AGE 401: Design of Agric. and Food Processing Machines I (3 Units)

Synopsis:

- Design and analysis of individual machine components - shafts, gears, chains, linkages, bearings, keys, keyways, belts, clutches, etc. Component assemblies and machine systems.
- Design project

The Power Transmission Shaft

The shaft is design based on strength and rigidity criteria.
A. Strength Criterion

The required diameter for a solid shaft having combined bending and torsional loads is obtained from ASME code equation (Hall, et al. 1980) as

$$
\mathrm{D}^{3}=\underline{16} \sqrt{ }\left(\mathrm{~K}_{\mathrm{b}} \mathrm{M}_{\mathrm{b}}\right)^{2}+\left(\mathrm{K}_{\mathrm{t}} \mathrm{M}_{\mathrm{t}}\right)^{2} / \pi \mathrm{S}_{\mathrm{s}}
$$

Where, at the section under consideration :
$S_{s}=$ Allowable combined shear stress for bending and torsion
$=40 \mathrm{MPa}$ for steel shaft with keyway.
$\mathrm{K}_{\mathrm{b}}=$ Combined shock and fatigue factor applied to bending moment
$=1.5$ to 2.0 for minor shock.
$\mathrm{K}_{\mathrm{t}}=$ Combined shock and fatigue factor applied to torsional moment
$=1.0$ to 1.5 for minor shock.
$\mathrm{M}_{\mathrm{b}}=$ Bending moment (Nm)
$\mathrm{M}_{\mathrm{t}}=$ Torsional moment $(\mathrm{Nm})=55.59 \mathrm{Nm}$ (section 4.6.1.5)
$\mathrm{D}=$ Diameter of solid shaft (m).
The bending load is due to the weight of the pulley, the summation of tensions on the belts acting vertically downward, and the weight of the threaded shaft.

The shaft is supported at point A and C by two bearings. The reactions R_{A} and R_{c} at the two supports are determined as follows :

$$
\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{c}}=\mathrm{W}_{\mathrm{s}}+\left(\mathrm{T}_{1}+\mathrm{T}_{2}\right)+\mathrm{W}_{\mathrm{p}}
$$

\qquad
where : $\mathrm{W}_{\mathrm{s}}=$ weight of threaded shaft $=50 \mathrm{~N}$
$\mathrm{T}_{1}+\mathrm{T}_{2}=$ sum of tensions on vertical belts $=1030 \mathrm{~N}$
$\mathrm{W}_{\mathrm{p}}=$ weight of pulley $=50 \mathrm{~N}$
$\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{c}}=50+2144+50$
$\mathrm{R}_{\mathrm{A}}+\mathrm{R}_{\mathrm{c}}=2244$
Taking moment about A ,
$\mathrm{R}_{\mathrm{c}}(0.485)=50(0.3025)+2194(0.605)$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{c}}=1343 \mathrm{~N} \\
& \mathrm{R}_{\mathrm{A}}=2244-1343=902 \mathrm{~N}
\end{aligned}
$$

The shear force and bending moment diagrams
The maximum bending moment occurs at B and it is 273 Nm .

Figure 1 : Bending Loads on the Wormshaft

Figure 4.19: Shear Force and Bending Moment Diagrams

From equation,

$$
\begin{aligned}
\mathrm{D}^{3} & =\frac{16 \sqrt{ }(1.0 \times 273)^{2}+(1 \times 55.6)^{2}}{3.142 \times 40 \times 10^{6}} \\
& =2.259 \times 10^{-5} \\
\mathrm{D} & =\left(2.259 \times 10^{-5}\right)^{1 / 3} \\
& =28.77 \mathrm{~mm}
\end{aligned}
$$

The calculated diameter is less than the least chosen diameter (30 mm). Therefore,
strength criterion is satisfied.

B. Rigidity Criterion

The design of shaft for torsional rigidity is based on the permissible angle of
twist. This is $3 \mathrm{deg} / \mathrm{m}$ for steel shaft (Hall et. al., op. cit.). For a tapered shaft,

$$
\phi=\underline{2 T L}\left\{\left(1 / \mathrm{D}_{\mathrm{i}}{ }^{3}\right)-\left(1 / \mathrm{D}_{\mathrm{o}}{ }^{3}\right)\right\}
$$

where : $\phi=$ angle of twist (deg)
$\mathrm{T}=$ Torsional moment $=55.6 \mathrm{Nm}$
$\mathrm{L}=$ Length of tapered section $=0.325 \mathrm{~m}$
$\mathrm{G}=$ Modulus of rigidity $=80 \mathrm{GN} / \mathrm{m}^{2}$ for steel shaft
$D_{i}=$ Inlet diameter of tapered section $=0.0475 \mathrm{~m}$
$\mathrm{D}_{0}=$ Outlet diameter of tapered section $=0.0600 \mathrm{~m}$

$$
\begin{aligned}
\phi & =\frac{2 \times 55.6 \times 0.325\left\{\left(1 / 0.0475^{3}\right)-\left(1 / 0.0600^{3}\right)\right\}}{3 \times 3.142 \times 80 \times 10^{6}} \\
& =4.14 \times 10^{-6} \mathrm{deg}
\end{aligned}
$$

This is less than the permissible angle of twist ($3 \mathrm{deg} / \mathrm{m}$). Hence, torsional deflection is satisfied.

