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1.0  Introduction 
Our world is an analog world. Measurements that we make of the physical objects around us are 
never in discrete units, but rather in a continuous range. We talk about physical constants such as 
2.718281828… or 3.141592…. To build analog devices that can process these values accurately 
is next to impossible. Even building a simple analog radio requires very accurate adjustments of 
frequencies, voltages, and currents at each part of the circuit. If we were to use voltages to 
represent the constant 3.14, we would have to build a component that will give us exactly 3.14 
volts every time. This is again impossible; due to the imperfect manufacturing process, each 
component produced is slightly different from the others. Even if the manufacturing process can 
be made as perfect as we can get, we still would not be able to get 3.14 volts from this 
component every time we use it. The reason being that the physical elements used in producing 
the component behave differently in different environments, such as temperature, pressure, and 
gravitational force, just to name a few. Therefore, even if the manufacturing process is perfect, 
using this component in different environments will not give us exactly 3.14 volts every time. 
To make things simpler, we work with a digital abstraction of our analog world. Instead of 
working with an infinite continuous range of values, we use just two values: 1 and 0, on and off, 
high and low, true and false, black and white, or however you want to call it. It is certainly much 
easier to control and work with two values rather than an infinite range. We call these two values 
a binary value for the reason that there are only two of them. A single 0 or a single 1 is then a 
binary digit or bit. This sounds great, but we have to remember that the underlining building 
block for our digital circuits is still based on an analog world. This unit explores the world of 
binary system with the different operations attached to it. 
 

2.0 Objectives 
Upon completion of this unit, you will be able to: 

 Provide theoretical foundation for building digital logic circuits. 
 Understand the binary number system and conversion 
 Understand the use of Truth Tables 
 Understand the Boolean algebras 
 Understand the duality principle 

 
 
3.0 Binary Numbers 
Since digital circuits deal with binary values, we will begin with a quick introduction to binary 
numbers. A bit, having either the value of 0 or 1 can represent only two things or two pieces of 
information. It is, therefore, necessary to group many bits together to represent more pieces of 
information. A string of n bits can represent 2n different pieces of information. For example, a 
string of two bits results in the four combinations 00, 01, 10, and 11. 
By using different encoding techniques, a group of bits can be used to represent different 
information, such as a number, a letter of the alphabet, a character symbol, or a command for the 
microprocessor to execute. 
The use of decimal numbers is quite familiar to us. However, since the binary digit is used to 
represent information within the computer, we also need to be familiar with binary numbers. 
Note that the use of binary numbers is just a form of representation for a string of bits. We can 



just as well use octal, decimal, Binary Coded Decimal (BCD) or hexadecimal numbers to 
represent the string of bits. In fact, you will find that hexadecimal numbers are often used as a 
shorthand notation for binary numbers. 
The decimal number system is a positional system. In other words, the value of the digit is 
dependent on the position of the digit within the number. For example, in the decimal number 
48, the decimal digit 4 has a greater value than the decimal digit 8 because it is in the tenth 
position, whereas the digit 8 is in the unit position. The value of the number is calculated as  

4×101 + 8×100. 
Like the decimal number system, the binary number system is also a positional system. The only 
difference between the two is that the binary system is a base-2 system, and so it uses only two 
digits, 0 and 1, instead of ten. 
The binary numbers from 0 to 15 (decimal) are shown in Table 1.1(a). . The range from 0 to 15 
has 16 different combinations, we need a 4-bit binary number, i.e., a string of four bits, to 
represent this range. 
When we count in decimal, we count from 0 to 9. After 9, we go back to 0, and have a carry of a 
1 to the next digit. When we count in binary, we do the same thing except that we only count 
from 0 to 1. After 1, we go back to 0, and have a carry of a 1 to the next bit. 
 
The decimal value of a binary number can be found just like for a decimal number except that we 
raise the base number 2 to a power rather than the base number 10 to a power. For example, the 
value for the decimal number 658 is 

65810 = 6×102 + 5×101 + 8×100 = 600 + 50 + 8 = 65810 
Similarly, the decimal value for the binary number 10110112 is 

10110112 = 1×26 + 0×25 + 1×24 + 1×23 + 0×22 + 1×21 + 1×20  
    = 64 + 16 + 8 + 2 + 1 = 9110 

To get the decimal value, the least significant bit (in this case, the rightmost 1) is multiplied with 
20. The next bit to the left is multiplied with 21, and so on. Finally, they are all added together to 
give the value 9110. 
Notice the subscript 10 in the decimal number 65810, and the 2 in the binary number 10110112. 
This subscript is used to denote the base of the number whenever there might be confusion as to 
what base the number is in. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 1.1(a) - Numbers from 0 to 15 in binary, octal, and hexadecimal. 
 

 
 
Converting a decimal number to its binary equivalent can be done by successively dividing the 
decimal number by 2 and keeping track of the remainder at each step. Combining the remainders 
together (starting with the last one) forms the equivalent binary number. For example, using the 
decimal number 91, we divide it by 2 to get 45 with a remainder of 1. Then we divide 45 by 2 to 
get 22 with a remainder of 1. We continue in this fashion until the end as shown below. 
 

 
 
Concatenating the remainders together starting with the last one results in the binary number 
10110112. 
Binary numbers usually consist of a long string of bits. A shorthand notation for writing out this 
lengthy string of bits is to use either the octal or hexadecimal numbers. Since octal is base-8 and 
hexadecimal is base-16, both of which are a power of 2, a binary number can be easily converted 
to an octal or hexadecimal number, or vice versa. 
 
