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CHAPTER ONE 

1.0  INTRODUCTION TO PROGRAMMING LANGUAGES 

Programmers write instructions in various programming languages, some directly understandable 

by computers and others requiring intermediate translation steps. Hundreds of computer 

languages are in use today. These can be divided into three general types: 

a. Machine Language 

b. Low Level Language 

c. High level Language 

1.1 MACHINE LANGUAGE 

 Any computer can directly understand its own machine language. Machine language is the 

“natural language” of a computer and such is defined by its hardware design. Machine languages 

generally consist of strings of numbers (ultimately reduced to 1s and 0s) that instruct computers 

to perform their most elementary operations one at a time. Machine languages are machine 

dependent (i.e a particular machine language can be used on only one type of computer). Such 

languages are cumbersome for humans, as illustrated by the following section of an early 

machine language program that adds overtime pay to base pay and stores the result in gross pay. 

+1300042774 

+1400593419 

+1200274027 

Advantages of Machine Language 

i. It uses computer storage more efficiently 

ii. It takes less time to process in a computer than any other programming language 

Disadvantages of Machine Language 

i. It is time consuming 

ii. It is very tedious to write 

iii. It is subject to human error 



iv. It is expensive in program preparation and debugging stages 

1.2 LOW LEVEL LANGUAGE 

Machine Language were simply too slow and tedious for most programmers. Instead of using 

strings of numbers that computers could directly understand, programmers began using English 

like abbreviations to represent elementary operations. These abbreviations form the basis of Low 

Level Language. In low level language, instructions are coded using mnemonics. E.g. DIV, 

ADD, SUB, MOV. Assembly language is an example of a low level language.  

An assembly language is a low-level language for programming computers. It implements a 

symbolic representation of the numeric machine codes and other constants needed to program a 

particular CPU architecture. This representation is usually defined by the hardware 

manufacturer, and is based on abbreviations (called mnemonics) that help the programmer 

remember individual instructions, registers, etc. An assembly language is thus specific to a 

certain physical or virtual computer architecture (as opposed to most high-level languages, which 

are usually portable). 

A utility program called an assembler is used to translate assembly language statements into the 

target computer's machine code. The assembler performs a more or less isomorphic translation (a 

one-to-one mapping) from mnemonic statements into machine instructions and data. (This is in 

contrast with high-level languages, in which a single statement generally results in many 

machine instructions.) 

Today, assembly language is used primarily for direct hardware manipulation, access to 

specialized processor instructions, or to address critical performance issues. The following 

section of an assembly language program also adds overtime to base pay and stores the result in 

gross pay: 

Load basepay 
Add overpay 
Store grosspay 
 

 



Advantages of Low Level Language 

i. It is more efficient than machine language 

ii. Symbols make it easier to use than machine language 

iii. It may be useful for security reasons 

 

Disadvantages of Low Level Language 

i. It is defined for a particular processor 

ii. Assemblers are difficult to get 

iii. Although, low level language codes are clearer to humans, they are incomprehensible to 

computers until they are translated to machine language. 

1.3 HIGH LEVEL LANGUAGE: Computers usage increased rapidly with the advent of 

assembly languages, but programmers still had to use many instructions to accomplish even the 

simplest tasks. To speed up the programming process, high level language were developed in 

which simple statements could be written to accomplish substantial tasks. Translator programs 

called compilers convert high level language programs into machine language. High level 

language allows programmers to write instructions that look almost like everyday English and 

contain commonly used mathematical notations. A payroll program written in high level 

language might contain a statement such as  

grossPay=basePay + overTimePay  

Advantages of High Level Language 

i. Compilers are easy to get 

ii. It is easier to use than any other programming language 

iii. It is easier to understand compared to any other programming language 

Disadvantages of High Level Language 

i. It takes more time to process in a computer than any other programming language 

 



CHAPTER TWO 

1.0  DATA REPRESENTATION AND NUMBERING SYSTEMS 

Most modern computer systems do not represent numeric values using the decimal system. 

Instead, they use a binary or two’s complement numbering system. To understand the limitations 

of computer arithmetic, one must understand how computers represent numbers. 

