
A LECTURE NOTE

ON

OPERATING SYSTEM (II)

(CSC 413)

COURSE LECTURER:

DR. SODIYA A. S.

CHAPTER ONE - UNIX OPERATING SYSTEM

1.0 INTRODUCTION TO UNIX OPERATING SYSTEM

An operating system is the suite of programs which make the computer work.

The UNIX operating system was designed to let a number of programmers access

the computer at the same time and share its resources. This real-time sharing of

resources makes UNIX one of the most powerful operating systems ever.

 Features of UNIX operating system:

 Multitasking capability (UNIX lets a computer do several things at once,)

 Multiuser capability (The computer can take the commands of a number of

users -- determined by the design of the computer -- to run programs, access

files, and print documents at the same time.)

 Portability (permit to move from one brand of computer to another with a

minimum of code changes.)

 Library of application software

COMPONENT OF UNIX O/S :

The UNIX operating system is made up of three parts; the kernel, the shell and the

programs.

1. The kernel :

The kernel of UNIX is the hub of the operating system: it allocates time and

memory to programs and handles the file storage and communications in response

to system calls.

An illustration of the way that the shell and the kernel work together, suppose a

user types rm myfile (which has the effect of removing the file myfile). The

shell searches the filestore for the file containing the program rm, and then

requests the kernel, through system calls, to execute the program rm on myfile.

When the process rm myfile has finished running, the shell then returns the

UNIX prompt to the user, indicating that it is waiting for further commands.

2. The shell :

The shell acts as an interface between the user and the kernel. When a user logs in,

the login program checks the username and password, and then starts another

program called the shell. The shell is a command line interpreter (CLI) which

interprets the commands the user types in and then arranges for them to be carried

out.

The commands are themselves programs. When they terminate, the shell would

give the user another prompt.

The adept user can customize his/her own shell, and users can use different shells

on the same machine. As an illustration the shell may be customized with certain

features to help the user in inputting commands, filename Completion - By typing

part of the name of a command, filename or directory and pressing the [Tab] key,

the shell will complete the rest of the name automatically. If the shell finds more

than one name beginning with the letters that has been typed, it would beep,

prompting the user to type a few more letters before pressing the tab key again.

3. Programs

Program consists of the tools and applications that offer additional functionality to

the operating system. Typically, tools are grouped into categories for certain

functions, such as word processing, business applications, or programming.

2.0 HISTORY

The history of UNIX starts back in 1969, when a small group composed of Ken

Thompson, Dennis Ritchie and others started working on the "little-used PDP-7 in

a corner" at Bell Lab and what was to become UNIX. For 10years,the development

of UNIX proceeded at AT&T in numbered versions. The 1974 version was re-

written in C, a major mile stone for the operating system’s portability among

different systems .The 1975 version was the first to become available outside Bell

Lab. It became the basis of the first version of UNIX developed at the university of

California Berkely. By 1983, Computer Research Group (CRG), UNIX System

Group (USG) and a third group merge to become UNIX System Development Lab

and AT&T announces UNIX System V, the first supported release. Installed base

was 45,000. The goals of the group were to design an operating system to satisfy

the following objectives:

 Simple and elegant

 Written in a high level language rather than assembly language

 Allow re-use of code

The group worked primarily in the high level language in developing the operating

system. The first edition was released in 1971, it had an assembler for a PDP-

11/20, file system, fork(), roff and ed. It was used for text processing of patent

document.

In 1998, X/Open introduced the UNIX 95. In 1995, a branding programme for

implementations of the Single UNIX Specification. Novell sold UnixWare

business line to SCO and was Digital UNIX introduced in the same year.

In 1999, the UNIX system reaches its 30th anniversary. Linux 2.2 kernel was

released. The Open Group and the IEEE commence joint development of a

revision to POSIX and the Single UNIX Specification.

In 2003, The core volumes of Version 3 of the Single UNIX Specification were

approved as an international standard.

In addition, while initially designed for medium-sized minicomputers, the

operating system was soon moved to larger, more powerful mainframe computers.

As personal computers grew in popularity, versions of UNIX found their way into

these boxes, and a number of companies produce UNIX-based machines for the

scientific and programming communities.

