
ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 1

 Uniform instruction format, using a single word with the opcode in the same bit positions

in every instruction, demanding less decoding;

 Identical general purpose registers, allowing any register to be used in any context,

simplifying compiler design (although normally there are separate floating point

registers);

 Simple addressing modes. Complex addressing performed via sequences of arithmetic

and/or load-store operations;

 Few data types in hardware, some CISCs have byte string instructions, or support

complex numbers; this is so far unlikely to be found on a RISC.

RISC designs are also more likely to feature a Harvard memory model, where the instruction

stream and the data stream are conceptually separated; this means that modifying the

memory where code is held might not have any effect on the instructions executed by the

processor (because the CPU has a separate instruction and data cache), at least until a special

synchronization instruction is issued. On the upside, this allows both caches to be accessed

simultaneously, which can often improve performance.

5.2 COMPLEX INSTRUCTION SET COMPUTER

 Complex Instruction Set Computers (CISC) have a large instruction set, with hardware

support for a wide variety of operations. In scientific, engineering, and mathematical operations

with hand coded assembly language (and some business applications with hand coded assembly

language), CISC processors usually perform the most work in the shortest time.

The primary goal of CISC architecture is to complete a task in as few lines of assembly as

possible. This is achieved by building processor hardware that is capable of understanding and

executing a series of operations.

RISC VS. CISC

RISC and CISC architecture can be compared by examining the example below;

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 2

Multiplying Two Numbers in Memory

On the right is a diagram representing the storage

scheme for a generic computer. The main memory is

divided into locations numbered from (row) 1:

(column) 1 to (row) 6: (column) 4. The execution

unit is responsible for carrying out all computations.

However, the execution unit can only operate on

data that has been loaded into one of the six registers

(A, B, C, D, E, or F). Let's say we want to find the

product of two numbers - one stored in location 2:3

and another stored in location 5:2 - and then store

the product back in the location 2:3.

The CISC Approach

For this particular task, a CISC processor would come prepared with a specific instruction (we'll

call it "MULT"). When executed, this instruction loads the two values into separate registers,

multiplies the operands in the execution unit, and then stores the product in the appropriate

register. Thus, the entire task of multiplying two numbers can be completed with one instruction:

MULT 2:3, 5:2

MULT is what is known as a "complex instruction." It operates directly on the computer's

memory banks and does not require the programmer to explicitly call any loading or storing

functions. It closely resembles a command in a higher level language. For instance, if we let "a"

represent the value of 2:3 and "b" represent the value of 5:2, then this command is identical to

the C statement "a = a * b."

One of the primary advantages of this system is that the compiler has to do very little work to

translate a high-level language statement into assembly. Because the length of the code is

relatively short, very little RAM is required to store instructions. The emphasis is put on building

complex instructions directly into the hardware.

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 3

THE RISC APPROACH

RISC processors only use simple instructions that can be executed within one clock cycle. Thus,

the "MULT" command described above could be divided into three separate commands:

"LOAD," which moves data from the memory bank to a register, "PROD," which finds the

product of two operands located within the registers, and "STORE," which moves data from a

register to the memory banks. In order to perform the exact series of steps described in the CISC

approach, a programmer would need to code four lines of assembly:

LOAD A, 2:3
LOAD B, 5:2
PROD A, B
STORE 2:3, A

At first, this may seem like a much less efficient way of completing the operation. Because there

are more lines of code, more RAM is needed to store the assembly level instructions. The

compiler must also perform more work to convert a high-level language statement into code of

this form.

RISC AND CISC COMPARISON

RISC CISC

Emphasis on hardware Emphasis on software

Includes multi-clock complex instructions Single clock, reduced instruction only

Memory-Memory: “LOAD” and “STORE”

incorporated in instructions

Register ro register: “LOAD” and “STORE”

Small code sizes, high cycles per second Low cycles per second, large code sizes

Transistors used for storing complex

instructions

Spends more transistors on memory registers

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 4

Separating the "LOAD" and "STORE" instructions actually reduces the amount of work that the

computer must perform. After a CISC-style "MULT" command is executed, the processor

automatically erases the registers. If one of the operands needs to be used for another

computation, the processor must re-load the data from the memory bank into a register. In RISC,

the operand will remain in the register until another value is loaded in its place.