1.1 THE BINARY NUMBERING SYSTEM 

Most modern computer systems (including the IBM PC) operate using binary logic. The 

computer represents values using two voltage levels (usually 0v and +5v). With two such levels 

we can represent exactly two different values. These could be any two different values, but by 

convention we use the values zero and one. These two values, coincidentally, correspond to the 

two digits used by the binary numbering system. Since there is a correspondence between the 

logic levels used by the 80x86 and the two digits used in the binary numbering system, it should 

come as no surprise that the IBM PC employs the binary numbering system.  

The binary numbering system works just like the decimal numbering system, with two 

exceptions: binary only allows the digits 0 and 1 (rather than 0-9), and binary uses powers of two 

rather than powers of ten. Therefore, it is very easy to convert a binary number to decimal. For 

each "1" in the binary string, add in 2**n where "n" is the zero-based position of the binary digit. 

For example, the binary value 11001010 represents:  

1*2**7 + 1*2**6 + 0*2**5 + 0*2**4 + 1*2**3 + 0*2**2 + 1*2**1 + 0*2**0 

 =128 + 64 + 8 + 2  

=202 (base 10) 

To convert decimal to binary is slightly more difficult. You must find those powers of two 

which, when added together, produce the decimal result. The easiest method is to work from the 

a large power of two down to 2**0. Consider the decimal value 1359:  



 2**10=1024, 2**11=2048. So 1024 is the largest power of two less than 1359. Subtract 

1024 from 1359 and begin the binary value on the left with a "1" digit. Binary = "1", 

Decimal result is 1359 - 1024 = 335.  

 The next lower power of two (2**9= 512) is greater than the result from above, so add a 

"0" to the end of the binary string. Binary = "10", Decimal result is still 335.  

 The next lower power of two is 256 (2**8). Subtract this from 335 and add a "1" digit to 

the end of the binary number. Binary = "101", Decimal result is 79.  

 128 (2**7) is greater than 79, so tack a "0" to the end of the binary string. Binary = 

"1010", Decimal result remains 79.  

 The next lower power of two (2**6 = 64) is less than79, so subtract 64 and append a "1" 

to the end of the binary string. Binary = "10101", Decimal result is 15.  

 15 is less than the next power of two (2**5 = 32) so simply add a "0" to the end of the 

binary string. Binary = "101010", Decimal result is still 15.  

 16 (2**4) is greater than the remainder so far, so append a "0" to the end of the binary 

string. Binary = "1010100", Decimal result is 15.  

 2**3(eight) is less than 15, so stick another "1" digit on the end of the binary string. 

Binary = "10101001", Decimal result is 7.  

 2**2 is less than seven, so subtract four from seven and append another one to the binary 

string. Binary = "101010011", decimal result is 3.  

 2**1 is less than three, so append a one to the end of the binary string and subtract two 

from the decimal value. Binary = "1010100111", Decimal result is now 1.  

 Finally, the decimal result is one, which is2**0, so add a final "1" to the end of the binary 

string. The final binary result is "10101001111"  



Binary numbers, although they have little importance in high level languages, appear everywhere 

in assembly language programs 

 

1.8 THE OCTAL NUMBERING SYSTEM 

Octal numbers are numbers to base 8. The primary advantage of the octal number system is the 

ease with which conversion can be made between binary and decimal numbers. Octal is often 

used as shorthand for binary numbers because of its easy conversion. The octal numbering 

system is shown below; 

Decimal Number Octal Equivalence 

0 001 

1 001 

2 010 

3 011 

4 100 

5 101 

6 110 

7 111 

 

1.3 THE DECIMAL NUMBERING SYSTEM 

The decimal (base 10) numbering system has been used for so long that people take it for 

granted. When you see a number like “123”, you don’t think about the value 123, rather, you 

generate a mental image of how many items this value represents in reality, however, the 

number 123 represents” 

1*102  + 2*101  + 3*100   or 100+20+3 

Each digit appearing to the left of the decimal point represents a value between zero and nine 

times an increasing power of ten. Digits appearing to the right of the decimal point represent 

a value between zero and nine times an increasing negative power of ten. 