EXAMPLE

The solid shaft of a stone crusher is transmitting 1MW at 240 r.p.m. Determine the diameter of the shaft if the maximum torque transmitted exceeds the mean torque by 20%. Take the maximum allowable shear stress as 60 MPa

Given: $\mathrm{P}=1 \mathrm{MW}=1 \times 10^{6} \mathrm{~W}$;
$\mathrm{N}=240$ r.p.m.;
$\mathrm{T}_{\text {max }}=1.2 \mathrm{~T}_{\text {mea }}$
$\tau=60 \mathrm{MPa}=60 \mathrm{~N} / \mathrm{mm}^{2}$
Let
$d=$ Diameter of the shaft
Mean torque transmitted by the shaft,
$\mathrm{T}_{\text {mean }}=\mathrm{PX} 60$
$\begin{aligned} & 2 \pi \mathrm{~N} \\ = & 1 \mathrm{X} 10^{6} \mathrm{X} 60\end{aligned}$
$2 \pi \times 240$
$=39784 \mathrm{~N}-\mathrm{m}$
$=39784 \times 10^{3} \mathrm{~N}-\mathrm{mm}$
Therefore, maximum torque transmitted,

$$
\mathrm{T}_{\max }=1.2 \mathrm{~T}_{\text {mean }}
$$

$$
\begin{aligned}
& =1.2 \times 39784 \times 10^{3} \\
& =47741 \times 10^{3} \mathrm{~N}-\mathrm{mm}
\end{aligned}
$$

Also, maximum torque transmitted,

$$
\begin{aligned}
\mathrm{T}_{\max } & =\frac{\pi}{16} \mathrm{X} \tau \mathrm{Xd}^{3} \\
& =\frac{\pi}{16} \mathrm{X} 60 \mathrm{Xd}^{3} \\
& =11.78 \mathrm{~d}^{3}
\end{aligned}
$$

Therefore, $47741 \times 10^{3} \mathrm{~N}-\mathrm{mm}=11.78 \mathrm{~d}^{3}$

$$
\begin{aligned}
\mathrm{d}^{3} & =\frac{47741 \times 10^{3} \mathrm{~N}-\mathrm{mm}}{11.78} \\
& =4053 \times 10^{3} \\
\mathrm{~d} & =159.4 \text { say } 160 \mathrm{~mm}
\end{aligned}
$$

Belt Design

For a chosen $1 \mathrm{hp}, 180 \mathrm{rpm}$ electric gear motor, the belt type is a - B section with dimension $17 \times 11 \mathrm{~mm}^{2}$. The diameter, $\mathrm{d}=75 \mathrm{~mm}$ is used at the gear motor shaft. The expeller pulley's diameter,

$$
\mathrm{D}=\underline{\mathrm{N}}_{\underline{\mathrm{m}}} \underline{\mathrm{~d}}
$$

N_{e}
where,
$\mathrm{N}_{\mathrm{m}}=$ Speed of the electric motor $=180 \mathrm{rpm}$
$d=$ Diameter of Driving Pulley $=75 \mathrm{~mm}$
$\mathrm{N}_{\mathrm{e}}=$ Wormshaft Speed $=45 \mathrm{rpm}$

$$
\begin{aligned}
\mathrm{D} & =\frac{180 \times 75}{45} \\
& =300 \mathrm{~mm}
\end{aligned}
$$

The minimum centre distance,

$$
\begin{aligned}
\mathrm{C}_{\mathrm{d}} & =\frac{\mathrm{d}+\mathrm{D}}{2}+\mathrm{d} \\
& =\frac{75+300}{2}+75 \\
& =263 \mathrm{~mm} .
\end{aligned}
$$

To take care of the bigger pulley, $\mathrm{a}-500 \mathrm{~mm}$ centre distance is chosen.
The pitch length of the belt,

$$
\begin{aligned}
& \mathrm{L}=2 \mathrm{c}_{\mathrm{d}}+1.57 \frac{(\mathrm{~d}+\mathrm{D})}{2}+\left(\frac{\mathrm{D}}{4}-\frac{\mathrm{d}}{4 \mathrm{C}_{\mathrm{d}}}{ }^{2}\right. \\
& \begin{aligned}
\mathrm{L} & =2 \times 500+1.57 \frac{(75+300)}{2}+\frac{(300-75)^{2}}{4 \times 500} \\
& =873 \mathrm{~mm}
\end{aligned}
\end{aligned}
$$

From table 4.1, the nearest standard pitch length is 932.2 mm for which the nominal length is 838 mm . A - 2 B33 - synchronous (toothed) belt arrangement which combines the characteristics of belts and chains will be used. This will guide against slippage, hence maintaining a constant speed ratio between the driving and the driven shafts.