Octal numbers only use the digits from 0 to 7 for the eight different combinations. When 
counting in octal, the number after 7 is 10 as shown in Table 1.1(a). . To convert a binary 
number to octal, we simply group the bits into groups of threes starting from the right. The 



reason for this is because 8 = 23. For each group of three bits, we write the equivalent octal digit 
for it. For example, the conversion of the binary number 1 110 0112 to the octal number 
1638 is shown below: 

001 110 011 
1     6      3 

Since the original binary number has seven bits, we need to extend it with two leading zeros to 
get three bits for the leftmost group. Note that when we are dealing with negative numbers, we 
may require extending the number with leading ones instead of zeros. 
Converting an octal number to its binary equivalent is just as easy. For each octal number, we 
write down the equivalent three bits. These groups of three bits are concatenated together to form 
the final binary number. For example, the conversion of the octal number 57248 to the binary 
number 101 111 010 1002 is shown below. 
 

5     7    2     4 
101 111 010 100 

The decimal value of an octal number can be found just like for a binary or decimal number 
except that we raise the base number 8 to a power instead. For example, the octal number 57248 
has the value 

57248 = 5×83 + 7×82 + 2×81 + 4×80 = 2560 + 448 + 16 + 4 = 302810 
 
Hexadecimal numbers are treated basically the same way as octal numbers except with the 
appropriate changes to the base. Hexadecimal (or hex for short) numbers use base-16, and thus 
require 16 different digit symbols as shown in Table 1.1(a). Converting binary numbers to 
hexadecimal numbers involve grouping the bits into groups of fours since 16 = 24. For example, 
the conversion of the binary number 110 1101 10112 to the hexadecimal number 6DB16 is shown 
below. Again, we need to extend it with a leading zero to get four bits for the leftmost group. 
 

0110 1101 1011 
6       D       B 

To convert a hex number to a binary number, we write down the equivalent four bits for each 
hex digit, and then concatenate them together to form the final binary number. For example, the 
conversion of the hexadecimal number 5C4A16 to the binary number 0101 1100 0100 10102 is 
shown below. 

5      C        4      A 
0101 1100 0100 1010 

 
The following example shows how the decimal value of the hexadecimal number C4A16 is 
evaluated. 
C4A16 = C×162 + 4×161 + A×160 = 12×162 + 4×161 + 10×160 = 3072 + 64 + 10 = 314610 
 
Binary Coded Decimal (BCD) is a means of encoding decimal numbers. If each digit of a 
decimal number is represented by its binary equivalent, this produces a code called BCD. Since a 
decimal digit can be as large as 9, 4 bits are also required to code each digit. To illustrate the 
BCD code, take a decimal number such as 874. Each digit is changed to its binary equivalent as 
follows  
 



               8 7         4 (decimal) 
                      1000    0111   0100  (BCD) 
The BCD code, then represents each digit of the decimal number by a 4-bit binary number. 
Clearly, only the 4-bit binary numbers from 0000 through 1001 are used. The BCD does not use 
the numbers 1010, 1011, 1100, 1101, 1110 and 1111. In other words, only 10 of the 16 possible 
4-bit binary code groups are used. If any of these “forbidden” 4-bit numbers ever occur in a 
machine using the BCD code, it is usually an indication that an error has occurred. 
Note: It is important to realize that BCD is not another number system like binary, octal, decimal 
and hexadecimal. It is in fact, the decimal system with each digit encoded in its binary 
equivalent. 
 
3.1 Binary Addition 
The addition of two binary numbers is performed in exactly the same manner as the addition of 
decimal numbers. In fact, binary addition is simpler, since there are fewer cases to learn. The 
general steps in performing decimal addition are also followed in binary addition. However, only 
four cases can occur in adding the two binary digits (bits) in any position. They are: 
0 + 0 = 0 
1 + 0 = 1 
1 + 1 = 10 = 0 + carry of 1 into next position 
1 + 1 + = 11 = 1 + carry of 1 into next position 
The last case occurs when the two bits in a certain position are 1 and there is a carry from the 
previous position. Here are several examples of the addition of two binary numbers: 

011 (3)   1001 (9)  11.011 (3.375) 
              +110 (6)                    +1111 (15)           +10.110  (2.750)   
           

          1001 (9)            11000 (24)          110.001 (6.125)   
It is not necessary to consider the addition of more than two binary numbers at a time, because in 
all digital systems the circuitry that actually performs the addition can handle only two numbers 
at a time. When more than two numbers are added, the first two are added together and then their 
sum is added to the third number; and so on. This is not a serious drawback, since modern digital 
computers can typically perform an addition operation in a few microseconds. 
Try the following: 
Add the following pairs of binary numbers: (a) 10110 + 00111 (b)  011.101 + 010.010 
 
 
3.2 Binary Switch 
Besides the fact that we are working only with binary values, digital circuits are easy to 
understand because they are based on one simple idea of turning a switch on or off to obtain 
either one of the two binary values. Since the switch can be in either one of two states (on or off), 
we call it a binary switch, or just a switch for short. The switch has three connections: an input, 
an output, and a control for turning the switch on or off as shown in Figure 1.1(a). When the 
switch is opened as in (a), it is turned off and nothing gets through from the input to the output. 
When the switch is closed as in (b), it is turned on, and whatever is presented at the input is 
allowed to pass through to the output. 
 



 
 

Figure 1.1(a): Binary switch: (a) opened or off; (b) closed or on. 
Uses of the binary switch idea can be found in many real world devices. For example, the switch 
can be an electrical switch with the input connected to a power source and the output connected 
to a siren S as shown in Figure 1.1(b)  

 
 

Figure 1.1(b): A siren controlled by a switch. 
When the switch is closed, the siren turns on. The usual convention is to use a 1 to mean “on” 
and a 0 to mean “off.” Therefore, when the switch is closed, the output is a 1 and the siren will 
turn on. We can also use a variable, x, to denote the state of the switch. We can let x = 1 to mean 
the switch is closed and x = 0 to mean the switch is opened. Using this convention, we can 
describe the state of the siren S in terms of the variable x using a simple logic expression. Since 

 S = 1 if x = 1 and S = 0 if x = 0,  
we can write S = x 

This logic expression describes the output S in terms of the input variable x. 
 