e.g. 123.456 means 

1*102   + 2*101   + 3*100  + 4*10-1 + 5*10-2 +6*10-3 

  or  100 + 20 +3 +0.4 + 0.05 +0.006 

1.4 THE HEXADECIMAL NUMBERING SYSTEM 

A big problem with the binary system is verbosity. To represent the value 202 (decimal) requires 

eight binary digits. The decimal version requires only three decimal digits and, thus, represents 

numbers much more compactly than does the binary numbering system. This fact was not lost on 

the engineers who designed binary computer systems. When dealing with large values, binary 

numbers quickly become too unwieldy. Unfortunately, the computer thinks in binary, so most of 

the time it is convenient to use the binary numbering system. Although we can convert between 

decimal and binary, the conversion is not a trivial task. The hexadecimal (base 16) numbering 

system solves these problems. Hexadecimal numbers offer the two features we're looking for: 

they're very compact, and it's simple to convert them to binary and vice versa. Because of this, 

most binary computer systems today use the hexadecimal numbering system. Since the radix 

(base) of a hexadecimal number is 16, each hexadecimal digit to the left of the hexadecimal point 

represents some value times a successive power of 16. For example, the number 1234 

(hexadecimal) is equal to:  

1 * 16**3   +   2 * 16**2   +   3 * 16**1   +   4 * 16**0    or 

4096 + 512 + 48 + 4 = 4660 (decimal). 

Each hexadecimal digit can represent one of sixteen values between 0 and 15. Since there are 

only ten decimal digits, we need to invent six additional digits to represent the values in the 

range 10 through 15. Rather than create new symbols for these digits, we'll use the letters A 

through F. The following are all examples of valid hexadecimal numbers: 

1234 DEAD BEEF 0AFB FEED DEAF 

Since we'll often need to enter hexadecimal numbers into the computer system, we'll need a 

different mechanism for representing hexadecimal numbers. After all, on most computer systems 



you cannot enter a subscript to denote the radix of the associated value. We'll adopt the following 

conventions:  

 All numeric values (regardless of their radix) begin with a decimal digit.  

 All hexadecimal values end with the letter "h", e.g., 123A4h.  

 All binary values end with the letter "b".  

 Decimal numbers may have a "t" or "d" suffix.  

Examples of valid hexadecimal numbers: 

1234h 0DEADh 0BEEFh 0AFBh 0FEEDh 0DEAFh 

As you can see, hexadecimal numbers are compact and easy to read. In addition, you can easily 

convert between hexadecimal and binary. Consider the following table: 

Binary/Hex Conversion 

Binary Hexadecimal 

0000 0 

0001 1 

0010 2 

0011 3 

0100 4 

0101 5 

0110 6 

0111 7 

1000 8 

1001 9 

1010 A 

1011 B 



1100 C 

1101 D 

1110 E 

1111 F 

This table provides all the information you'll ever need to convert any hexadecimal number into 

a binary number or vice versa. 

To convert a hexadecimal number into a binary number, simply substitute the corresponding four 

bits for each hexadecimal digit in the number. For example, to convert 0ABCDh into a binary 

value, simply convert each hexadecimal digit according to the table above: 

0 A B C D Hexadecimal  

0000 1010 1011 1100 1101 Binary 

To convert a binary number into hexadecimal format is almost as easy. The first step is to pad 

the binary number with zeros to make sure that there is a multiple of four bits in the number. For 

example, given the binary number 1011001010, the first step would be to add two bits to the left 

of the number so that it contains 12 bits. The converted binary value is 001011001010. The next 

step is to separate the binary value into groups of four bits, e.g., 0010 1100 1010. Finally, look 

up these binary values in the table above and substitute the appropriate hexadecimal digits, e.g., 

2CA. Contrast this with the difficulty of conversion between decimal and binary or decimal and 

hexadecimal! 

Since converting between hexadecimal and binary is an operation you will need to perform over 

and over again, you should take a few minutes and memorize the table above. Even if you have a 

calculator that will do the conversion for you, you'll find manual conversion to be a lot faster and 

more convenient when converting between binary and hex. 