Source: Mubeen, 1998
Figure 4.16: Effective Power of Belts as a Function of RPM of Small Sheaves

Table 4.1: Standard V - Belts Pitch Lengths

Nominal Length mm (inches)	Standard Pitch Length, mm (inches)		
	A - Section	B - Section	C-Section
660 (26)	696 (27.4)	-------	--------
787 (31)	823 (32.4)	-------	--------
838 (33)	874 (34.4)	-------	--------
889 (35)	925 (36.4)	932.2 (36.7)	--------
965 (38)	1001 (39.4)	1008.4 (39.7)	--------
1067 (42)	1102 (43.4)	1110 (43.7)	--------
1168 (46)	1204 (47.4)	1212 (47.7)	--------
1219 (48)	1252 (49.4)	--------	--------
1295 (51)	1331 (52.4)	1339 (52.7)	1351 (53.2)
1295 (53)	1382 (54.4)	1389 (54.7)	--------
1397 (55)	1433 (56.4)	1440 (56.7)	--------
1524 (60)	1561 (61.4)	1567 (61.7)	1580 (62.2)
1575 (62)	1610 (63.4)	1618 (63.7)	--------
1625 (64)	1661 (65.4)	1669 (65.7)	--------
1727 (68)	1762 (69.4)	1770 (69.7)	1783 (70.2)
1905 (75)	1941 (76.4)	1948 (76.7)	1961 (77.2)
1981 (78)	2017 (79.4)	2024 (79.7)	--------
2032 (80)	2067 (81.4)	--------	--------
2057 (81)	--------	2101 (82.7)	2113 (83.2)
2108 (83)	2144 (84.4)	2151 (84.7)	--------
2159 (85)	2195 (86.4)	2202 (86.7)	2215 (87.2)
2286 (90)	2322 (91.4)	2329 (91.7)	2342 (92.2)
2438 (96)	2474 (97.4)	--------	2499 (98.2)
2464 (97)	2499 (98.4)	2507 (98.7)	--------
2667 (105)	2702 (106.4)	2710 (106.7)	2723 (107.2)
2845 (112)	2880 (113.4)	2888 (113.7)	2901 (114.2)
3048 (120)	3084 (121.4)	3091 (121.7)	3104 (122.2)

Source : Mubeen, 1998

Determination of Tensions in the Belt

Figure 4.17 shows the belt geometry and according to Hall et.al. 1980, the angle of wrap

$$
\alpha=180 \pm 2 \sin ^{-1}\{(\mathrm{R}-\mathrm{r}) / \mathrm{C}\}
$$

where :
$R=$ radius of the larger pulley $=150 \mathrm{~mm}$
$\mathrm{r}=$ radius of the smaller pulley $=37.5 \mathrm{~mm}$
$C=$ centre distance $=500 \mathrm{~mm}$
$\therefore \quad \alpha_{1}=180+2 \sin ^{-1}\{(150-37.5) / 500\}=206 \mathrm{deg} .=3.6 \mathrm{rad}$
and $\quad \alpha_{2}=180-2 \sin ^{-1}\{(150-37.5) / 500\}=154 \mathrm{deg} .=2.7 \mathrm{rad}$.
To obtain T_{1} and T_{2}, the following equations are solved simultaneously :
and $\quad \frac{\mathrm{T}_{1}-\mathrm{mv}^{2}}{\mathrm{~T}_{2}-\mathrm{mv}^{2}}=\mathrm{e}^{\mu \alpha / \sin (\theta / 2)}$
where :
$\mathrm{T}_{1}=$ tension in the tight side
$\mathrm{T}_{2}=$ tension in the slack side
$\mathrm{m}=\mathrm{bte}$
$\mathrm{b}=$ belt width $=17 \mathrm{~mm}$
$\mathrm{t}=$ belt thickness $=11 \mathrm{~mm}$
$e=$ belt density $970 \mathrm{~kg} / \mathrm{m}^{3}$ for leather belt
$\therefore \quad \mathrm{m}=17 \times 11 \times 10^{-3} \times 970=0.18 \mathrm{~kg} / \mathrm{m}$