 

Two binary switches can be connected together either in series or in parallel as shown in Figure 
1.1(c) 
.

 
Figure 1.1(c):  Connection of two binary switches: (a) in series; (b) in parallel. 
If two switches are connected in series as in (a), then both switches have to be on in order for the 
output F to be a 1. In other words,  

F = 1 if x = 1 AND y = 1. If either x or y is off, or both are off, then F = 0.  
Translating this into a logic expression, we get 

F = x AND y 



Hence, two switches connected in series give rise to the logical AND operator. In a Boolean 
function the AND operator is either denoted with a dot (.) or no symbol at all. Thus we can 
rewrite the above expression as 

 
Or simply as  
 F=xy 
If we connect two switches in parallel as in (b), then only one switch needs to be on in order for 
the output F to be a 1. In other words, F = 1 if either x = 1, or y = 1, or both x and y are 1’s. This 
means that F = 0 only if both x and y are 0’s. Translating this into a logic expression, we get 

F = x OR y 
and this gives rise to the logical OR operator. In a Boolean function, the OR operator is denoted 
with a plus symbol ( + ). 
Thus we can rewrite the above expression as 

F = x + y 
In addition to the AND and OR operators, there is another basic logic operator – the NOT 
operator, also known as the INVERTER. Whereas, the AND and OR operators have multiple 
inputs, the NOT operator has only one input and one output. The NOT operator simply inverts its 
input, so a 0 input will produce a 1 output, and a 1 becomes a 0. 
In a Boolean function, the NOT operator is either denoted with an apostrophe symbol ( ' ) or a 
bar on top (–) as in 

F = x' 
When several operators are used in the same expression, the precedence given to the operators 
are, from highest to lowest, NOT, AND, and OR. The order of evaluation can be changed by 
means of using parenthesis. For example, the expression 

F = xy + z' 
means (x and y) or (not z), and the expression 

F = x(y + z)' 

 
3.3  Truth Tables 
The operation of the AND, OR, and NOT logic operators can be formally described by using a 
truth table as shown in Table 1.1(b). A truth table is a two-dimensional array where there is one 
column for each input and one column for each output (a circuit may have more than one 
output). Since we are dealing with binary values, each input can be either a 0 or a 1. We simply 
enumerate all possible combinations of 0’s and 1’s for all the inputs. 
Usually, we want to write these input values in the normal binary counting order. With two 
inputs, there are 22 combinations giving us the four rows in the table. The values in the output 
column are determined from applying the corresponding input values to the functional operator. 
For the AND truth table in (a) of Table 1.1(b), F = 1 only when x and y are both 1, otherwise, F 
= 0. For the OR truth table (b), F = 1 when either x or y or both is a 1, otherwise F = 0. 
For the NOT truth table, the output F is just the inverted value of the input x. 

 
 
 
 
 



Table 1.1(b): Truth tables for the three basic logical operators: (a) AND; (b) OR; (c) NOT. 
 

 
Using a truth table is one method to formally describe the operation of a circuit or function. The 
truth table for any given logic expression (no matter how complex it is) can always be derived. 
Examples on the use of truth tables to describe digital circuits are given in the following sections. 
Another method to formally describe the operation of a circuit is by using Boolean expressions 
or Boolean functions. 
 
3.4  Boolean Algebra  
George Boole, in 1854, developed a system of mathematical logic, which we now call Boolean 
algebra. Based on Boole’s idea, Claude Shannon, in 1938, showed that circuits built with binary 
switches can easily be described using Boolean algebra. The abstraction from switches being on 
and off to the use of Boolean algebra is as follows. 
Let B = {0, 1} be the Boolean algebra whose elements are one of the two values, 0 and 1. We 
define the operations AND (•), OR (+), and NOT ( ' ) for the elements of B by the axioms in (a) 
of Table 1.1(c). These axioms are simply the definitions for the AND, OR, and NOT operators. 
A variable x is called a Boolean variable if x takes on only values in B, i.e. either 0 or 1. 
Consequently, we obtain the theorems in (b) of Table 1.1(c) for single variable and (c) for two 
and three variables. 
Theorems in (b) of Table 1.1(c) can be proved easily by substituting the binary values into the 
expressions and using the axioms. For example, to show that Theorem 6a is true, we substitute 0 
into x to get axiom 3a, and substitute 1 into x to get axiom 2a. 
To prove the theorems in Table 1.1(c), we can use either one of two methods: 1) use a truth table, 
or 2) use axioms and theorems that have already been proven. We show these two methods in the 
following two examples. 

 

 

 

 

 

 

 



Table 1.1(c): Boolean algebra axioms and theorems: (a) Axioms; (b) Single variable theorems; 
 (c) two and three variable theorems.  

(c) 
 
Example 1.1(a): Proof of theorem using a truth table. 
Theorem 12a states that x • (y + z) = (x • y) + (x • z). To prove that Theorem 12a is true using a 
truth table, we need to show that for every combination of values for the three variables x, y, and 
z, the left-hand side of the expression is equal to the right-hand side. The truth table below is 
constructed as follows: 

 

We start with the first three columns labeled x, y, and z, and enumerate all possible combinations 
of values for these three variables. For each combination (row), we evaluate the intermediate 
expressions y+z, x•y, and x•z by substituting the values of x, y, and z into the expression. Finally, 
we obtain the values for the last two columns, which correspond to the left-hand side and right-
hand side of Theorem 12a. The values in these two columns are identical for every combination 
of x, y, and z, therefore, we can say that Theorem 12a is true. 



 
Example 1.1(b): Proof of theorem using axioms and theorems. 
Theorem 13b states that  
To prove that Theorem 13b is true using axioms and theorems, we can argue as follows: 

 
 
Example 1.1(b) shows that some theorems can be derived from others that have already been 
proven with the truth table. Full treatment of Boolean algebra is beyond the scope of this book 
and can be found in the references. For our purposes, we simply assume that all the theorems are 
true and will just use them to show that two circuits are equivalent as depicted in the next two 
examples. 