A comparison of the afore mentioned numbering systems is shown below; 

 



binary octal decimal  Hexadecimal 
0 0 0  0 
1 1 1  1 

10 2 2  2 
11 3 3  3 

100 4 4  4 
101 5 5  5 
110 6 6  6 
111 7 7  7 

1000 10 8  8 
1001 11 9  9 
1010 12 10  A 
1011 13 11  B 
1100 14 12  C 
1101 15 13  D 
1110 16 14  E 
1111 17 15  F 

     
 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER THREE 

3.0       TYPES OF ENCODING 

When numbers, letters and words are represented by a special group of symbols, this is called 

“Encoding” and the group of symbol encoded is called a “code”. Any decimal number can be 

represented by an equivalent binary number. When a decimal number is represented by its 

equivalent binary number, it is called “straight binary coding”. 

Basically, there are three methods of encoding and they are; 

 American Standard Code for Information Interchange (ASCII) 

 Binary Coded Decimal (BCD) 

 Extended Binary Coded Decimal Interchange Code(EBCDIC) 

3.1  ASCII CODING SYSTEM 

In addition to numeric data, a computer must be able to handle non- numeric information. In 

order words, a computer should recognize codes that represents letters of the alphabets, 

punctuation marks, other special characters as well as numbers. These codes are called 

alphanumeric codes. The most widely used alphanumeric code is ASCII code (American 

Standard Code for Information Interchange). ASCII is used in most micro computers and mini 

computers and in many main frames. The ASCII code is a seven bit code, thus it has 27=128 

possible code groups. In the 7 bits code, the first 3 bits represent the zone bits and the last 4 bits 

represent the numeric bits. 

Despite some major shortcomings, ASCII data is the standard for data interchange across 

computer systems and programs. Most programs can accept ASCII data; likewise most programs 

can produce ASCII data. Since you will be dealing with ASCII characters in assembly language, 

it would be wise to study the layout of the character set and memorize a few key ASCII codes 

(e.g., "0", "A", "a", etc.).  

The table below shows some commonly used ASCII codes 

 



ZONE BITS NUMERIC BITS 

011 100 101 110 111 8 4 2 1 

0  P  p 0 0 0 0 

1 A Q a q 0 0 0 1 

2 B R b r 0 0 1 0 

3 C S c s 0 0 1 1 

4 D T d t 0 1 0 0 

5 E U e u 0 1 0 1 

6 F V f v 0 1 1 0 

7 G W g w 0 1 1 1 

8 H X h x 1 0 0 0 

9 I Y i y 1 0 0 1 

 J Z j z 1 0 1 0 

 K  k  1 0 1 1 

 L  l  1 1 0 0 

 M  m  1 1 0 1 

 N  n  1 1 1 0 

 O  o  1 1 1 1 

     

 

A summary of ASCII table is shown below; 



 

Characters  Zonebits  Numeric bits 

0-9   011   0000-1001 

A-O   100   0001-1111 

P-Z   101   0000-1010 

a-o   110   0001-1111 

p-z   111   0000-1010 

 

Examples 

1.  Represent  Bez in  binary format 

Since Bez contains an alphabets, the ASCII representation is suitable for this conversion 

B- 100 0010 

e- 110 0101 

z- 111 1010 

Answer: 100001011001011111010 

2. Convert 1001000 1000101 1001100 1010000 to ASCII 

1001000- H 

1000101- E 

1001100- L 

1010000- P 

Answer: HELP 



3. Using ASCII representation, convert UNIVERSITY  to binary 

U- 1010101, N- 1001110, I-  1001001, V- 1000110, E- 1000101, R- 1010010, S- 1010011, I- 

1001001, 

T-1010100, Y- 1011001 

ANSWER: 10101011001110100100110001101000101101001010100111001001 

3.2  BINARY CODED DECIMAL 

If each digit of a decimal number is represented by binary equivalence, this produces a code 

called Binary Coded Decimal. Since a decimal digit can be as large as 9, 4 bits are required to 

code each digit in the decimal number. E.g. 

 87410 = 1000011101002 

94310 = 1001010000112 

Only the four bits binary numbers from 0000 through 1001 are used for binary coded decimal. 

The BCD code does not use the numbers 10, 11, 12, 13, 14, 15. In other words, 10 of the 16 

possible 4 bits binary codes are used. If any of these forbidden 4 bits number ever occurs in a 

machine using the BCD,  it  

is usually an indication that an error has occurred. 