The CISC approach attempts to minimize the number of instructions per program, sacrificing the

number of cycles per instruction. RISC does the opposite, reducing the cycles per instruction at

the cost of the number of instructions per program

SECTION TWO

CHAPTER SIX

REGISTERS

Registers are used for storing variables. Because registers are located inside the CPU, they are

much faster than memory. Accessing a memory location requires the use of a system bus, so it

takes longer time. Accessing data in a register usually takes no time. Therefore, variables should

be often kept in registers. From the assembly language point of view, this chapter discusses the

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 5

80x86 register sets. The 80x86 processors provide a set of general purpose registers, segment

registers and some special purpose registers. Certain members of the family provide additional

registers, although typical applications do not use them. Register sets are very small and most

registers have special purpose which limits their use as variables, but they are still an excellent

place to store temporary data of calculations.

6.1 GENERAL PURPOSE REGISTERS

8086 CPU has eight 16 bit general purpose registers; each register has its own name:

AX- the accumulator register (divided into AH/AL)

BX- the base register (divided into BH/BL)

CX-the count register (divided into CH/CL)

DX- the data register (divided into DH/DL)

SI- source index register

DI- destination index register

BP- base pointer

SP- stack pointer

Despite the name of a register, it’s the programmer who determines the usage for each general

purpose register. The size of the above general purpose registers are 16bit, it’s something like:

0011000000111001b

Four general purpose registers (AX, BX, CX, and DX) are made of two separate 8 bit registers,

e.g

If AX=0011000000111001b, then AH=00110000b and AL=00111001b. Therefore, when any of

the 8 bit registers are modified, 16 bit register is also updated and vice versa. The same thing also

applies for the other 3 registers (BX, CX and DX). “H” stands for high and “L” stands for low

part.

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 6

While you can use many of these registers interchangeably in a computation, many instructions

work more efficiently or absolutely require a specific register from this general purpose register

group.

A brief explanation of the general purpose registers is given below;

The ax register: This is also called the accumulator. It is where most arithmetic and logical

computations take place. Although, most arithmetic and logical operations can be done in other

registers, it is often more efficient to use the ax register for such computations

The bx register: This is the base register. It has some special purpose too. It is commonly used

to hold indirect addresses.

The cx register: This is the count register. As the name implies, it is used to count off the

number of iterations in a loop or to specify the number of characters in a string.

The dx register: This is the data register. This register has two special purposes: It holds the

overflow from certain arithmetic operations and it holds I/O addresses when accessing data on

the 80x86 I/O bus.

The si and di register are respectively the source index and the destination index register. These

registers can be used to indirectly access memory. These registers are also used with the 8086

string instructions when processing character strings.

The bp register: This is the base pointer. It is similar to bx register. It is used to access

parameters and local variables in a procedure.

The sp register: This is the stack pointer. It has a very special purpose of maintaining the

program stack.

6.2 SEGMENT REGISTERS

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 7

8086 CPU has four 16 bit general purpose registers; each register has its own name:

cs register stands for the code segment register

ds register stands for the data segment register

es register stands for the extra segment register

ss register stands foe the stack segment register

Segment registers points at the beginning of a segment in memory. Segments of memory on the

8086 can be no larger than 65,536 bytes long (64K). A brief explanation of the segment registers

is given below;

The cs register points at the segment containing the currently executing machine instructions.

Despite the 64K segment limitation, 8086 programs can be longer than 64K. This can be possible

if multiple code segments are in memory.

The ds register generally points at global variables for the program. Again, one is limited to

65,536 bytes of data in the data segment but the value of ds can always be changed in order to

access additional data in other segments.

The es register are often used by programs to gain access to segments when it is difficult or

impossible to modify the other segment registers.

The ss register points at the segment containing the 8086 stack. The stack is where the 8086

stores important machine state information, subroutine return addresses, procedure parameters

and local variables. In general, the stack segment is not always modified because too many

things in the system depend upon it. Although, it is theoretically possible to store data in the

segment registers, this is not a good idea.

The segment registers have a very special purpose- pointing at accessible blocks of memory.

Any attempt to use the registers for any other purpose may result in considerable grief, especially

if intended to move up to better CPU like 80386. Segment registers work together with general

purpose register to access any memory value.