 

Example 1.1(c): Use Boolean algebra to reduce the equation F(x,y,z) = (x' + y' + x'y' + xy) (x' + 
yz) as much as possible. 

 
Since the expression (x' + y' + x'y' + xy) (x' + yz) reduces down to (x' + yz), therefore, we do want 
to implement the circuit for the latter expression rather than the former because the circuit size 
for the latter is much smaller. 
 
Example 1.1(d): Show, using Boolean algebra, that the two equations F1= (xy' + x'y + x' + y' + z' 
) (x + y' + z) and F2 = y' + x'z + xz' are equivalent. 

 

 
 
 



3.5 Duality Principle 
Notice in Table 1.1(c) that we have listed the axioms and theorems in pairs. Specifically, we 
define the dual of a logic expression as one that is obtained by changing all + operators with • 
operators, and vice versa, and by changing all 0’s with 1’s, and vice versa. For example, the dual 
of the logic expression 

(x•y'•z) + (x•y•z' ) + (y•z) + 0 
is 

(x+y'+z) • (x+y+z' ) • (y+z) • 1 
 

The duality principle states that if a Boolean expression is true, then its dual is also true. Be 
careful in that it does not say that a Boolean expression is equivalent to its dual. For example, 
Theorem 5a in Table 1.1(c) says that x • 0 = 0 is true, thus by the duality principle, its dual, x + 1 
= 1 is also true.  
However, x • 0 = 0 is not equal to x + 1 = 1, since 0 is definitely not equal to 1. 
We will see later that the inverse of a Boolean expression can be obtained by first taking the dual 
of that expression, and then complementing each Boolean variable in the resulting dual 
expression. In this respect, the duality principle is often used in digital logic design. Whereas an 
expression might be complex to implement, its inverse might be simpler, thus resulting in a 
smaller circuit, and inverting the final output of this circuit will produce the same result as from 
the original expression. 
 
4.0 Conclusion 

Boolean Expressions are equivalent expressions of the logic state of gates. Truth tables are tables 
which are set to list the possible inputs and find their corresponding outputs. By looking at a 
truth table, one is able to know the output of any possible combination of inputs. The NOT gate, 
the OR gate and the AND gate are three main types of logic gates. The rules for these operations 
may be summarized as follows: 

OR  AND  NOT 
0 + 0 = 0 0 . 0 = 0 0 = 1  

0 + 1 = 1 0 . 1 = 0 1 = 0  

1 + 0 = 1 1 . 0 = 0   

1 + 0 = 1 1 . 1 = 1   

Self Assessment Exercises 

1. Convert 1000110110112 to its decimal  and octal equivalent 

2. Convert 6148 to decimal 

3. Convert 24CE16 to decimal 

 

 



5.0 Summary 

In this unit, you learnt about  
 The theoretical foundation for building digital logic circuits. 
 The binary number system and conversion, also its addition 
 How Truth Tables are used to show how circuits output responds to the various 

combination of logic levels at the inputs. 
 Boolean algebras differ in a way from ordinary algebra in that Boolean constants and 

variables are allowed to have only two possible values, 0 or 1. 
 The duality principle 

6.0 Tutor Marked Assignment 

1) Add this pair of binary numbers 10001111 + 000000001 
 
2) For the function F = AB′C′ + AB, find the logic value of F under the conditions— 

(a) A = 1, B = 0, C = 1;   (b) A = 0, B = 1, C = 1; 
(c) A = 0, B = 0, C = 0 

3) Draw truth tables for the following expressions: 
(a) F = AC + AB    (b) F = AB (B + C + D′) 
(c) Y= A (B′ + C′)   (d) Y = (A + B + C) AB′ 
(e) F = ABC (C + D′)   (f) F = AB + BA + C (A + B) 

4) Use a truth table to show that the following expressions are true: 
a) w'z' + w'xy + wx'z + wxyz = w'z' + xyz + wx'y'z + wyz 
b) z + y' + yz' = 1 
c) xy'z' + x' + xyz' = x' + z' 
d) xy + x'z + yz = xy + x'z 

5) Simplify the following Boolean expressions using Boolean technique: 
(a) AB + A (B + C) + B (B + C)   (b) AB(C + BD′) (AB)′ 
(c) A + AB + AB′C     (d) (A′ + B)C + ABC 
(e) AB′C (BD + CDE) + AC′    (f) BD + B (D + E) + D′ (D + F) 

 

7.0  Further Reading and Other Resources 

1. Ronald J. Tocci (1988). “Digital  Systems: Priciples and Applications”, 4th 
Edition Prentice-Hall International edition. 

2. http://en.wikipedia.org/wiki/Logic_gate 
3. http://www.discovercircuits.com/D/digital.htm 
4. http://www.encyclopedia.com/doc/1G1-168332407.html 
5. http://www.logiccircuit.org/ 
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1.0 Introduction 
Boolean algebra is a tool for the analysis and design of digital system. Boolean algebra differs in 
a way from ordinary algebra in that Boolean constants and variables are allowed to have only 
two possible values, 0 or 1. A Boolean variable is a quantity that may, at different times, be equal 
to either 0 or 1.  

2.0 Objectives 

Upon completion of this unit, you will be able to: 
 Simplify complex logic expressions by applying the various Boolean algebra laws and 

rules. 
 Simplify intricate Boolean equations by applying the DeMorgan’s theorem. 
 Understand minterms and maxterms. 
 Understand the canonical, standard and non-standard forms of Boolean functions. 