UNIX POPULARITY

 Many vendors have decide to use UNIX because of the following reasons :

 UNIX is relatively easy to run. Only a very small amount of its codes are

written in assembly language. UNIX is nearly the unanimous choice of

operating system for computer companies started since 1985. The user

benefit which results from this is that UNIX runs on a wide variety of

computer systems. Many traditional vendors have made UNIX available on

their systems in addition to their proprietary operating systems.

 The application program interface allows many different types of

applications to be easily implemented under UNIX without writing assembly

language. These applications are relatively portable across multiple vendor

hardware platforms. Third party software vendors can save costs by

supporting a single UNIX version of their software rather than four

completely different vendor specific versions requiring four times the

maintenance.

 Vendor-independent networking allows users to easily network multiple

systems from many different vendors.

3.0 DESIGN ISSUES OF UNIX

UNIX is a stable, multi-user, multi-tasking system for servers, desktop and laptop.

It has a graphical user interface (GUI) similar to Microsoft Windows which

provides an easy to use environment.

Everything in UNIX is either a file or a process.

A process is an executing program identified by a unique PID (process identifier).

A file is a collection of data. They are created by users using text editors, running

compilers etc.

All the files are grouped together in the directory structure.

3.1 The design of the unix operating system

Memory management Policies:

 Allocating swap space

 Freeing swap space

 Swapping

 Demand paging

MEMORY

Primary memory is a precious resource that frequently cannot contain all active

processes in the system

The memory management system decides which processes should reside (at least

partially) in main memory

It monitors the amount of available primary memory and may periodically write

processes to a secondary device called the swap device to provide more space in

primary memory

At a later time, the kernel reads the data from swap device back to main memory

UNIX Memory Management Policies

• Swapping

Easy to implement

Less system overhead

• Demand Paging

Greater flexibility

Swapping

The swap device is a block device in a configurable section of a disk

Kernel allocates contiguous space on the swap device without fragmentation

It maintains free space of the swap device in an in-core table, called map

The kernel treats each unit of the swap map as group of disk blocks

As kernel allocates and frees resources, it updates the map accordingly

Algorithm: Allocate Swap Space

• malloc(address_of_map, number_of_unit)

– for (every map entry)

• if (current map entry can fit requested units)

– if (requested units == number of units in entry)

» Delete entry from map

– else

» Adjust start address of entry

– return original address of entry

– return -1

Swapping Process Out

 Memory  Swap device

 Kernel swap out when it needs memory

1. When fork() called for allocate child process

2. When called for increase the size of process

3. When process become larger by growth of its stack

4. Previously swapped out process want to swap in but not enough

memory

The kernel must gather the page addresses of data at primary memory to be

swapped out Kernel copies the physical memory assigned to a process to the

allocated space on the swap device.The mapping between physical memory and

swap device is kept in page table entry Demand Paging Not all page of process

resides in memory

When a process accesses a page that is not part of its working set, it incurs a page

fault.

The kernel suspends the execution of the process until it reads the page into

memory and makes it accessible to the process

3.3 INTERRUPT HANDLERS

 [Macro]

system: with-enabled-interrupts specs &rest body

This macro should be called with a list of signal specifications, specs. Each

element of specs should be a list of two elements: the first should be the Unix

signal for which a handler should be established, the second should be a function to

be called when the signal is received One or more signal handlers can be

established in this way. with-enabled-interrupts establishes the correct signal

handlers and then executes the forms in body. The forms are executed in an

unwind-protect so that the state of the signal handlers will be restored to what it

was before the with-enabled-interrupts was entered. A signal handler function

specified as NIL will set the Unix signal handler to the default which is normally

either to ignore the signal or to cause a core dump depending on the particular

signal.

It is sometimes necessary to execute a piece a code that can not be interrupted.

This macro the forms in body with interrupts disabled. Note that the Unix

interrupts are not actually disabled, rather they are queued until after body has

finished executing.

When executing an interrupt handler, the system disables interrupts, as if the

handler was wrapped in a without-interrupts. The macro with-interrupts can be

used to enable interrupts while the forms in body are evaluated. This is useful if

body is going to enter a break loop or do some long computation that might need to

be interrupt

For some interrupts, such as SIGTSTP (suspend the Lisp process and return to the

Unix shell) it is necessary to leave Hemlock and then return to it. This macro

executes the forms in body after exiting Hemlock. When body has been executed,

control is returned to Hemlock.