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 8

e.g If we would like to access memory at the physical address 12345h(hexadecimal), we should

set the DS=1230h and SI=0045h. This is good, since this way we can access much more

information than with a single register that is limited to 16 bit.

CPU make a calculation of physical address by multiplying the segment register by 10h and

adding a general purpose register to it (1230h * 10h + 45h = 12345h)

The address formed with two registers is called an effective address. By default BX, SI and DI

registers work with DS segment register; BP and SP work with SS segment register. Other

general purpose registers cannot form an effective address. Also, although BX can form an

effective address, BH and BL cannot.

 10.2 SPECIAL PURPOSE REGISTERS

There are two types of special purpose registers on the 8086 CPU: the instruction pointer (ip) and

the flags register. These registers are not accessed the same way other 8086 registers are

accessed. Instead, the CPU generally manipulates these registers directly. A brief explanation of

the special purpose registers is given below;

The ip register contains the address of the currently executing instruction. It is a 16 bit pointer

which provides a pointer into the current code segment. IP works together with the CS segment

register and it points to the currently executing instruction.

The flags register is unlike the other registers on the 8086. The other registers hold eight or 16

bit values. The flags register is simply an eclectic collection of on e bit values which help

determine the current state of the processor. Flags register is modified automatically by CPU

after mathematical operations, this allows to determine the type of the result and to determine the

conditions to transfer control to other parts of the program. Generally, the flags register cannot

be accessed directly. Although the flags register is 16 bits wide, the 8086 uses only nine of those

bits. These bits are explained below;

The carry bits (C): It holds the carry after addition or after subtraction (or the borrow after

subtraction). It also indicates an error condition.

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 9

The parity bits: it is a count of one in a number expressed as even or odd. It is used as error

detection in some circuits.

The Auxiliary carry bit (A): This holds the half-carry after addition or the borrow after

subtraction between bit positions 3 and 4 of the results. It is set by a carry out of the lowest

nibble (1/2 byte) or a borrow into the lowest nibble.

The zero flag bit (Z): It is set when the result of the operation is zero.

The sign bit (S): This flag holds the arithmetic sign of the result after arithmetic or logic

instruction is executed.

The trap flag (T): If the T flag is enabled, the microprocessor interrupts the flow of the program

on conditions as indicated by the debug registers and control register. If T=0, the debugging

feature is disabled.

The Interrupt flag bit (I): This flag determines whether an external interrupt are disabled or

not.

The Direction flag bit (D): This flag determines the direction which string operations are

performed. When cleared, string operations proceed from left to right or vice versa.

The overflow flag bit (O): Overflow occurs when signed numbers are added or subtracted. An

overflow indicates that the result has exceeded the capacity of the machine.

Of all these flags, four flags are used most times and they are; zero, carry, sign and

CHAPTER SEVEN

ADDRESSING MODES

One approach to processors places an emphasis on flexibility of addressing modes. Some

engineers and programmers believe that the real power of a processor lies in its addressing

modes. Most addressing modes can be created by combining two or more basic addressing

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 10

modes, although building the combination in software will usually take more time than if the

combination addressing mode existed in hardware (although there is a trade-off that slows down

all operations to allow for more complexity). The x86 instructions use five different operand

types: registers, constants, and three memories addressing schemes. Each form is called an

addressing mode. The x86 processors support the register addressing mode, the immediate

addressing mode, the indirect addressing mode, the indexed addressing mode and the direct

addressing mode.

 One approach to processors places an emphasis on flexibility of addressing modes. Some

engineers and programmers believe that the real power of a processor lies in its addressing

modes. Most addressing modes can be created by combining two or more basic addressing

modes, although building the combination in software will usually take more time than if the

combination addressing mode existed in hardware (although there is a trade-off that slows down

all operations to allow for more complexity).

 In a purely othogonal instruction set, every addressing mode would be available for every

instruction. In practice, this isn’t the case.

 Virtual memory, memory pages, and other hardware mapping methods may be layered on top

of the addressing modes.

