1) 

Some species, most of them short

high value of K. Other species have a flat growth curve with a low K

years to reach anything like their L

condition parameter", determines the point in time when the fish has zero length. 

Biologically, this has no meaning, because the growth begins at hatching when 

already has a certain length, which may be called L(0) when we put t = 0 at the day of birth. 

Figure 1: Growth curves with different curvature parameters, different K values

assessment of tropical species is therefore an analysis of a large number of length

data combined with a small number of age readings on the basis of daily rings.

Mathematically von Bertalanffy equation expresses the length, L, as a function of the age of 

L(t) = L∞ *[1 - exp(-K*(t-t0))] 

The parameters can to some extent be interpreted biologically. L∞ is interpreted as "

length of very old (strictly: infinitely old) fish", it is also called the "asymptotic length

(Figure 1) which determines how fast the fish approaches its L

Some species, most of them short-lived, almost reach their L∞ in a year or two and have a 

high value of K. Other species have a flat growth curve with a low K-value and need many

years to reach anything like their L∞ . The third parameter, t0, sometimes called "

", determines the point in time when the fish has zero length. 

Biologically, this has no meaning, because the growth begins at hatching when 

already has a certain length, which may be called L(0) when we put t = 0 at the day of birth. 

rowth curves with different curvature parameters, different K values

sis of a large number of length-frequency 

data combined with a small number of age readings on the basis of daily rings. 

expresses the length, L, as a function of the age of 

is interpreted as "the mean 

asymptotic length". K is a 

which determines how fast the fish approaches its L∞ . 

in a year or two and have a 

value and need many 

, sometimes called "the initial 

", determines the point in time when the fish has zero length. 

Biologically, this has no meaning, because the growth begins at hatching when the larva 

already has a certain length, which may be called L(0) when we put t = 0 at the day of birth.  

 

rowth curves with different curvature parameters, different K values 



Variability and applicability of growth parameters

Growth parameters, of course, differ from species to species, but they may also vary from 

stock to stock within the same species, i.e. growth parameters of a particular species may take 

different values in different parts of its range. Also successive cohorts may grow differently 

depending on environmental conditions. Further growth parameters often take different 

values for the two sexes. If there are pronounced differences between the sexes in their 

growth parameters, the input data should be separated by sex and values of K, L

should be estimated for each sex separately.

The weight-based von Bertalanffy growth equation

Combining the von Bertalanffy growth equation 

L(t) = L∞ *[1 - exp(-K*(t-t0))] 

with the length/weight relationship 

W(t) = q*L³(t) 

One can deduce the weight of a fish as a function of age

W(t) = W∞ *[1 - exp(-K*(t-t 0

 

ESTIMATING THE GROWTH PARAMETERS

The Gulland and Holt plot

∆ L/∆ t = a + b*   

The growth parameters K and L

K = -b and L∞ = -a/b 

The Ford-Walford plot and Chapman's method

L(t+∆ t) = a + b*L(t) 

where  

Variability and applicability of growth parameters

Growth parameters, of course, differ from species to species, but they may also vary from 

stock to stock within the same species, i.e. growth parameters of a particular species may take 

different parts of its range. Also successive cohorts may grow differently 

depending on environmental conditions. Further growth parameters often take different 

values for the two sexes. If there are pronounced differences between the sexes in their 

parameters, the input data should be separated by sex and values of K, L

should be estimated for each sex separately. 

based von Bertalanffy growth equation 

nffy growth equation   

 

eight relationship  

the weight of a fish as a function of age as:  

 

0))]
3. 

ESTIMATING THE GROWTH PARAMETERS  

The Gulland and Holt plot 

and L∞ are obtained from:  

Walford plot and Chapman's method 

Variability and applicability of growth parameters                                               

Growth parameters, of course, differ from species to species, but they may also vary from 

stock to stock within the same species, i.e. growth parameters of a particular species may take 

different parts of its range. Also successive cohorts may grow differently 

depending on environmental conditions. Further growth parameters often take different 

values for the two sexes. If there are pronounced differences between the sexes in their 

parameters, the input data should be separated by sex and values of K, L∞ and t0 



a = L∞ *(1-b) and b = exp(-K*

Since K and L∞ are constants, a and also b become constants

parameters K and L∞ are derived from: 

 

For Chapman 

L(t+∆ t) - L(t) = c*L∞ - c*L(t).

where  

c = 1 - exp(-K*∆ t) 

Thus, since K and L∞ are constants, and if 

consequently the equation becomes a linear regress

y = a + bx 

where  

y = L(t+∆ t)-L(t), a = c*L∞ , b = 

Note that the slope is negative and also that on the abscissa (x

lengths is used, instead of the mean value

The growth parameters are derived from 

K = -(1/∆ t)*ln(1+b) and L∞ =

 

Inverse equation of VBGF for estimating t

t(L) = to -1/K* In(1 – L/L∞) 

 

K* ∆ t) 

are constants, a and also b become constants if ∆∆∆∆ t is a constant

are derived from:  

 

c*L(t). 

are constants, and if ∆ t remains constant, c will remain const

becomes a linear regression  

, b = -c and x = L(t) 

Note that the slope is negative and also that on the abscissa (x-axis) the smaller of the two 

e mean value.  

The growth parameters are derived from  

= -a/b or a/c 

for estimating to 

t is a constant. The growth 

t remains constant, c will remain constant and 

axis) the smaller of the two 



MORTALITY RATES                                                                                                                  

Mortality is caused by either fishing or through natural phenomena such as old age, disease 

and predation.The key parameters used when describing death are called mortality rate. 

Natural mortality rate, M: This can be estimated using Pauly’s empirical model or equation:                                         

In M = -0.0152 - 0.279 * In L∞ + 0.6543 * InK + 0.463 * InT        

Where T = mean annual water temperature        

Total mortality rate, Z:   can be  estimated in various ways among which is the linearised 

length-converted catch curve    

                                    In   C[L1, L2]/∆t[ L1, L2]  = C – Z * t[ L1+ L2] /2  

From here, fishing mortality,F, can be estimated as  

                                            F = Z – M 

And exploitation rate, E, as  

                                            E = F/Z 

E ranges from 0 to 1. It is optimum at 0.5, under-exploitation when it is less than 0.5, and 

over-exploitation when the estimate is above 0.5.  

YIELD PER RECRUIT MODEL  

This model is used to assess the effect of mesh size regulations. Beverton and Holt developed 

a relative yield per recruit model which can provide the kind of information needed for 

management. 

This is defined as: 

(Y/R)1 = E * UM/K * [ 1- 3U/1+m  + 3U2/1+2m – U3/1+3m] 

 



Where   m =      1 –  E / M/K = K/Z 

U = 1 – Lc/L∞ the fraction of growth to be completed after entry into the exploitation phase. 

E = F/Z  fraction of death caused by fishing 

Lc = the length of the smallest fish in the sample 

(Y/R)1  can be calculated for a given input values of M/K, L∞ and Lc for values of E ranging 
from 0 to 1, corresponding to F values ranging from 0 to ∞. 

The plot of (Y/R)1  against E gives a curve with a maximum value, EMSY, for a given value of 
Lc. Thus, when Lc, F and Z are known for a certain fishery, the actual exploitation can be 
compared with the EMSY level and management measures be proposed as required. 
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