$\mu=$ coefficient of friction between belt

$=(0.15$ for leather belt on steel $)$

$v=$ belt velocity $=r \omega=2 \pi r N_{m} / 60 \mathrm{~m} / \mathrm{s}$

```
\(=2 \times 3.142 \times 37.5 \times 10^{-3} \times 180\)
60
\(=0.71 \mathrm{~m} / \mathrm{s}\)
```

$\theta=40 \mathrm{deg}$. (most common angle of groove)
For small pulley, $\mathrm{e}^{\mu}{ }_{1} \alpha_{1} / \sin (\theta / 2)=\mathrm{e}^{0.15 \times 2.7 / \sin 20}=3.27$
and
For big pulley, $\mathrm{e}_{2}^{\mu} \underset{2}{\alpha} / \sin (\theta / 2)=\mathrm{e}^{0.15 \times 3.6 / \sin 20}=4.80$
The pulley with smaller value governs the design. In this case, the smaller pulley governs the design.

$$
\begin{aligned}
& \frac{\mathrm{T}_{1}-\mathrm{mv}^{2}}{\mathrm{~T}_{2}-\mathrm{mv}^{2}}=3.27 \\
& \underline{\mathrm{~T}}_{1}-0.18 \times 0.716^{2}=3.27 \\
& \mathrm{~T}_{2}-0.18 \times 0.716^{2} \\
& \mathrm{~T}_{1}-0.093=3.27 \mathrm{~T}_{2}-0.302 \\
& 3.27 \mathrm{~T}_{2}-\mathrm{T}_{1}=0.302-0.093 \\
& 3.27 \mathrm{~T}_{2}-\mathrm{T}_{1}=0.209
\end{aligned}
$$

But Power $(\mathrm{Kw})=\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right) \mathrm{V}$

$$
\mathrm{P}=1 \mathrm{Hp}=0.746 \mathrm{KW}
$$

$$
\mathrm{V}=0.71 \mathrm{~m} / \mathrm{s}
$$

$$
\therefore \mathrm{T}_{2}-\mathrm{T}_{1}=1.042
$$

$$
\mathrm{T}_{1}=1.042+\mathrm{T}_{2}
$$

$3.27 \mathrm{~T}_{2}-\left(1.402+\mathrm{T}_{2}\right)=0.209 \quad$ B
$\left.3.27 \mathrm{~T}_{2}-\mathrm{T}_{2}\right)=0.209+1.402$

$$
\mathrm{T}_{2}=0.55 \mathrm{KN}
$$

and $\quad \mathrm{T}_{1}=1.042+0.55=1.593 \mathrm{KN}$

Example

The belt drive of a maize sheller consists of two V - belts in parallel, on grooved pulleys of the same size. The angle of groove is 30°. The cross - sectional area of each belt is 750 mm^{2} and $\mu=0.12$. The density of the belt material is $1.2 \mathrm{Mg} / \mathrm{m}^{3}$ and the maximum safe stress in the material is 7 MPa . Calculate the power that can be transmitted between pulleys of 300 mm diameter rotating at $1500 \mathrm{r} . \mathrm{p} . \mathrm{m}$

Given:

$$
\begin{aligned}
\mathrm{n} & =2 ; \\
2 \beta & =30^{0} \text { or } \beta=15^{0} \\
\mathrm{a} & =750 \mathrm{~mm}^{2}=750 \times 10^{-6} \mathrm{~m}^{2} \\
\mu & =0.12 ; \\
\rho & =1.2 \mathrm{Mg} / \mathrm{m}^{3}=1200 \mathrm{~kg} / \mathrm{m}^{3} \\
\sigma & =7 \mathrm{MPa}=7 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2} ; \\
\mathrm{d} & =300 \mathrm{~mm}=0.3 \mathrm{~m} \\
\mathrm{~N} & =1500 \text { r.p.m. }
\end{aligned}
$$

The mass of belt per metre length,
$\mathrm{M}=$ area X length X density
$=750 \times 10^{-6} \mathrm{X} 1 \mathrm{X} 1200$
Speed of the belt

$$
\begin{aligned}
\mathrm{v} & =\frac{\pi \mathrm{dN}}{60} \\
& =\pi \times 0.3 \times 1500=23.56 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Therefore, Centrifuga

$$
\mathrm{T}_{\mathrm{c}}=\mathrm{mv}^{2}
$$

$$
=0.9(23.36)^{2}=500 \mathrm{~N}
$$

and maximum tension, $\mathrm{T}=\sigma \mathrm{X}$
$=7 \times 10^{6} \times 750 \times 10^{-6}=5250 \mathrm{~N}$