7.1 ADDRESSING MODES WITH REGISTER OPERANDS

Register operands are the easiest to understand. Consider the following forms of the mov

instruction:

mov ax,ax

mov ax,bx

mov ax,cx

mov ax, dx

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 11

In the above instructions, the first instruction is the destination register and the second operand is

the source register. The first instruction does nothing. It copies the value from the ax register

back into the ax register. The remaining three instructions copy the value of bx,cx, and dx into

ax. Note that the original values of bx, cx and dx remain the same. The first operand (the

destination register) is not limited to ax; you can move values to any of these registers. This

mode of addressing is the register addressing mode

7.2 ADDRESSING MODES WITH CONSTANTS

Constants are also pretty easy to deal with. Consider the following instructions:

mov ax,25

mov bx, 195

mov cx,2056

mov dx,1000

These instructions are all pretty straightforward; they load their respective registers with the

specified hexadecimal constant. This mode of addressing is called the immediate addressing

mode.

7.3 ADDRESSING MODES WITH MEMORY STRUCTURES

There are three addressing modes which deal with accessing data in memory. There are three

main addressing mode found in this category; the direct addressing mode, the indirect

addressing mode and the index addressing mode. These addressing modes take the following

forms:

mov ax, [1000]

mov ax, [bx]

mov ax, [1000+bx]

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 12

The first instruction uses the direct addressing mode to load ax with the 16 bit value stored in

memory starting at location 1000hex.

The second instruction loads ax from the memory location specified by the contents of the bx

register. This is an indirect addressing mode. Rather than using the value bx, the instruction

accesses the memory location whose address appears in bx.

There are many cases where the use of indirection is faster, shorter and better. The last memory

addressing mode is the indexed addressing mode. An example of this memory addressing mode

is mov ax, [1000+bx]. The instruction adds the contents of bx with 1000 to produce the address

of the memory value to fetch. This instruction is useful for accessing elements of arrays, records

and other data structures.

7.4 ADDRESSING MODE WITH STACK MEMORY

The stack plays an important role in all microprocessors. It holds data temporarily and stores

return addresses for procedures. The stack memory is a LIFO memory which describes the way

data are stored and removed from the stack. Data are placed onto the stack with the PUSH

instruction and removed with a POP instruction. The stack memory is maintained by two

registers (the stack pointer SP or ESP and the stack segment)s. The stack pointer register always

points to an area of memory located within the stack segment. The stack pointer adds to (ss*10h)

to form the stack memory address in the real mode.

- PUSH ax: Copies ax into the stack

- POP cx: Removes a word from the stack and places it in cx

- PUSH dx: Copies dx into the stack

- PUSH 123: Copies 123 into the stack

- PUSH A: Copies the word content of all the registers into the stack

(AX,BX,CX,DX,SI,DI,SP,BP)

- POP A: Removes data from the stack and places it in the 16 bit registers.

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 13

Example

.code

start:

mov ax,23

mov bx,44

mov cx,13

push ax; copies 23 into the stack

push bx; copies 44 into the stack

push cx; copies 13 into the stack

pop cx; removes 13 from the stack and places it back into cx

pop bx; removes 44 from the stack and places it back into bx

pop ax; removes 23 from the stack and places it back into ax

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 14

CHAPTER EIGHT

INSTRUCTION SETS

Like any other programming language, there are going to be several instructions you use all the

time, some you use occasionally, and some you will rarely, if ever, use. These are called the

80x86 instruction sets.

8.1 THE 80X86 INSTRUCTION SETS

80x86 instructions can be roughly divided into eight different classes;

1. Data movement instructions

 mov, lea, les, push, pop, pushf, popf

2 Conversions

 cbw, cwd, xlat

3 Arithmetic instructions

 add,inc,sub,dec,cmp,neg,mul,imul,div,idiv

4 Logical shift

 and, or, xor, not, shl, shr, rcl, rcr

5 I/O instructions

 in,out

6 String instructions

 mov,stos,lods

7 Program flow instructions

 jmp, call, ret

 conditional jumps

8 Miscellaneous instructions

 clc, stc, cmc

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 15

The most commonly used of all these classes are the data movement instructions and the

arithmetic instructions. The mov isnstruction is the most commonly used instruction of all the

data movement instruction. The mov instruction is actually two instructions merged into the

same instruction. The two forms of the mov instruction take the following forms;

mov reg, reg/memory/constant

mov reg, reg

where reg (i.e register) is any of ax,bx,cx, or dx; constant is a numeric constant (using

hexadecimal notation), and memory is an operand specifying a memory location. The next

section describes the possible forms the memory operand can take. The “reg/memory/constant”

operand tells you that this particular operand may be a register, memory location, or a constant.