Comparison of BCD and Binary 

It is important to realize that BCD is not another number system like binary, octal, hexadecimal 

and decimal. It is in fact the decimal system with each digit encoded in its binary equivalence. It 

is also important to understand that a BCD number is not the same as binary number. 

A straight binary code takes the complete decimal number and represents it in binary while the 

BCD code converts each decimal digit to binary individually. 

e.g. 

13710 to straight binary coding is 10001001 



13710 to BCD is 000100110111 

The main advantage of BCD is the relative ease of converting to and from decimal. This ease of 

conversion is especially important from a hardware standpoint because in a digital system, it is 

the logic circuit that performs conversion to and from decimal. 

BCD is used in digital machines whenever decimal information is either applied as input or 

displayed as output. e.g. digital voltmeter, frequency counters make use of BCD. Electronic 

calculators also make use of BCD because  the input numbers are entered in decimal through the 

keyboard and the output is displayed in decimal. 

BCD is not often used in modern high speed digital system for good 2 good reasons; 

1. As it was already pointed out, the BCD code for a given decimal number requires more 

bits that the straight binary code and it is therefore less efficient. This is important in 

digital computers because  the number of places in memory where the bits can be stored 

is limited. 

2. The arithmetic processes for numbers represented in BCD code are more complicated 

than straight binary and thus requires more complex circuitry which contributes to a 

decrease in the speed at which arithmetic operations take place. 

 

3.3  EBCDIC CODING SYSTEM 

EBCDIC is an acronym for Extended Binary Coded Decimal Interchange Code. IBM 

developed this code for use on its computers. In EBCDIC, eight bits are used to represent each 

character i.e 256 characters can be represented. IBM minicomputers and mainframe computers 

use the EBCDIC. The eight bits can as well be divided into two. The zonebits and the numeric 

bits each is represented by 4bits. 

 

Zonebits Numeric bits 



1111 1100 1101 1100 8 4 2 1 

0    0 0 0 0 

1 A J S 0 0 0 1 

2 B K T 0 0 1 0 

3 C L U 0 0 1 1 

4 D M V 0 1 0 0 

5 E N W 0 1 0 1 

6 F O X 0 1 1 0 

7 G P Y 0 1 1 1 

8 H Q Z 1 0 0 0 

9 I R  1 0 0 1 

Example: Convert HELP to binary using EBCDIC coding system. 

Solution: 

H- 11001000, E- 11000101, L- 11010011, P- 11010111 

Answer 

11001000110001011101001111010111 

 

 

 

 

 



CHAPTER FOUR 

4.0 MODES OF DATA REPRESENTATION 

Most data structures are abstract structures and are implemented by the programmer with a series 

of assembly language instructions. Many cardinal data types (bits, bit strings, bit slices, binary 

integers, binary floating point numbers, binary encoded decimals, binary addresses, characters, 

etc.) are implemented directly in hardware for at least parts of the instruction set. Some 

processors also implement some data structures in hardware for some instructions — for 

example, most processors have a few instructions for directly manipulating character strings. 

An assembly language programmer has to know how the hardware implements these cardinal 

data types. Some examples: Two basic issues are bit ordering (big endian or little endian) and 

number of bits (or bytes). The assembly language programmer must also pay attention to word 

length and optimum (or required) addressing boundaries. Composite data types will also include 

details of hardware implementation, such as how many bits of mantissa, characteristic, and sign, 

as well as their order. 

4.1  INTEGER REPRESENTATION 

Sign-magnitude is the simplest method for representing signed binary numbers. One bit (by 

universal convention, the highest order or leftmost bit) is the sign bit, indicating positive or 

negative, and the remaining bits are the absolute value of the binary integer. Sign-magnitude is 

simple for representing binary numbers, but has the drawbacks of two different zeros and much 

more complicates (and therefore, slower) hardware for performing addition, subtraction, and any 

binary integer operations other than complement (which only requires a sign bit change). 

In sign magnitude, the sign bit for positive is represented by 0 and the sign bit for negative is 

represented by 1. 