Tension in the tight side of the belt,

$$
\begin{aligned}
\Gamma_{1} & =\mathrm{T}-\mathrm{T}_{\mathrm{c}} \\
& =5250-500=4750 \mathrm{~N}
\end{aligned}
$$

Let $\quad T_{2}=$ Tension in the slack side of the belt
Since the pulley are of the same size, angle of lap, $\theta=180^{\circ}=\pi \mathrm{rad}$
$2.3 \log \mathrm{~T}_{1 /} \mathrm{T}_{2}=\mu . \theta \operatorname{cosec} \beta$

$$
\begin{equation*}
=0.12 \mathrm{X} \pi \mathrm{X} \operatorname{cosec} 15^{0}=0.377 \times 3.8637=1.457 \tag{But}
\end{equation*}
$$

$$
\log \mathrm{T}_{1 /} \mathrm{T}_{2}=1.457 / 2.3
$$

$$
=0.6335
$$

$$
\mathrm{T}_{1 /} \mathrm{T}_{2}=4.0 \mathrm{O}
$$

$$
\begin{aligned}
/ 1_{2} & =4.3 \\
\mathrm{~T}_{2} & =\mathrm{T}_{1} / 4.3=1105 \mathrm{~N}
\end{aligned}
$$

Power transmitted,

$$
\begin{aligned}
\mathrm{P} & =\left(\mathrm{T}_{1 /}-\mathrm{T}_{2}\right) \vee \mathrm{X} \mathrm{n} \\
& =(4750-1105) 23.56 \times 2=171750 \mathrm{~W} \\
& =171.75 \mathrm{~kW}
\end{aligned}
$$

DESIGN OF KEYS

A -45 mm diameter rice thresher shaft is made of steel with a yield strength of 400 MPa A parallel key of size 14 mm wide and 9 mm thick made of steel with a yield strength of 340 MPa is to be used. Find the required length of key, if the shaft is loaded to transmit the maximum permissible torque. Use maximum shear stress theory and assume a factor of safety of 2 .

Given: $\quad d=45 \mathrm{~mm}$
σ_{yt} for shaft $=400 \mathrm{MPa}=400 \mathrm{~N} / \mathrm{mm}^{2}$;
$\mathrm{w}=14 \mathrm{~mm} ;$
$\mathrm{t}=9 \mathrm{~mm}$;
σ_{yt} for key $=340 \mathrm{MPa}=340 \mathrm{~N} / \mathrm{mm}^{2}$
F.S. $=2$

Let $\quad 1=$ length of key
According to maximum shear stress theory, the maximum shear stress for the

$$
\begin{aligned}
\tau_{\max } & =\frac{\sigma_{\mathrm{yt}}}{2 \mathrm{X} \mathrm{F.S}} \\
& =\frac{400}{\mathrm{y}}
\end{aligned}
$$

$$
\begin{aligned}
& 2 \times 2 \\
= & 100 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

and maximum shear stress for key,
$\tau_{\text {key }}=\frac{\sigma_{\text {gt }}}{2 \underline{\text { X FS }}}$
$=340$
$=\frac{340}{2 \times 2}$

$$
=85 \mathrm{~N} / \mathrm{mm}^{2}
$$

The maximum torque transmitted by the shaft and key

$$
T=\frac{\pi}{16} X \tau_{\max } X d^{3}
$$

$$
16
$$

$=\pi \mathrm{X} 100 \mathrm{X}(45)^{3}$

16

$=1.8 \times 10^{6} \mathrm{~N}-\mathrm{mm}$
Considering failure of key due to shearing, the maximum torque transmitted
$\mathrm{T}=1 \mathrm{x} \mathrm{w} \times \tau_{\text {key }} \mathrm{x} \mathrm{d} / 2$
$=1 \times 14 \times 85 \times 45 / 2$
$=267751$
$18 \times 10^{6} \mathrm{~N}-\mathrm{mm}=267751$
Therefore, $\quad 1=67.2 \mathrm{~mm}$
Considering failure of key due to crushing, the maximum torque transmitted by the shaft and key

$$
\begin{aligned}
\mathrm{T} & =1 \times \mathrm{t} / 2 \times \sigma_{\mathrm{ck}} \times \mathrm{d} / 2 \\
& =1 \times 9 / 2 \times 340 / 2 \times 45 / 2 \\
& =172131
\end{aligned}
$$

(taking $\sigma_{\mathrm{ck}}=\sigma_{\mathrm{yt}} / 2$)

$$
\begin{aligned}
& 1.8 \times 10^{6} \mathrm{~N}-\mathrm{mm}=72131 \\
& \text { Therefore, } \quad 1=104.6 \mathrm{~mm} \\
& \text { Taking the larger of the two values, we have } \\
& \quad \mathrm{l}=104.6 \mathrm{~mm} \text { say } 105 \mathrm{~mm}
\end{aligned}
$$

DESIGN OF BEARINGS

The shaft of a yam extruder rotating at constant speed is subjected to variable load. The bearings supporting the shaft are subjected to stationary equivalent radial load of 3 kN fo 10 per cent of time, 2 kN for 20 per cent of time, 1 kN for 30 per cent of time and no load remaining is 20×10^{6} revolutions at 95 per cent reliability, calculate dynamic load rating of the ball bearing. For ball bearing, b and k are taking as 1.17 and 3 respectively.