The arithmetic and logical instruction take the following forms:

add reg, reg/memory/constant

sub reg, reg/memory/constant

cmp reg, reg/memory/constant

and reg, reg/memory/constant

or reg, reg/memory/constant

not reg/memory

The following sections describe some of the instructions in these groups and how they operate.

The 80x86 instruction have simple semantics.

The add instruction adds the value of the second operand to the first (register) operand, leaving

the sum in the first operand.

The sub instruction subtracts the value of the second operand from the first, leaving the

difference in the first operand.

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 16

The cmp instruction subtracts the value of the second operand from the first, leaving the

difference in the first operand.

The and & or instructions compute the corresponding bitwise logical operation on the two

operands and store the result in the first operand.

The not instruction invert the bit in the single memory or register operand.

8.2 CONTROL TRANSFER INSTRUCTION

The control transfer instructions interrupt the sequential execution of instructions in memory and

transfer control to some other point in memory either unconditionally, or system organization

after testing the result of thr previous cmp instruction. These instructions include the following;

ja dest--jump if above

jae dest--jump if above or equal

jb dest--jump if below

jbe dest--jump if below or equal

je dest—jump if equal

jne dest—jum if not equal

jmp dest-unconditional jump

iret return from an interrupt

The first six instructionsnin this class let you check the result of the previous cmp instruction for

greater than, greater or equal, less than or equal,equality, or inequality. For example, if you

compare the ax and bx registers with the cmp instruction and execute the ja instruction, the x86

CPU will jump to the specified destination location if ax was greater than bx. If ax is not greater

than bx, control will fall through to the next instruction in the program. The jmp instruction

unconditionally transfers control to the instruction at the destination address. The iret instruction

returns control from an interrup service routine.The get and put instructions let you read and

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 17

write integer values. Get will stop and prompt the user for a hexadecimal value and then store

that value into the ax register. Put displays (in hexadecimal) the value of the ax register. The

remaining instructions do not require any operands, they are halt and brk. Halt terminates

program execution and brk stops the program in a state that it can be restarted.

8.3 THE STANDARD INPUT ROUTINES

While the standard library provides several input routines, there are three in particular that will

be used be used most times.

- Getc (gets a character)

- Gets(gets a string)

- Getsm

Getc reads a single character from the keyboard and returns that character in a register. It does

not modiffy any other registers. As usual, the carry flag returns the error status. You do not need

to pass getc any values in th rgisters. Getc does not echo the input character to the display screen.

You must explicitly print the character if you want it to appear on the output monitor.

The gets routine reads an entire line of text from the keyboard. It stores each successive character

of the input line into a byte array whose base address in the es:di register pair. This array must

have a room of 128bytes. The gets routine will read each character and place it in the array

except for the carriage return character. Gets terminates the input line with a zero byte. Gets

echoes each character you type to the display device, it also handles simple line editing functions

such as backspace.

The getsm routine reads a string from the keyboard and returns a pointer to that string in nes:di

pair register. The difference between gets an getsm is that you do not have to pass the address of

an input buffer in es:di. Getsm automatically allocates storage on the heap with a call to malloc

and returns a pointer to the buffer in es:di.

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 18

8.4 THE STANDARD OUTPUT ROUTINES

 The basic standard output routines are; PUTC, PUTCR, PUTS, PUTH, PUTI, PRINT and

PRINTF

Putc outputs a single character to the display device. It outputs the character appearing in the al

register. It does not affect any registers unless there is an error on output (the carry flag denotes

error/no error).

Putcr outputs a “newline” to the standard output.

Puts (put a string) routine prints the zero terminated string at which es:di points. Puts does not

automatically output a new line after printing the string.

The puth routine prints the value in the al register as exactly two hexadecimal digits including a

leading zero byte if the value is in the range (0..Fh).

The puti routine puts the value in the ax as a signed 16 bit integer

The print routine is one of the most often called procedures in the library. It prints the zero

terminated string that immediately follows the call to the string.