 

3.0 Boolean Theorem 

Boolean theorem are rules that can help us to simplify logic expressions and logic circuits as 
shown in Table 1.1(c). When this is done, the reduced expression will produce a circuit that is 
less complex than the one which the original expression would have produced. The next section 
discusses in detail the DeMorgan’s theorem  

3.1 DeMorgan’s Theorem 

Two of the most important theorems of Boolean algebra were contributed by a great 
mathematician named DeMorgan. DeMorgan’s theorems are extremely useful in simplifying 
expressios in which a product or sum of variables is inverted. The two theorems as in Theorem 
15a and 15b are: 

(i) (x + y) = x . y 

(ii) (x . y) = x + y 

The theorem in (i) says that when the OR sum of two variables is inverted, this is the same as 
inverting each variable individually and then ANDing these inverted variables. The (ii) says that 
when the AND product of two variables is inverted, this is the same as inverting each variable 
individually and then ORing them. Each of DeMorgan’s theorems can be readily proven by 
checking for all possible combinations of x and y. Although these theorems have been stated in 
terms of single variables x and y, they are equally valid for situations where x and/or y are 
expressions that contain more than one variable. For example, let’s apply them to the expression 
 (AB + C) = (AB) . C 

Note that here we treated (AB) as x and C as y. The result can be further simplified since we 
have a product (AB) that is inverted.  



Using the theorem in (ii), the expression becomes 

(AB) . C =  (A + (B)) . C 

Notice that we can replace (B) by B, so we finally have 

   (A + B) . C = AC . BC 

The final result contains only inverter signs that invert a single variable. 

Class work: 

Simplify the expression z = ((A + C) . (B + D)) 

Using (ii), we can write this as  

z = ((A + C)  + (B + D) 

We can think of this as breaking the large inverter sign down the middle and changing the AND 
sign (.) to an OR sign (+). Now the term ((A + C)  can be simplified by applying the theorem in 
(i). Likewise, (B + D) can be simplified.  

z = ((A + C)  + (B + D) 

   = ((A) . C) + (B . (D)) 

here, we have broken the larger inverter signs down the middle and replaced the (+) with a (.). 
Canceling out the double inversions, we have finally 

z = AC + BD  

3.2 Boolean Function and the Inverse 
As we have seen, any digital circuit can be described by a logical expression, also known as a 
Boolean function. Any Boolean functions can be formed from binary variables and the Boolean 
operators •, +, and ' (for AND, OR, and NOT respectively). For example, the following Boolean 
function uses the three variables or literals x, y, and z. It has three AND terms (also referred to as 
product terms), and these AND terms are ORed (summed) together. The first two AND terms 
contain all three variables each, while the last AND term contains only two variables. By 
definition, an AND (or product) term is either a single variable, or two or more variables ANDed 
together. Quite often, we refer to functions that are in this format as a sum-of-products or or-of-
ands. 

 

 



The value of a function evaluates to either a 0 or a 1 depending on the given set of values for the 
variables. For example, the function above evaluates to a 1 when any one of the three AND 
terms evaluate to a 1, since 1 OR x is 1. The first AND term, xy'z, equals to a 1 if 

x = 1, y = 0, and z = 1 
Since if we substitute these values for x, y, and z into the first AND term xy'z, we get a 1. 
Similarly, the second AND term, xyz', equals to a 1 if 

x = 1, y = 1, and z = 0. 
The last AND term, yz, has only two variables. What this means is that the value of this term is 
not dependent on the missing variable x. In other words x can be either a 0 or a 1, but as long as y 
= 1 and z = 1, this term will equal to a 1. Thus, we can summarize by saying that F evaluates to a 
1 if 

x = 1, y = 0, and z = 1 
or 

x = 1, y = 1, and z = 0 
or 

x = 0, y = 1, and z = 1 
or 

x = 1, y = 1, and z = 1. 
 

Otherwise, F evaluates to a 0. 
 
It is often more convenient to summarize the above verbal description of a function with a truth 
table as shown in Table 1.2(a) under the column labeled F. Notice that the four rows in the table 
where F = 1 match the four cases in the description above. 

 

Table 1.2(a): Truth table for the function F = xy'z + xyz' + yz 
 
The inverse of a function, denoted by F', can be easily obtained from the truth table for F by 
simply changing all the 0’s to 1’s and 1’s to 0’s as shown in the truth table in Table 1.2(a) under 
the column labeled F'. Therefore, we can write the Boolean function for F' in the sum-of-
products format, where the AND terms are obtained from those rows where F' = 1. Thus, we get 

F' = x'y'z' + x'y'z + x'yz' + xy'z' 
To deduce F' algebraically from F requires the use of DeMorgan’s Theorem twice. For example, 
using the same function 

F = xy'z + xyz' + yz 
we obtain F' as follows 



F' = (xy'z + xyz' + yz)' 
= (xy'z)' • (xyz')' • (yz)' 
= (x'+y+z' ) • (x'+y'+z) • (y'+z' ) 

There are three things to notice about this equation for F'. First, F' is just the dual of F and then 
having all the variables inverted. Second, instead of being in a sum-of-products format, it is in a 
product-of-sums (and-of-ors) format where three OR terms (also referred to as sum terms) are 
ANDed together. 

Third, from the same original function F, we obtained two different equations for F'. From the 
truth table, we obtained  

F' = x'y'z' + x'y'z + x'yz' + xy'z' 
and from applying DeMorgan’s Theorem to F, we obtained 

F' = (x'+y+z' ) • (x'+y'+z) • (y'+z' ) 
Hence, we must conclude that these two expressions for F', where one is in the sum-of-products 
format, and the other is in the product-of-sums format, are equivalent. In general, all functions 
can be expressed in either the sum-of-products or product-of-sums format. 
Thus, we should also be able to express the same function F = xy'z + xyz' + yz in the product-of-
sums format. 
We can derive it using one of two methods. For method one, we can start with F' and apply 
DeMorgan’s Theorem to it just like how we obtained F' from F. 

 

For the second method, we start with the original F and convert it to the product-of-sums format 
using the Boolean theorems. 