[^0]$\mathrm{L}_{90}\left(\log _{\mathrm{e}}\left(1 / \mathrm{R}_{90}\right)\right)^{1 / \mathrm{l}}$
\[

$$
\begin{aligned}
= & \left(\log _{e}(1 / 0.95)\right)^{1 / 1.17} \\
\left(\log _{e}\right. & (1 / 0.95))^{1 / 1.17} \\
= & (0.0513 / 0.1054)^{0.8547} \\
= & 0.54
\end{aligned}
$$
\]

$$
\mathrm{L}_{90}=\mathrm{L}_{95} / 0.54=20 \times 10^{6} / 0.54=37 \times 10^{6} \mathrm{rev}
$$

Equivalent radial load

$$
\mathrm{W}=\frac{\left(\mathrm{n}_{1}\left(\mathrm{~W}_{1}\right)^{3}+\mathrm{n}_{2}-\left(\mathrm{W}_{2}\right)^{3}+\mathrm{n}_{3}\left(\mathrm{~W}_{3}\right)^{3}+\mathrm{n}_{4}\left(\mathrm{~W}_{4}\right)^{3}\right)^{1 / 3}}{\left(\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}+\mathrm{n}_{4}\right)^{1 / 3}}
$$

$$
=\left(0.1 \mathrm{n} \times 3^{3}+0.2 \mathrm{n} \times 2^{3}+0.3 \mathrm{n} \times 1^{3}+0.4 \mathrm{n} \times 0^{3}\right)^{1 / 3}
$$

$$
=(2.7+1.6+0.3+0)^{1 / 3}
$$

$$
\frac{3+0.2 n \times 2+0.3 n \times 1+0 .}{(0.1 n+0.2 n+0.3 n+0.4 n)^{1 / 3}}
$$

$$
=1.663 \mathrm{kN}
$$

Dynamic load rating,

$$
\begin{aligned}
\mathrm{C} & =\mathrm{W}\left(\mathrm{~L}_{90} / 10^{6}\right)^{1 / \mathrm{k}} \\
& =1.663\left(37 \mathrm{X} 10^{6} / 10^{6}\right)^{1 / 3} \\
& =5.54 \mathrm{kN}
\end{aligned}
$$

DESIGN OF GEARS

A bronze spur pinion rotating at 600 r.p.m. drives a cast iron spur gear of a Coconut oil extractor at a transmission ratio of $4: 1$. The allowable stastic stresses for the bronze pinion and cast iron gear are 84 MPa and 105 MPa respectively. The pinion has 16 standard 20° full depth involute teeth of module 8 mm . The face width of both gears is 90 mm . Find the power that can be transmitted from the standpoint of strength

$$
\begin{aligned}
& \text { Given: } \quad N_{p}=600 \text { r.p.m.; } \\
& \text { V.R. }=T_{G} / T_{P}=4 \\
& \sigma_{0 \mathrm{p}}=84 \mathrm{MPa}=84 \mathrm{~N} / \mathrm{mm} \\
& \sigma_{0 \mathrm{G}}=105 \mathrm{MPa}=105 \mathrm{~N} / \mathrm{mm}^{2} \\
& \mathrm{~T}_{\mathrm{p}}=16 \\
& \mathrm{M}=8 \mathrm{~mm} \\
& \begin{array}{l}
\mathrm{M}=8 \mathrm{~mm} \\
\mathrm{~b}=90 \mathrm{~mm}
\end{array} \\
& \text { Pitch circle diameter of the pinion, } \\
& D_{p}=m . T_{p} \\
& =8 \times 16=128 \mathrm{~mm}=0.128 \mathrm{~m} \\
& \text { Therefore, pitch line velocity, } \\
& \mathrm{v}=\frac{\pi \mathrm{D}_{\mathrm{p}} .}{60}
\end{aligned}
$$

$$
=\frac{\pi \times 0.128 \times 600}{60}=4.02 \mathrm{~m} / \mathrm{s}
$$

Since the pitch line velocity (v) is less than $12.5 \mathrm{~m} / \mathrm{s}$. therefore velocity factor,