[Function]

This function establishes function as the handler for signal.

Unless you want to establish a global signal handler, you should use the macro

with-enabled-interrupts to temporarily establish a signal handler. enable-interrupt

returns the old function associated with the signal.

[Function]

system: ignore-interrupt signal

Ignore-interrupt sets the Unix signal mechanism to ignore signal which means that

the Lisp process will never see the signal. Ignore-interrupt returns the old function

associated with the signal or nil if none is currently defined.

Default-interrupt can be used to tell the Unix signal mechanism to perform the

default action for signal.

3.4 UNIX PROCESS SCHEDULING

There is the need for processes on a system to occasionally request services from

the kernel. Some older operating systems had a rendezvous style of providing these

services - the process would request a service and wait at a particular point, until a

kernel task came along and serviced the request on behalf of the process.

UNIX works very differently. Rather than having kernel tasks service the requests

of a process, the process itself enters kernel space. This means that rather than the

process waiting "outside" the kernel; it enters the kernel itself (i.e. the process will

start executing kernel code for itself).

When a process invokes a system call, the hardware is switched to the kernel

settings. At this point, the process will be executing code from the kernel image.

The Kernel in UNIX

 Controls the execution of processes by allowing their creation,

termination, communication.

 Schedules processes fairly for execution on CPU

 Allocates main memory for an executing process

 Allocates secondary memory for efficient storage and retrieval of user

data

 Allows controlled peripheral device access to processes

3.4.1 Basic operations on processes in UNIX

Creation of processes in UNIX

 Establish a new process

 Assign a new unique process identifier (PID) to the new process

 Allocate memory to the process for all elements of process image, including

private user address space and stack; the values can possibly come from the

parent process; set up any linkages, and then, allocate space for process

control block

 Create a new process control block corresponding to the above PID and add

it to the process table; initialize di erent values in there such as parent PID,

list of children (initialized to null), program counter (set to program entry

point), system stack pointer (set to de ne the process stack boundaries)

 Initial CPU state, typically initialized to Ready or Ready, suspend Add the

process id of new process to the list of children of the creating (parent)

process

 r0. Initial allocation of resources

 k0. Initial priority of the process

 Accounting information and limits

 Add the process to the ready list

 Initial allocation of memory and resources must be a subset of parent’s and

be assigned as shared Initial priority of the process can be greater than the

parent’s

Management of processes in UNIX

How processes are managed after creation in UNIX

1. Suspend - Change process state to suspended

 A process may suspend only its descendants

 May include cascaded suspension

 Stop the process if the process is in running state and save the state of

the processor in the process control block

 If process is already in blocked state, then leave it blocked, else

change its state to ready state

 If need be, call the scheduler to schedule the processor to some other

process

2. Activate - Change process state to active

 Change one of the descendant processes to ready state

 Add the process to the ready list

3. Destroy - Remove one or more processes

 Cascaded destruction

 Only descendant processes may be destroyed

 If the process to be “killed" is running, stop its execution

 Free all the resources currently allocated to the process

 Remove the process control block associated with the killed process

4. Change priority - Set a new priority for the process

 Change the priority in the process control block

 Move the process to a different queue to reflect the new priority

3.4.2 Scheduling in UNIX

Scheduler decides the process to run first by using a scheduling algorithm

3.4.2.1 Type of scheduling used in UNIX

Pre-emptibility

 In UNIX, Processes in user space are pre-emptible - what this means is that a

process may have the CPU taken away from it arbitrarily. This is how pre-emptive

multitasking works: the scheduling routine will periodically suspend the currently

executing process, and possibly schedule another task to run on that CPU. This

means that theoretically, a process can be in a situation where it never gets the

CPU back. In reality the scheduling code has an interest in fairness and will try to

give the CPU to each process with a weak level of fairness, but there are no

guarantees

 Algorithms are:

 Shortest Remaining Time Scheduling

o Preemptive version of shortest job next scheduling

o Preemptive in nature (only at arrival time)

o Highest priority to process that need least time to complete

o Priority function P

o Schedule for execution

o Average waiting time calculations

 Round-Robin Scheduling

o Preemptive in nature

o Preemption based on time slices or time quanta

o Time quantum between 10 and 100 milliseconds

o All user processes treated to be at the same priority

o Ready queue treated as a circular queue

Desirable features of a scheduling algorithm

1. Fairness: Make sure each process gets its fair share of the CPU

2. Efficiency: Keep the CPU busy 100% of the time

3. Response time: Minimize response time for interactive users

4. Turnaround: Minimize the time batch users must wait for output

5. Throughput: Maximize the number of jobs processed per hour

3.5 DEVICE MANAGEMENT

To perform useful functions, processes need access to the peripherals connected to

the computer, which are controlled by the kernel through device drivers. For

example, to show the user something on the screen, an application would make a

request to the kernel, which would forward the request to its display driver, which

is then responsible for actually plotting the character/pixel.

3.5.1 Special features of Device management in UNIX

Device drivers run as part of the kernel, either compiled in or as run-time loadable

modules. The kernel architectures, Monolithic kernel does this and it have the

advantage of speed and efficiency.

 Device manager

 Device manager will be the interface between the device drivers and the both the

rest of the kernel and user applications.

 The device manager needs to do two things:

1. Isolate devices drivers from the kernel so that driver writers can worry about

interfacing to the hardware and not about interfacing to the kernel

2. Isolate user applications from the hardware so that applications can work on

the majority of devices the user might connect to their system

 In most operating systems, the device manager is the only part of the kernel

that programmers really see. Writing a good interface will make the difference

between an efficient and reliable OS which works with a variety of devices and an

OS which you spend all your own time writing and debugger drivers for.

 Capabilities of device manager

1. Asynchronous I/O: that is, applications will be able to start an I/O operation

and continue to run until it terminates.

2. Plug and Play: drivers will be able to be loaded and unloaded as devices are

added to and removed from the system. Devices will be detected automatically

on system startup, if possible.

 Drivers

Because we want our kernel to be plug-and-play capable, it isn’t enough for drivers

to be added to the kernel at compile time, as Minix and old Linux do. We must be

able to load and unload them at run time. This isn’t difficult: it just means we have

to extend the executable file interface to kernel mode.

 Interfaces

Once we’ve detected the devices installed in the system we need to keep a record

of them somewhere. The standard Unix model, employed by Minix and Linux, is

to keep directory somewhere in the file system. This directory is filled with special

directory entries, directory entries which don’t point to any data, each of which

refers to a specific device via major and minor device numbers. The major device

number specifies the device type or driver to use and the minor number specifies a

particular device implemented by that drivers.

3.6 Security

An important kernel design decision is the choice of the abstraction levels where

the security mechanisms and policies should be implemented. Kernel security

mechanisms play a critical role in supporting security at higher levels.

One approach is to use firmware and kernel support for fault tolerance (see above),

and build the security policy for malicious behavior on top of that (adding features

such as cryptography mechanisms where necessary), delegating some

responsibility to the compiler. Approaches that delegate enforcement of security

policy to the compiler and/or the application level are often called language-based

security.

The lack of many critical security mechanisms in current mainstream operating

systems impedes the implementation of adequate security policies at the

application abstraction level. In fact, a common misconception in computer

security is that any security policy can be implemented in an application regardless

of kernel support.

4.0 ADVANTAGES OF UNIX O/S

- Unix is more flexible and can be installed on many different types of machines,

including main-frame computers, supercomputers and micro-computers.

- Unix is more stable and does not go down as often as Windows does, therefore

requires less administration and maintenance.

- Unix has greater built-in security and permissions features than Windows.

- Unix possesses much greater processing power than Windows.

- Unix is the leader in serving the Web. About 90% of the Internet relies on Unix

operating systems running Apache, the world's most widely used Web server.

- Software upgrades from Microsoft often require the user to purchase new or more

hardware or prerequisite software. That is not the case with Unix.

- The mostly free or inexpensive open-source operating systems, such as Linux and

BSD, with their flexibility and control, are very attractive to (aspiring) computer

wizards. Many of the smartest programmers are developing state-of-the-art

software free of charge for the fast growing "open-source movement”.

- Unix also inspires novel approaches to software design, such as solving problems

by interconnecting simpler tools instead of creating large monolithic application

programs.