 
 
In the first step, we apply Theorem 12b (Distributive) in Unit 1 to get every possible 
combination of sum terms. For example, the first sum term (x+x+y) is obtained from getting the 
first x from xy'z, the second x from xyz', and the y from yz. The second sum term (x+x+z) is 
obtained from getting the first x from xy'z, the second x from xyz', and the z from yz. This is 
repeated for all combinations. In this step, the sum terms, such as (x+z'+z), where it contains 
variables of the form v + v' can be eliminated since v + v' = 1, and 1 • x = x. 



In the second and third steps, duplicate variables and terms are eliminated. For example, the term 
(x+x+y) is equal to just (x+y+y), which is just (x+y). The term (x+z'+z) is equal to (x+1), which is 
equal to just 1, and therefore, can be eliminated completely from the expression. 
In the fourth step, every sum term with a missing variable will have that variable added back in 
by using Theorems 6b and 9a, which says that x + 0 = x and yy' = 0, therefore, x + yy' = x. 
Step five uses the Distributive Theorem, and the resulting duplicate terms are again eliminated to 
give us the format that we want. 
Functions that are in the product-of-sums format (such as the one shown below) are more 
difficult to deduce when they evaluate to a 1. For example, using 

F' = (x'+y+z' ) • (x'+y'+z) • (y'+z' ) 
F' evaluates to a 1 when all three terms evaluate to a 1. For the first term to evaluate to a 1, x can 
be 0, or y can be 1, or z can be 0. For the second term to evaluate to a 1, x can be 0, or y can be 0, 
or z can be 1. Finally, for the last term, y can be 0, or z can be 0, or x can be either a 0 or a 1. As a 
result, we end up with many more combinations to consider, even though many of the 
combinations are duplicates. 
However, it is easier to determine when a product-of-sums format expression evaluates to a 0. 
For example, using the same expression 

F' = (x'+y+z' ) • (x'+y'+z) • (y'+z' ) 
F' evaluates to 0 when any one of the three OR terms is 0, since 0 AND x is 0; and this happens 
when x = 1, y = 0, and z = 1 for the first OR term, 
or 

x = 1, y = 1, and z = 0 for the second OR term, 
or 

y = 1, z = 1, and x can be either 0 or 1 for the last or term. 

Similarly, for a sum-of-products format expression, it is easy to evaluate when it is a 1, but 
difficult to evaluate when it is a 0. 
These four conditions in which F' evaluates to a 0 match exactly those rows in the table where F' 
= 0. Therefore, we see that in general, the unique algebraic expression for any Boolean function 
can be specified by either (1) selecting the rows from the truth table where the function is a 1 and 
use the sum-of-products format, or (2) selecting the rows from the truth table where the function 
is a 0 and use the product-of-sums format. 
Whatever format we decide to use, the one thing to remember is that we are always interested in 
only when the function (or its inverse) is equal to a 1. 
Figure 1.2(a) summarizes these two formats for the function F = xy'z + xyz' + yz and its inverse 
F'. Notice that the sum-of-products format for F is the dual with its variables inverted of the 
product-of-sums format for F'. Similarly, the product-of-sums format for F is the dual with its 
variables inverted of the sum-of-products format for F'. 
 
 
 



 
Figure 1.2(a): Relationships between the function F = xy'z + xyz' + yz and its inverse F', and the 
sum-of-products and product-of-sums formats. The label “inverted dual” means applying the 
duality principle and then inverting the variables. 
 
 
3.3 Minterms and Maxterms 
As you recall, a product term is a term with either a single variable, or two or more variables 
ANDed together, and a sum term is a term with either a single variable, or two or more variables 
ORed together. To differentiate between a term that contains any number of variables with a 
term that contains all the variables used in the function, we use the words minterm and maxterm. 
We are not introducing new ideas here, rather, we are just introducing two new words and 
notations for defining what we have already learned. 
 
3.3.1 Minterms 
A minterm is a product term that contains all the variables used in a function. For a function 
with n variables, the notation mi where 0 ≤ i < 2n, is used to denote the minterm whose index i is 
the binary value of the n variables such that the variable is complemented if the value assigned to 
it is a 0, and uncomplemented if it is a 1. 
For example, for a function with three variables x, y, and z, the notation m3 is used to represent 
the term in which the values for the variables xyz are 011 (for the subscript 3). Since we want to 
complement the variable whose value is a 0, and uncomplement it if it is a 1. Hence m3 is for the 
minterm x'yz. The (a) of Table 1.2(b) shows the eight minterms and their notations for n = 3 
using the three variables x, y, and z. 
When specifying a function, we usually start with product terms that contain all the variables 
used in the function. In other words, we want the sum of minterms, and more specifically the 
sum of the one-minterms, that is the minterms for which the function is a 1 (as opposed to the 
zero-minterms, that is the minterms for which the function is a 0). We use the notation 1-
minterm to denote one-minterm, and 0-minterm to denote zero-minterm. 
 
 
 
 
 
 
 
 
 
 



Table 1.2(b): (a) Minterms for three variables. (b) Maxterms for three variables. 
 

 
(a)         (b) 

 
The function from the previous section 

F = xy'z + xyz' + yz 
   = x'yz + xy'z + xyz' + xyz 

and repeated in the following truth table has the 1-minterms m3, m5, m6, and m7. 

 
Thus, a shorthand notation for the function is 

F(x, y, z) = m3 + m5 + m6 + m7 
By just using the minterm notations, we do not know how many variables are in the original 
function. Consequently, we need to explicitly specify the variables used by the function as in 
F(x, y, z). We can further simplify the notation by using the standard algebraic symbol Σ for 
summation. Therefore, we have 

F(x, y, z) = Σ(3, 5, 6, 7) 
These are just different ways of expressing the same function. Since a function is obtained from 
the sum of the 1-minterms, the inverse of the function, therefore, must be the sum of the 0-
minterms. This can be easily obtained by replacing the set of indices with those that were 
excluded from the original set. 
 