$$
\mathrm{C}_{\mathrm{v}}=\frac{3}{3+\mathrm{v}}=\frac{3}{3+4.02}=0.427
$$

For 200 full depth involute teeth, tooth form factor for the pinion,
$\mathrm{y}_{\mathrm{p}}=0.154-\underline{0.912}$

$$
\begin{aligned}
& =0.154-\frac{0.912}{16} \\
& =0.097
\end{aligned}
$$

and tooth form for gear

$$
\begin{aligned}
\mathrm{y}_{\mathrm{G}} & =0.154-\frac{0.912}{\mathrm{~T}_{\mathrm{G}}} \\
& =0.154-\frac{0.912}{4 \times 16} \quad \quad \text { (since } \mathrm{T}_{\mathrm{G}} / \mathrm{T}_{\mathrm{p}}=4 \text { given) } \\
& =0.14
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& \sigma_{0 \mathrm{p}} \mathrm{y} \mathrm{y}_{\mathrm{p}}=84 \times 0.097=8.148 \\
& \sigma_{0 \mathrm{G}} \mathrm{y} \mathrm{y}_{\mathrm{G}}=105 \mathrm{X} 0.14=14.7
\end{aligned}
$$

Since $\left(\sigma_{0 p} X y_{p}\right)$ is less than $\left(\sigma_{0 G X} y_{G}\right)$, therefore the pinion is weaker.
Now using the lewis equation for the pinion, we have tangential load on the tooth (or beam strength of the tooth),

$$
\begin{aligned}
\mathrm{W}_{\mathrm{T}} & =\sigma_{\mathrm{wp}} \cdot \mathrm{~b} \cdot \pi \cdot \mathrm{~m} \cdot \mathrm{y}_{\mathrm{p}}=\left(\sigma_{0 \mathrm{p} X} \mathrm{C}_{\mathrm{v}}\right) \text { b. } \cdot \pi \cdot \mathrm{m} \cdot \mathrm{y}_{\mathrm{p}} \\
& =84 \mathrm{X} 0.427 \mathrm{X} 90 \mathrm{X} \pi \mathrm{X} 8 \mathrm{X} 0.097=7870 \mathrm{~N}
\end{aligned}
$$

Therefore, Power that can be transmitted. $\mathrm{P}=\mathrm{W}_{\mathrm{T}} \mathrm{X} v$

$$
=7870 \mathrm{X} 4.02=31640 \mathrm{~W}=31.64 \mathrm{~kW}
$$

CHAIN AND SPROCKET DESIGN

A chain drive is to actuate a compressor from 15 kW electric motor running at 1000 r.p.m., the compressor speed being 350 r.p.m. The compressor operates 16 hours per day.
(i) Calculate the velocity ratio.
(ii) Given that the number of teeth on the smaller sprocket is 25 , determine the number of teeth on
the larger sprocket.
(iii) Using standard values for service inputs, calculate the design power.

and design power $=15 \times 1.875=28.125 \mathrm{~kW}$
4.7 Cost Estimation of the Developed Beniseed Oil Plant

The developed plant is made of two major equipment viz: the oil
expeller and the oil filter press. The cost of materials for the constuction of
these equipment are as shown in tables 4.3 and 4.4.

Table 4.3: Bill of Materials for the Construction of the Designed Oil Expeller			
Qty. Material	Specifications	Rate	Amount
		(\#)	(\#)

MECHANICAL COMPONENTS

6	Angle Iron	One Length, $50 \mathrm{~mm} \times 50 \mathrm{~mm}^{2}$	800	4800
1	Galvanized Metal Sheet	$240 \mathrm{~cm} \times 120 \mathrm{~cm} \times 2 \mathrm{~mm}$	5200	5200
1	Mild Steel Solid Shaft	100 cm long, $\theta 65 \mathrm{~mm}$	5000	5000
6	Mild Steel Bar	$10 \mathrm{~mm} \times 10 \mathrm{~mm} \times 1 \mathrm{~m}$	400	2400
1	Hollow Pipe	$\theta 80 \mathrm{~mm} \times 25 \mathrm{~mm}$ thick x 50 cm long,	1000	1000
1	Driven Pulley	$\theta 75 \mathrm{~mm}$ Double Groove	500	500
1	Driving Pulley	$\theta 300 \mathrm{~mm}$ Double Groove	2200	2200
2	Pillow Bearings	$\theta 30 \mathrm{~mm}$ Inner Bore	3200	6400
2	Leather Belts	B35; V - Type	800	1600
1	Mild Steel Plate	$120 \mathrm{~cm} \times 60 \mathrm{cmx} 5 \mathrm{~mm}$	5000	5000
1Pkt.	Mild Steel Electrode	Gauge 10	1200	1200
1 1Pkt.	Mild Steel Electrode	Gauge 12	900	900