Printf uses the escape character (“\”) to print special characters in the fashion similar to, but not

identical to C’s printf.

8.5 MACROS

Many assemblers support macros, programmer-defined symbols that stand for some sequence of

text lines. This sequence of text lines may include a sequence of instructions, or a sequence of

data storage pseudo-ops. Once a macro has been defined using the appropriate pseudo-op, its

name may be used in place of a mnemonic. When the assembler processes such a statement, it

replaces the statement with the text lines associated with that macro, then processes them just as

though they had appeared in the source code file all along (including, in better assemblers,

expansion of any macros appearing in the replacement text).

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 19

Since macros can have 'short' names but expand to several or indeed many lines of code, they

can be used to make assembly language programs appear to be much shorter (require less lines of

source code from the application programmer - as with a higher level language). They can also

be used to add higher levels of structure to assembly programs, optionally introduce embedded

de-bugging code via parameters and other similar features.

Many assemblers have built-in macros for system calls and other special code sequences.

Macro assemblers often allow macros to take parameters. Some assemblers include quite

sophisticated macro languages, incorporating such high-level language elements as optional

parameters, symbolic variables, conditionals, string manipulation, and arithmetic operations, all

usable during the execution of a given macros, and allowing macros to save context or exchange

information. Thus a macro might generate a large number of assembly language instructions or

data definitions, based on the macro arguments. This could be used to generate record-style data

structures or "unrolled" loops, for example, or could generate entire algorithms based on

complex parameters. An organization using assembly language that has been heavily extended

using such a macro suite can be considered to be working in a higher-level language, since such

programmers are not working with a computer's lowest-level conceptual elements.

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 20

 CHAPTER NINE

ASSEMBLY LANGUAGE PROGRAM

A program written in assembly language consists of a series of instructions--mnemonics that

correspond to a stream of executable instructions, when translated by an assembler, that can be

loaded into memory and executed.

For example, an x86/IA-32 processor can execute the following binary instruction as expressed

in machine language (see x86 assembly language):

 Binary: 10110000 01100001 (Hexadecimal: B0 61)

The equivalent assembly language representation is easier to remember (example in Intel syntax,

more mnemonic):

MOV AL, #61h

This instruction means:

 Move the value 61h (or 97 decimal; the h-suffix means hexadecimal; the pound sign

means move the immediate value, not location) into the processor register named "AL".

The mnemonic "mov" represents the opcode 1011 which moves the value in the second operand

into the register indicated by the first operand. The mnemonic was chosen by the instruction set

designer to abbreviate "move", making it easier for the programmer to remember. A comma-

separated list of arguments or parameters follows the opcode; this is a typical assembly language

statement.

9.1 OVERVIEW OF ASSEMBLY LANGUAGE PROGRAMMING

In practice many programmers drop the word mnemonic and, technically incorrectly, call "mov"

an opcode. When they do this they are referring to the underlying binary code which it

represents. To put it another way, a mnemonic such as "mov" is not an opcode, but as it

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 21

symbolizes an opcode, one might refer to "the opcode mov" for example when one intends to

refer to the binary opcode it symbolizes rather than to the symbol--the mnemonic--itself. As few

modern programmers have need to be mindful of actually what binary patterns are the opcodes

for specific instructions, the distinction has in practice become a bit blurred among programmers

but not among processor designers.

Transforming assembly into machine language is accomplished by an assembler, and the reverse

by a disassembler. Unlike in high-level languages, there is usually a one-to-one correspondence

between simple assembly statements and machine language instructions. However, in some

cases, an assembler may provide pseudoinstructions which expand into several machine

language instructions to provide commonly needed functionality. For example, for a machine

that lacks a "branch if greater or equal" instruction, an assembler may provide a

pseudoinstruction that expands to the machine's "set if less than" and "branch if zero (on the

result of the set instruction)". Most full-featured assemblers also provide a rich macro language

(discussed below) which is used by vendors and programmers to generate more complex code

and data sequences.

Each computer architecture and processor architecture has its own machine language. On this

level, each instruction is simple enough to be executed using a relatively small number of

electronic circuits. Computers differ by the number and type of operations they support. For

example, a new 64-bit machine would have different circuitry from a 32-bit machine. They may

also have different sizes and numbers of registers, and different representations of data types in

storage. While most general-purpose computers are able to carry out essentially the same

functionality, the ways they do so differ; the corresponding assembly languages reflect these

differences.