Example 1.2(a): Given the Boolean function F(x, y, z) = y + x'z, use Boolean algebra to convert 
the function to the sum-of-minterms format. 
This function has three variables. In a sum-of-minterms format, all product terms must have all 
variables. To do so, we need to expand each product term by ANDing it with (v + v’) for every 



missing variable v in that term. Since (v + v’) = 1, therefore, ANDing a product term with (v + v’) 
does not change the value of the term. 

 

 

Example 1.2(b): Given the Boolean function F(x, y, z) = y + x'z, use Boolean algebra to convert 
the inverse of the function to the sum-of-minterms format. 

 
 
3.3.2 Maxterms 
Similar to a minterm, a maxterm is a sum term that contains all the variables used in the 
function. For a function with n variables, the notation Mi where 0 ≤ i < 2n, is used to denote the 
maxterm whose index i is the binary value of the n variables such that the variable is 
complemented if the value assigned to it is a 1, and uncomplemented if it is a 0. 
For example, for a function with three variables x, y, and z, the notation M3 is used to represent 
the term in which the values for the variables xyz are 011. For maxterms, we want to complement 
the variable whose value is a 1, and uncomplement it if it is a 0. Hence M3 is for the maxterm x + 
y' + z'. (b) of Figure 1.2(c) shows the eight maxterms and their notations for n = 3 using the three 
variables x, y, and z. We have seen that a function can also be specified as a product of sums, or 
more specifically, a product of 0-maxterms, that is, the maxterms for which the function is a 0. 
Just like the minterms, we use the notation 1-maxterm to denote one-maxterm, and 0-maxterm 
to denote zero-maxterm. Thus, the function 

F(x, y, z) = xy'z + xyz' + yz 
       = (x + y + z) • (x + y + z') • (x + y' + z) • (x' + y + z) 

which is shown in the following table 



 

can be specified as the product of the 0-maxterms M0, M1, M2, and M4. The shorthand notation 
for the function is 

F(x, y, z) = M0 • M1 • M2 • M4 
Again, by using the standard algebraic symbol Π for product, the notation is further simplified to 

F(x, y, z) = Π (0, 1, 2, 4) 
The following summarizes these relationships for the function F = xy'z + xyz' + yz and its 
inverse. Comparing these equations with those in table 1.2(a), we see that they are identical. 

 
Notice that it is always the Σ of minterms and Π of maxterms; you never have Σ of maxterms or 
Π of minterms. 
 
Example 1.2(c): Given the Boolean function F(x, y, z) = y + x'z, use Boolean algebra to convert 
the function to the product-of-maxterms format. 
To change a sum term to a maxterm, we expand each term by ORing it with (vv' ) for every 
missing variable v in that term. Since (vv' ) = 0, therefore, ORing a sum term with (vv' ) does not 
change the value of the term. 



 

Example 1.2(d):  Given the Boolean function F(x, y, z) = y + x'z, use Boolean algebra to convert 
the inverse of the function to the product-of-maxterms format. 

 

3.4 Canonical, Standard, and non-Standard Forms 
Any Boolean function that is expressed as a sum of minterms, or as a product of maxterms is 
said to be in its canonical form. For example, the following two expressions are in their 
canonical forms 

F = x' y z + x y' z + x y z' + x y z 
F' = (x+y'+z' ) • (x'+y+z' ) • (x'+y'+z) • (x'+y'+z' ) 

As noted from the previous section, to convert a Boolean function from one canonical form to its 
other equivalent canonical form, simply interchange the symbols Σ with Π, and list the index 
numbers that were excluded from the original form. For example, the following two expressions 
are equivalent 

F1(x, y, z) = ∑ 3, 5, 6, 7) 
F2(x, y, z) = π (0, 1, 2, 4) 

To convert a Boolean function from one canonical form to its inverse, simply interchange the 
symbols ∑ with π, and list the same index numbers from the original form. For example, the 
following two expressions are inverses 

F1(x, y, z) = ∑ 3, 5, 6, 7) 
F2(x, y, z) = π (3, 5, 6, 7) 

A Boolean function is said to be in a standard form if a sum-of-products expression or a 
product-of-sums expression has at least one term that is not a minterm or a maxterms 
respectively. In other words, at least one term in the expression is missing at least one variable. 
For example, the following expression is in a standard form because the last term is missing the 
variable x. 

F = xy'z + xyz' + yz 
Sometimes, common variables in a standard form expression can be factored out. The resulting 
expression is no longer in a sum-of-products or product-of-sums format. These expressions are in 
a non-standard form. For example, starting with the previous expression, if we factor out the 



common variable x from the first two terms, we get the following expression, which is in a non-
standard form. 

F = x(y'z + yz') + yz 

4.0 Conclusion 

The switching functions can be expressed with Boolean equations. Complex Boolean equations 
can be simplified by a new kind of algebra, which is popularly called Switching Algebra or 
Boolean algebra. When a Boolean expression is implemented with logic gates, each literal in the 
function is designated as input to the gate. The literal may be a primed or unprimed variable. 
Minimization of the number of literals and the number of terms leads to less complex circuits as 
well as less number of gates, which should be a designer’s aim. There are several methods to 
minimize the Boolean function. 
 
Self Assessment Exercise 
Use DeMorgan’s theorems to convert the expression z = (A + B)  (C) to one that has only 
single-variable inversions. 
 
5.0 Summary 
In this unit, you learnt about: 

 How to simplify Boolean equations by applying the DeMorgan’s theorem. 
 The minterms and maxterms. 
 The canonical, standard and non-standard forms of Boolean functions. 

6.0 Tutor Marked Assignment 

1. What is meant by duality in Boolean algebra? 
2. State DeMorgan’s theorem. 
3. Prove the following using Boolean theorems: 

(a) (A + C)(A + D)(B + C)(B + D) = AB + CD 
(b) (A′ + B′ + D′) (A′ + B + D′) (B + C + D) (A + C′) (A + C′ + D) = A′C′D + ACD′+ 
BC′D′ 

4. Find the canonical sum of products and product of sums expression for the function 
F = X1X2X3 + X1X3X4 + X1X2X4. 

5. (a) Convert Y = ABCD + A′BC + B′C′ into a sum of minterms by algebraic method. 
(b) Convert Y = AB + B′CD into a product of maxterms by algebraic method. 