 

 



Examples:  

1. Convert +52 to binary using an 8 bits machine 

Answer: The binary equivalence of 52 is 110100 but 0 is used to represent positive magnitude, 

hence 0 is added to the front of this binary equivalence. This makes a total of 7bits, since we are 

working on an eight bit machine, we have to pad the numbers with 0 so as to make it a total of 

8bits. Thus the binary equivalence 0f 52 is 00110100. 

2. Convert -52 to binary using an 8 bits machine 

Answer: The binary equivalence of 52 is 110100 but 1 is used to represent positive magnitude, 

hence 1 is added to the front of this binary equivalence. This makes a total of 7bits, since we are 

working on an eight bit machine, we have to pad the numbers with 0 so as to make it a total of 

8bits. In this case, the sign bit has to come first and the padded 0 follows. Thus the binary 

equivalence 0f -52 is 10110100. 

Exercise: 

a. Convert +47 to binary on an 8 bits machine 

b. Convert -17 to binary on an 8 bits machine 

c. Convert -567 on a 16 bits machine 

    In one’s complement representation, positive numbers are represented in the “normal” 

manner (same as unsigned integers with a zero sign bit), while negative numbers are represented 

by complementing all of the bits of the absolute value of the number. Numbers are negated by 

complementing all bits. Addition of two integers is peformed by treating the numbers as 

unsigned integers (ignoring sign bit), with a carry out of the leftmost bit position being added to 

the least significant bit (technically, the carry bit is always added to the least significant bit, but 

when it is zero, the add has no effect). The ripple effect of adding the carry bit can almost double 

the time to do an addition. And there are still two zeros, a positive zero (all zero bits) and a 

negative zero (all one bits). 



The I’s complement form of any binary number is simply by changing each 0 in the number to a 

1 and vice versa. 

Examples 

1. Find the 1’s complement of -7 

Answer: -7 in the actual representation without considering the machine bit is 1111. To change 

this to 1’s complement, the sign bit has to be retained and other bits have to be inverted. Thus, 

the answer is: 1000. 1 denotes the sign bit. 

2. Find the1’s complement of -7.25 

The actual magnitude representation  of -7.25  is 1111.01 but retaining the sign bits and inverting 

the other bits gives: 1000.10 

Exercises 

1. Find the one’s complement of -47 

2. Find the one’s complement of -467 and convert the answer to hexcadecimal. 

    In two’s complement representation, positive numbers are represented in the “normal” 

manner (same as unsigned integers with a zero sign bit), while negative numbers are represented 

by complementing all of the bits of the absolute value of the number and adding one. Negation of 

a negative number in two’s complement representation is accomplished by complementing all of 

the bits and adding one. Addition is performed by adding the two numbers as unsigned integers 

and ignoring the carry. Two’s complement has the further advantage that there is only one zero 

(all zero bits). Two’s complement representation does result in one more negative number (all 

one bits) than positive numbers. 

    Two’s complement is used in just about every binary computer ever made. Most processors 

have one more negative number than positive numbers. Some processors use the “extra” neagtive 

number (all one bits) as a special indicator, depicting invalid results, not a number (NaN), or 

other special codes. 



2’s complement is used to represent negative numbers because it allows us to perform the 

operation of subtraction by actually performing addition. The 2’s complement of a binary 

number is the addition of 1 to the rightmost bit of its 1’s complement equivalence. 

Examples 

1. Convert -52 to its 2’s complement 

The 1’s complement of -52 is 11001011 

To convert this to 2’s complement we have 

11001011 

+            1 

11001100 

2. Convert -419 to 2’s complement and hence convert the result to hexadecimal 

The sign magnitude representation of -419 on a 16 bit machine is 1000000110100011 

 The I’s complement is 1111111001011100 

To convert this to 2’s complement, we have: 

1111111001011100 

+                            1 

1111111001011101 

Dividing the resulting bits into four gives an hexadecimal equivalence of FE5D16   

In general, if a number a1, a2……..an is in base b, then we by an form its b’s complement by 
subtracting each digit of the number  from b-1 and adding 1 to the result. 