9.2 THE LINKER

The Linker is used for linking the output of an assembler to an executable file.

Basically a linker is used for large projects where there is more than one file to be assembled.

Each of the assembly language files might contain references to code elements in the other files.

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 22

A linker is the program that ties all the loose ends together and makes a single program out of the

pieces.

Thus, technically, an assembler converts assembly language files to object files (basically

machine code with some loose ends), and a linker connects all the object files together and

makes a single executable program out of them.

However, there are some assemblers that do not require the use of a linker. E.g Flat Assembler

FASM.

Actually, a linker is not just specific to assembly language programing. It is used fairly much

regardless of the language in which you are programming.

An example of a linker is the ALINK

9.3 COMMON ASSEMBLERS

Some commonly used assemblers are listed below;

Lazy Assembler (LZASM)

GoASM

Flat Assembler (FASM)

MASM32

Pass32

Netwide Assembler (NASM)

In this course, the Microsoft Micro Assembler (MASM) will be used.

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 23

9.4 A SIMPLE HELLO WORLD PROGRAM USING FLAT ASSEMBLER(FASM)

Include ‘%fasminc%/win32ax.inc’

.code

start:

 invoke MessageBox, HWND_DESKTOP, ”Hello World! “, “Win32 Assembly”,MB_OK

 invoke ExitProcess, 0

.endstart

The first line includes a special macro file win32ax.inc

The next line tells the assembler we are going to include some code now.

The line start: is simply a label. It just gives a name to one of the lines of our program so we can

refer to it elsewhere. We'll use labels often, for example when writing loops or using other jump

instructions. The label will simply allow us to refer to that particular location within our code, by

name; say for example if we wanted to jump to that location from somewhere else.

The program is ended with the .end directive. It takes one parameter, the name of a label

corresponding to the entry point of the program (which doesn't need to be at the start of the

program). When the program is loaded into memory by the operating system, execution of the

program will begin at this point.

9.5 A SIMPLE HELLO WORLD PROGRAM USING NETWIDE ASSEMBLY
LANGUAGE (NASM)

 1: %include 'system.inc'
 2:
 3: section .data

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 24

 4: hello db 'Hello, World!', 0Ah
 5: hbytes equ hello
 6:
 7: section .text
 8: global _start
 9: _start:
10: push dword hbytes
11: push dword hello
12: push dword stdout
13: sys.write
14:
15: push dword 0

16: sys.exit

Here is what it does: Line 1 includes the defines, the macros, and the code from system.inc.

Lines 3-5 are the data: Line 3 starts the data section/segment. Line 4 contains the string "Hello,

World!" followed by a new line (0Ah). Line 5 creates a constant that contains the length of the

string from line 4 in bytes.

Lines 7-16 contain the code. Note that FreeBSD uses the elf file format for its executables, which

requires every program to start at the point labeled _start (or, more precisely, the linker expects

that). This label has to be global.

Lines 10-13 ask the system to write hbytes bytes of the hello string to stdout.

Lines 15-16 ask the system to end the program with the return value of 0. The SYS_exit syscall

never returns, so the code ends there.

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 25

CHAPTER TEN

JOB CONTROL LANGUAGE

10.1 INTRODUCTION

Job Control Language (JCL) is a scripting language used on IBM mainframe operating

systems to instruct the system on how to run a batch job or start a subsystem. The term "Job

Control Language" can also be used generically to refer to all languages which perform these

functions.

JCL consists of control statements that do the following;

 introduce a computer job to the operating system

 request hardware devices

 direct the operating system on what is to be done in terms of running applications and

scheduling resources

JCL is not used to write computer programs. Instead it is most concerned with input/output---

telling the operating system everything it needs to know about the input/output requirements. It

provides the means of communicating between an application program and the operating system

and computer hardware.

JCL can be difficult because of the way it is used. A normal programming language, however

difficult, soon becomes familiar through constant usage. This contrasts with JCL in which

language features are used so infrequently that many never become familiar.