7.0  Further Reading and Other Resources 

1. Ronald j. Tocci (1988). “Digital  Systems: Priciples and Applications”, 4th Edition 
Prentice-Hall International edition. 

2. http://en.wikipedia.org/wiki/Logic_gate 
3. http://www.discovercircuits.com/D/digital.htm 
4. http://www.encyclopedia.com/doc/1G1-168332407.html 
5. http://www.logiccircuit.org/ 
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1.0 Introduction 

As Boolean functions are expressed in terms of AND, OR, and NOT operations, it is easier to 
implement the Boolean functions with some basic types of gates. However, for all practical 
purposes, it is possible to construct other types of logic gates. Logic gates are the actual physical 
implementations of the logical operators discussed in the previous units. 
 

2.0 Objectives 

Upon completion of this unit, you will be able to: 
 Describe the operation of and construct the truth tables for the AND, NAND, OR and 

NOR gates. 
 Discuss the implementation of logical operators with Logic gates 
 Understand the construction of Circuit diagrams 

 
3.0 Logic Gates 
Logic gates are the actual physical implementations of the logical operators discussed in the 
previous units. Transistors, acting as tiny electronic binary switches are connected together to 
form these gates.  
 
3.1 Types of Logic Gates 
 
There are basically the AND gate, the OR gate, and the NOT gate (also called the INVERTER ) 
for the corresponding AND, OR, and NOT logical operators. These gates form the basic building 
blocks for all digital logic circuits. The name “gate” comes from the fact that these devices 
operate like a door or gate to let or not to let things (in our case, current) through. 
In drawing digital circuit diagrams, also called schematic diagrams, or just schematics, we use 
special logic symbols to denote these gates as shown in Figure 1.3(a).  
 
3.1.1  AND gate 
The AND gate, or specifically, the 2-input AND gate, in (a) of Figure 1.3(a) has two input 
connections coming in from the left and one output connection going out on the right. The AND 
gate output is equal to the AND product of the logic inputs. In other words, the AND gate is a 
circuit that operates such that its output is high only when all its inputs are high. For all other 
cases the AND gate output is low. 
 
3.1.2 OR gate 
Similarly, the 2-input OR gate in (b) of Figure 1.3(a) has two input connections and one output 
connection. In digital circuitry, an OR gate is a circuit that has two or more inputs and whose 
output is equal to the OR sum of the inputs. The OR gate operates such thatits output is high 
(logic 1), if either input or both are at alogic 1 level. The OR gate output will be low (logic 0) 
only if all its inputs are at logic 0. This same idea can be extended to more than two inputs. 
 
 
 



3.1.3 NOT circuit (INVERTER) 
The INVERTER in (c) of Figure 1.3(a) has one input coming from the left and one output going 
to the right. In other words, it always has only a single input, and its output logic level is always 
opposite to the logic level of this input. 
 
The outputs from these gates, of course, are dependent on their inputs, and are defined by their 
logical functions. 

 
Figure 1.3(a) Logic symbols for the three basic logic gates: (a) 2-input AND; (b) 2-input OR;  

           (c) NOT. 
 

Sometimes, an AND gate or an OR gate with more than two inputs are needed. Hence, in 
addition to the 2-input AND and OR gates, there are 3-input, 4-input, or as many inputs as are 
needed of the AND and OR gates. In practice, however, the number of inputs is limited to a 
small number, such as five. The logic symbols for some of these gates are shown in (a) to (d) of  
Figure 1.3(b).  
 
There are several other gates that are variants of the three basic gates that are also often used in 
digital circuits. 
They are the NAND gate, the NOR gate, the XOR gate, and the XNOR gate. The NAND gate is 
derived from an AND gate and the INVERTER connected in series so that the output of the 
AND gate is inverted. The name “NAND” comes from the description “Not AND.” Similarly, 
the NOR gate is the OR gate with its output inverted. The XOR, or eXclusive OR gate is like the 
OR gate except that when both inputs are 1, the output is a 0 instead. The XNOR, or eXclusive 
NOR gate is just the inverse of the XOR gate for when there are an even number of inputs (like 2 
inputs). When there are an odd number of inputs (like 3 inputs), the XOR is the same as the 
XNOR. The logic symbols and their truth tables for some of these gates are shown in Figure 
1.3(b) and Table 1.3(a) respectively. 
Notice, in Table 1.3(a), the use of the little circle or bubble at the output of some of the logic 
symbols. This bubble is used to denote the inverted value of a signal. For example, the NAND 
gate is the inverse of the AND gate, thus the NAND gate logic symbol is the same as the AND 
gate logic symbol except that it has the extra bubble at the output. 
 
 
 
 



 
Figure 1.3(b) Logic symbols for: (a) 3-input AND; (b) 4-input AND; (c) 3-input OR; (d) 4-input 
OR; (e) 2-input NAND; (f) 2-input NOR; (g) 3-input NAND; (h) 3-input NOR; (i) 2-input XOR; 
(j) 2-input XNOR. 
 
Table 1.3(a): Truth tables for: 2-input NAND; 2-input NOR; 2-input XOR; 2-input XNOR; 3-
input AND; 3-input OR; 3-input NAND; 3-input NOR; 3-input XOR; 3-input XNOR. 

 
 
The notations used for these gates in a logical expression are (xy)' for the 2-input NAND gate, 
(x+y)' for the 2-input NOR gate, x  y for the XOR gate, and x     y for the XNOR gate. 
 
Looking at the truth table for the 2-input XOR gate, we can derive the equation for the 2-XOR 
gate as  

 
Similarly, the equation for the 2-input XNOR gate as derived from the 2-XNOR truth table is 

 
 
 
 
 
 



 