Example: Find the 8’s complement of 72458 

 

 



Answer: 

 7777 

-7245 

0532 

+    1 

0533 

Thus the 8’s complement of 72458 is 0533 

ADDITION OF NUMBERS USING 2’S COMPLEMENT 

1. Add +9 and  +4 for 5 bits machine 

=   01001 

     00100 

     01101 

01101 is equivalent to +13 

2. Add +9 and -4 on a 5 bits machine 

+9 in its sign magnitude form is 01001 

-4 in the sign magnitude form is10100 

Its 1’s complement equivalence is 11011 

Its 2’s complement equivalence is 11100 (by adding 1 to its 1’s complement) 

Thus addition +9 and -4 which is also +9 + (-4) 

This gives 

    01001 

+  11100 

  100101 



Since we are working on a 5bits machine, the last leftmost bit is an off-bit, thus it is neglected. 
The resulting answer is thus 00101. This is equivalent to +5 

3. Add -9 and +4 

The 2’s complement of -9 is 10111 

The sign magnitude of +4 is 00100 

This gives; 

    10111 

+  00100 

    11011 

The sum has a sign bit of 1 indicating a negative number, since the sum is negative, it is in its 2’s 
complement, thus the last 4 bits 1.e 1011 actually represent the 2’s complement of the sum. To 
find the true magnitude of the sum, we 2’s complement the sum 

11011 to 1’s complement is 10100 

               2’s complement is          1 

            10101 

This is equivalent to -5 

Exercise:  

1. Using the last example’s concept add -9 and -4.  

The expected answer is 11101 

2. Add -9 and +9 

The expected answer is 100000, the last leftmost bit is an off bit thus, it is truncated. 

    In unsigned representation, only positive numbers are represented. Instead of the high order 

bit being interpreted as the sign of the integer, the high order bit is part of the number. An 

unsigned number has one power of two greater range than a signed number (any representation) 

of the same number of bits. A comparison of the integer arithmetic forms is shown below; 



bit pattern sign-mag. one’s comp. two’s comp unsigned 

000 0 0 0 0 

001 1 1 1 1 

010 2 2 2 2 

011 3 3 3 3 

100 -0 -3 -4 4 

101 -1 -2 -3 5 

110 -2 -1 -2 6 

111 -3 -0 -1 7 

 

4.2  FLOATING POINT REPRESENTATIONS 

    Floating point numbers are the computer equivalent of “scientific notation” or “engineering 

notation”. A floating point number consists of a fraction (binary or decimal) and an exponent 

(bianry or decimal). Both the fraction and the exponent each have a sign (positive or negative). 

    In the past, processors tended to have proprietary floating point formats, although with the 

development of an IEEE standard, most modern processors use the same format. Floating point 

numbers are almost always binary representations, although a few early processors had (binary 

coded) decimal representations. Many processors (especially early mainframes and early 

microprocessors) did not have any hardware support for floating point numbers. Even when 

commonly available, it was often in an optional processing unit (such as in the IBM 360/370 

series) or coprocessor (such as in the Motorola 680x0 and pre-Pentium Intel 80x86 series). 

    Hardware floating point support usually consists of two sizes, called single precision (for the 

smaller) and double precision (for the larger). Usually the double precision format had twice as 

many bits as the single precision format (hence, the names single and double). Double precision 

floating point format offers greater range and precision, while single precision floating point 

format offers better space compaction and faster processing. 



    F_floating format (single precision floating), DEC VAX, 32 bits, the first bit (high order bit in 

a register, first bit in memory) is the sign magnitude bit (one=negative, zero=positive or zero), 

followed by 15 bits of an excess 128 binary exponent, followed by a normalized 24-bit fraction 

with the redundant most significant fraction bit not represented. Zero is represented by all bits 

being zero (allowing the use of a longword CLR to set a F_floating number to zero). Exponent 

values of 1 through 255 indicate true binary exponents of -127 through 127. An exponent value 

of zero together with a sign of zero indicate a zero value. An exponent value of zero together 

with a sign bit of one is taken as reserved (which produces a reserved operand fault if used as an 

operand for a floating point instruction). The magnitude is an approximate range of .29*10-38 

through 1.7*1038. The precision of an F_floating datum is approximately one part in 223, or 

approximately seven (7) decimal digits). 