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 26

JCL can be difficult because of its design - JCL:

 consists of individual parameters, each of which has an effect that may take pages to

describe

 has few defaults--must be told exactly what to do

 requires specific placement of commas and blanks

 is very unforgiving--one error may prevent execution

JCL is not necessarily difficult because most users only use a small set of similar JCL that never

changes from job to job.

10.2 BASIC SYNTAX AND RULES OF JCL

//NAME OPERATION OPERAND,OPERAND,OPERAND COMMENTS

|

name

field

|

operation

field

|

operand field

|

comment

field

name field - identifies the statement so that other statements or the system can refer to it. The

name field must begin immediately after the second slash. It can range from 1 to 8 characters in

length, and can contain any alphanumeric (A to Z) or national (@ $ #) characters.

operation field - specifies the type of statement: JOB, EXEC, DD, or an operand command.

operand field - contains parameters separated by commas. Parameters are composites of

prescribed words (keywords) and variables for which information must be substituted.

comments field - optional. Comments can be extended through column 80, and can only be

coded if there is an operand field.

General JCL Rules:

 Must begin with // (except for the /* statement) in columns 1 and 2

 Is case-sensitive (lower-case is just not permitted)

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 27

 NAME field is optional

 must begin in column 3 if used

 must code one or more blanks if omitted

 OPERATION field must begin on or before column 16

 OPERATION field stands alone

 OPERANDS must end before column 72

 OPERANDS are separated by commas

All fields, except for the operands, must be separated by one blank.

More on JCL

//LABEL OPERATION OPERAND, OPERAND,

// OPERAND,OPERAND,

// OPERAND,

// OPERAND

When the total length of the fields on a control statement exceeds 71 columns, continue the fields

onto one or more following statements.

 Interrupt the field after a complete operand (including the comma that follows it) at or

before column 71

 Code // in columns 1 and 2 of the following line

 Continue the interrupted statement beginning anywhere in columns 4 to 16.

Commenting JCL

//* THIS IS A COMMENT LINE

JCL should be commented as you would any programming language. The comments statement

contains //* in columns 1 to 3, with the remaining columns containing any desired comments.

They can be placed before or after any JCL statements following the JOB statement to help

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 28

document the JCL. Comments can also be coded on any JCL statement by leaving a blank field

after the operand field.

10.3 TYPES OF JCL STATEMENTS

JOB Identifies the beginning of a job

EXEC Indicates what work is to be done

DD Data Definition, i.e., Identifies what resources are needed and where to find them

10.4 THE JOB STATEMENT

The JOB statement informs the operating system of the start of a job, gives the necessary

accounting information, and supplies run parameters. Each job must begin with a single JOB

statement.//jobname JOB USER=userid

jobname - a descriptive name assigned to the job by the user which is the banner on your printout

- any name from 1 to 8 alphanumeric (A-Z,0-9) or national ($,@,#) characters

- first character must be alphabetic or national

JOB - indicates the beginning of a job

Userid - a 1 to 7 character user identification assigned to access the system

10.5 THE EXEC STATEMENT

Use the EXEC (execute) statement to identify the application program or cataloged or in-stream

procedure that this job is to execute and to tell the system how to process the job.

//stepname EXEC procedure,REGION=####K

or

//stepname EXEC PGM=program,REGION=####K

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 29

stepname - an optional 1 to 8 character word used to identify the step

EXEC - indicates that you want to invoke a program or cataloged procedure

procedure - name of the cataloged procedure to be executed

program - name of the program to be executed

REGION=####K - amount of storage to allocate to the job

10.5 DATA DEFINITION (DD) STATEMENT

A DD (Data Definition) statement must be included after the EXEC statement for each data set

used in the step. The DD statement gives the data set name, I/O unit, perhaps a specific volume

to use, and the data set disposition. The system ensures that requested I/O devices can be

allocated to the job before execution is allowed to begin.

The DD statement may also give the system various information about the data set: its

organization, record length, blocking, and so on.

//ddname DD operand,operand,etc.

ddname - a 1 to 8 character name given to the DD statement

DD - DD statement identifier

operand - parameters used to define the input or output dataset

The DD Statement

 appears after an EXEC statement

 gives the system information on many things, including the dataset attributes, the

disposition of the dataset when the job completes, and which input/output device(s) to use

Happy Lecture

ASSEMBLY LANGUAGE PROGRAMMING (PART 1) 30