Qty	Material	Specifications	Rate (\#) A	Amount (\#)
24	Bolts \& Nuts	M10 Hex. (50mm)	25	600
4	Cutting Stones	$\theta 300 \mathrm{~mm}$ Size	180	180
2	Grinding Stones	$\theta 300 \mathrm{~mm}$ Size	150	150
2	Hack Saw Blades	300mm Long	120	240
4	Drill Bits	$3,5,7 \& 10 \mathrm{~mm}$	110	440
		Sub Total	\#38,440	
ELECTRICAL COMPONENTS				
	ectric Gear Motor	3 - Phase, 2Hp @ 180rpm	30000	30000
1	Motor Starter	2 Buttons (ON \& OFF)	5000	5000
1	Switch Gear Box	30Amp. (MEM)	5000	5000
15Pc	PVC Cables	3-Core X 6mm X 1m	60	900
		Sub Total		\#40,900
Machining of Wormshaft and Barrel				15000
Fabrication (Bending, Rolling, Shearing)				5000
		\#99,340 \cong \#100,000		

Sample Question

INSTRUCTION: ANSWER QUESTION ONE AND ANY OTHER THREE TIME: $2^{1} / 2$ HOURS
(a) The shaft of a Coconut oil extractor supported at the ends by ball bearings carries a straight tooth spur gear at its mid span and is to transmit 7.5 kW at 300 r.p.m. The pitch circle diameter of the gear is 150 mm . The distances between the centre line of bearings and gear 100 mm each. If the shaft is made of steel the allowable shear stress is 45 MPa . Determine the diameter of the extracting shaft. Show in a sketch how the gear will be mounted on the shaft; also indicate the ends where the bearings will be mounted? The pressure angle of the gear may be taken as 20°

A cashew juice hydraulic press exerts a total load of 3.5 MN . This load is carried by two steel rods, supporting the upper head of the press. If the safe stress is 85 MPa and $\mathrm{E}=210$ $\mathrm{kN} / \mathrm{mm}^{2}$, determine
i. diameter of the rods
ii. extension in each rod in a length of 2.5 m .

The hollow shaft a boom sprayer is required to transmit 600 kW at 110 rpm , the maximum torque being 20% greater than the mean. The shear stress is not to exceed 63 MPa and twist in a length of 3 metres not to exceeed 1.4 degrees. Find the external diameter of the shaft, if the internal diameter to external diameter ratio is $3: 8$. Take modulus of rigidity as 84 GPa .

Design the rectangular key for an Ofada rice thresher shaft of 50 mm diameter. The shearing and crushing stresses for the key are 42 MPa and 70 MPa respectively.

The belt drive of a maize sheller consists of two V - belts in parallel, on grooved pulleys of the same size. The angle of groove is 30°. The cross - sectional area of each belt is $750 \mathrm{~mm}^{2}$ and $\mu=0.12$. The density of the belt material is $1.2 \mathrm{Mg} / \mathrm{m}^{3}$ and the maximum
safe stress in the material is 7 MPa . Calculate the power that can be transmitted between pulleys of 300 mm diameter rotating at 1500 r.p.m. Find also the shaft speed in r.p.m. at which the power transmitted would be a maximum.

The vertical screw of a grain combine harvester with single start square threads of 50 mm mean diameter and 12.5 mm pitch is raised against a load of 10 kN by means of a hand wheel, the boss of which is threaded to act as a nut. The axial load is taken up by a thrust collar which supports the wheel boss and has a mean diameter of 60 mm . The coefficient of friction is 0.15 for the screw and 0.18 for the collar. If the tangential force applied by each hand to the wheel is 100 N , find suitable diameter of the hand wheel.

[^0]: Given: $\quad \mathrm{W}_{1}=3 \mathrm{kN}$;
 $\mathrm{n}_{1}=0.1 \mathrm{n}$;
 $\mathrm{W}_{2}=2 \mathrm{kN}$;
 $\mathrm{N}_{2}=0.2 \mathrm{n}$;
 $\mathrm{W}_{3}=1 \mathrm{kN}$;
 $\mathrm{N}_{3}=0.3 \mathrm{n}$;
 $\mathrm{W}_{4}=0$;
 $\mathrm{N}_{4}=(1-0.1-0.2-0.3) \mathrm{n}=0.4 \mathrm{n}$
 $\mathrm{L}_{95}=20 \times 10^{6}$ rev
 $\mathrm{b}=1.17$
 $\mathrm{k}=3$
 $\mathrm{L}_{90}=$ Life of the bearing corresponding to reliability of 90 per cent. $\mathrm{L}_{95}=$ Life of the bearing corresponding to reliability of 95 per cent. $=20 \times 10^{6}$ revolutions (given)