CHAPTER TWO - LINUX

Introduction

What is Linux?
Linux is a UNIX-like operating system that runs on many different computers.
Linux was first released in 1991 by its author Linus Torvalds at the University of
Helsinki and developed by Linus Torvalds (author) and Andrew Morton. Linux is
the operating system kernel, which comes with a distribution of software The
Linux kernel is an operating system kernel used by a family of Unix-like operating
system. It started out as a personal computer system used by individuals, and has
since gained the support of several large operations such as HP, IBM, and Sun
microsystem. It now used mostly as the server operating system. It’s a prime
example of open source development system. It’s written in C

Since then it has grown tremendously in popularity as programmers around the
world embraced his project of building a free operating system, adding features,
and fixing problems. Linux is portable, which means you’ll find versions running
on name-brand or clone PCs, Apple Macintoshes, Sun workstations, or Digital
Equipment Corporation Alpha-based computers. Linux also comes with source
code, so you can change or customize the software to adapt to your needs. Finally,
Linux is a great operating system, rich in features adopted from other versions of
UNIX. The term Linux distribution is used to refer to the various operating
systems that run on top of the Linux kernel. Linux is one of the most prominent
examples of free/open source software. Today, the Linux kernel has received
contributions from thousands of programmers.

Event Leading To the Creation
The UNIX operating system was conceived and implemented in 1960 and first
released in 1970. Its portability and availability caused it to the widely adopted and
modified by academic institutions and businesses. In 1983, Richard Stallman started the GNU
project with the goal of creating a free UNIX like operating system. As part of the work, he
wrote the GNU general public license (GPL). By the early 1990’s there was almost enough
available software to create a full operating system. However, the GNU kernel called HURD,
failed to attract attention from developers leaving GNU incomplete. A solution seemed to appear
in form of MINIX. It was released by Andrew S Tanenbaum in 1987, as an operating system,
MINIX was not a superb one while source code was available, modification and retribution was
restricted. This factors and lack of widely adopted free kernel made Torvalds start is project.

Processes

The concept of a process is fundamental to any multiprogramming operating
system. A process is usually defined as an instance of a program in execution; thus,
if 16 users are running vi at once, there are 16 separate processes (although they
can share the same executable code). Processes are often called "tasks" in Linux
source code.
Properties of processes

 Static
 Dynamic

Process Descriptor

In order to manage processes, the kernel must have a clear picture of what each
process is doing. It must know, for instance, the process's priority, whether it is
running on the CPU or blocked on some event, what address space has been
assigned to it, which files it is allowed to address, and so on. This is the role of the
process descriptor, that is, of a task_struct type structure whose fields contain all
the information related to a single process. As the repository of so much
information, the process descriptor is rather complex. Not only does it contain
many fields itself, but some contain pointers to other data structures that, in turn,
contain pointers to other structures. The figure below describes the Linux process
descriptor schematically.

Figure 1 The Linux Process Descriptor

The five data structures on the right side of the figure refer to specific resources
owned by the process. These resources will be covered in future chapters. This
chapter will focus on two types of fields that refer to the process state and to
process parent/child relationships.

Process State

As its name implies, the ‘state’ field of the process descriptor describes what is
currently happening to the process. It consists of an array of flags, each of which
describes a possible process state. In the current Linux version these states are
mutually exclusive, and hence exactly one flag of state is set; the remaining flags
are cleared. The following are thepossible process states:

TASK_RUNNING

The process is either executing on the CPU or waiting to be executed.

TASK_INTERRUPTIBLE

The process is suspended (sleeping) until some condition becomes true. Raising a
hardware interrupt, releasing a system resource the process is waiting for, or
delivering a signal are examples of conditions that might wake up the process, that
is, put its state back to TASK_RUNNING.

TASK_UNINTERRUPTIBLE

Like the previous state, except that delivering a signal to the sleeping process
leaves its state unchanged. This process state is seldom used. It is valuable,
however, under certain specific conditions in which a process must wait until a
given event occurs without being interrupted. For instance, this state may be used
when a process opens a device file and the corresponding device driver starts
probing for a corresponding hardware device. The device driver must not be
interrupted until the probing is complete, or the hardware device could be left in an
unpredictable state.