    32 bit floating format (single precision floating), AT&T DSP32C, 32 bits, the first bit (high 

order bit in a register, first bit in memory) is the sign magnitude bit (one=negative, zero=positive 

or zero), followed by 23 bits of a normalized two’s complement fractional part of the mantissa, 

followed by an eight bit exponent. The magnitude of the mantissa is always normalized to lie 

between 1 and 2. The floating point value with exponent equal to zero is reserved to represent the 

number zero (the sign and mantissa bits must also be zero; a zero exponent with a nonzero sign 

and/or mantissa is called a “dirty zero” and is never generated by hardware; if a dirty zero is an 

operand, it is treated as a zero). The range of nonzero positive floating point numbers is N = [1 * 

2-127, [2-2-23] * 2127] inclusive. The range of nonzero negative floating point numbers is N = [-[1 

+ 2-23] * 2-127, -2 * 2127] inclusive. 

    40 bit floating format (extended single precision floating), AT&T DSP32C, 40 bits, the first 

bit (high order bit in a register, first bit in memory) is the sign magnitude bit (one=negative, 

zero=positive or zero), followed by 31 bits of a normalized two’s complement fractional part of 

the mantissa, followed by an eight bit exponent. This is an internal format used by the floating 

point adder, accumulators, and certain DAU units. This format includes an additional eight guard 

bits to increase accuracy of intermediate results. 

    D_floating format (double precision floating), DEC VAX, 64 bits, the first bit (high order bit 

in a register, first bit in memory) is the sign magnitude bit (one=negative, zero=positive or zero), 



followed by 15 bits of an excess 128 binary exponent, followed by a normalized 48-bit fraction 

with the redundant most significant fraction bit not represented. Zero is represented by all bits 

being zero (allowing the use of a quadword CLR to set a D_floating number to zero). Exponent 

values of 1 through 255 indicate true binary exponents of -127 through 127. An exponent value 

of zero together with a sign of zero indicate a zero value. An exponent value of zero together 

with a sign bit of one is taken as reserved (which produces a reserved operand fault if used as an 

operand for a floating point instruction). The magnitude is an approximate range of .29*10-38 

through 1.7*1038. The precision of an D_floating datum is approximately one part in 255, or 

approximately 16 decimal digits). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER FIVE 

COMPUTER INSTRUCTION SET 

5.0 An instruction set is a list of all the instructions, and all their variations, that a processor 

(or in the case of a virtual machine, an interpreter) can execute. 

 Arithmetic such as add and subtract  

 Logic instructions such as and, or, and not  

 Data instructions such as move, input, output, load, and store  

 Control flow instructions such as goto, if ... goto, call, and return.  

An instruction set, or instruction set architecture (ISA), is the part of the computer 

architecture related to programming, including the native data types, instructions, registers, 

addressing modes, memory architecture, interrupt and exception handling, and external I/O. 

An ISA includes a specification of the set of opcodes (machine language), the native 

commands implemented by a particular CPU design. 

10.1 REDUCED INSTRUCTION SET 

The acronym RISC (pronounced risk), for reduced instruction set computing, represents a 

CPU design strategy emphasizing the insight that simplified instructions that "do less" may still 

provide for higher performance if this simplicity can be utilized to make instructions execute 

very quickly. Many proposals for a "precise" definition have been attempted, and the term is 

being slowly replaced by the more descriptive load-store architecture. Well known RISC 

families include Alpha, ARC, ARM, AVR, MIPS, PA-RISC, Power Architecture (including 

PowerPC), SuperH, and SPARC. 

Being an old idea, some aspects attributed to the first RISC-labeled designs (around 1975) 

include the observations that the memory restricted compilers of the time were often unable to 

take advantage of features intended to facilitate coding, and that complex addressing inherently 

takes many cycles to perform. It was argued that such functions would better be performed by 



sequences of simpler instructions, if this could yield implementations simple enough to cope 

with really high frequencies, and small enough to leave room for many registers, factoring out 

slow memory accesses. Uniform, fixed length instructions with arithmetics restricted to registers 

were chosen to ease instruction pipelining in these simple designs, with special load-store 

instructions accessing memory. 

 TYPICAL CHARACTERISTICS OF RISC 

For any given level of general performance, a RISC chip will typically have far fewer transistors 

dedicated to the core logic which originally allowed designers to increase the size of the register 

set and increase internal parallelism. 

Other features, which are typically found in RISC architectures are: 

 