TASK_STOPPED

Process execution has been stopped: the process enters this state after receiving a
SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU signal. When a process is being
monitored by another (such as when a debugger executes a ptrace() system call to
monitor a test program), any signal may put the process in the TASK_STOPPED
state.

TASK_ZOMBIE

Process execution is terminated, but the parent process has not yet issued a wait()-
like system call (wait2(), wait3(), wait4(), or waitpid()) to return information
about the dead process. Before the wait()-like call is issued, the kernel cannot
discard the data contained in the dead process descriptor because the parent could
need it

Identifying A Process

Any Unix-like operating system, on the other hand, allows users to identify
processes by means of a number called the Process ID (or PID). The PID is a 32-
bit unsigned integer stored in the PID field of the process descriptor. PIDs are

numbered sequentially: the PID of a newly created process is normally the PID of
the previously created process incremented by one. However, for compatibility
with traditional Unix systems developed for 16-bit hardware platforms, the
maximum PID number allowed on Linux is 32767. When the kernel creates the
32768th process in the system, it must start recycling the lower unused PIDs.

Memory Management

The memory management subsystem is one of the most important parts of the
operating system. Since the early days of computing, there has been a need for
more memory than exists physically in a system. Strategies have been developed to
overcome this limitation and the most successful of these is virtual memory.
Virtual memory makes the system appear to have more memory than is physically
present by sharing it among competing processes as they need it. Virtual memory
does more than just make your computer's memory go farther. The memory
management subsystem provides:

Large Address Spaces

The operating system makes the system appear as if it has a larger amount of
memory than it actually has. The virtual memory can be many times larger than the
physical memory in the system.

Protection

Each process in the system has its own virtual address space. These virtual address
spaces are completely separate from each other and so a process running one
application cannot affect another. Also, the hardware virtual memory mechanisms
allow areas of memory to be protected against writing. This protects code and data
from being overwritten by rogue applications.

Memory Mapping

Memory mapping is used to map image and data files into a process' address space.
In memory mapping, the contents of a file are linked directly into the virtual
address space of a process.

Fair Physical Memory Allocation

The memory management subsystem allows each running process in the system a
fair share of the physical memory of the system.

Shared Virtual Memory

Although virtual memory allows processes to have separate (virtual) address
spaces, there are times when you need processes to share memory. For example
there could be several processes in the system running the bash command shell.
Rather than have several copies of bash, one in each process's virtual address
space, it is better to have only one copy in physical memory and all of the
processes running bash share it. Dynamic libraries are another common example of
executing code shared between several processes.

Shared memory can also be used as an Inter Process Communication (IPC)
mechanism, with two or more processes exchanging information via memory
common to all of them. Linux supports the Unix System V shared memory IPC.

3.1 An Abstract Model of Virtual Memory

Figure 3.1: Abstract model of Virtual to Physical address mapping

Before considering the methods that Linux uses to support virtual memory it is
useful to consider an abstract model that is not cluttered by too much detail.

As the processor executes a program it reads an instruction from memory and
decodes it. In decoding the instruction it may need to fetch or store the contents of
a location in memory. The processor then executes the instruction and moves onto
the next instruction in the program. In this way the processor is always accessing
memory either to fetch instructions or to fetch and store data.

In a virtual memory system all of these addresses are virtual addresses and not
physical addresses. These virtual addresses are converted into physical addresses
by the processor based on information held in a set of tables maintained by the
operating system.

To make this translation easier, virtual and physical memory are divided into
handy sized chunks called pages. These pages are all the same size, they need not
be but if they were not, the system would be very hard to administer. Linux on
Alpha AXP systems uses 8 Kbyte pages and on Intel x86 systems it uses 4 Kbyte
pages. Each of these pages is given a unique number; the page frame number
(PFN).

In this paged model, a virtual address is composed of two parts; an offset and a
virtual page frame number. If the page size is 4 Kbytes, bits 11:0 of the virtual
address contain the offset and bits 12 and above are the virtual page frame number.
Each time the processor encounters a virtual address it must extract the offset and
the virtual page frame number. The processor must translate the virtual page frame
number into a physical one and then access the location at the correct offset into
that physical page. To do this the processor uses page tables.

Interrupts And Exceptions

An interrupt is usually defined as an event that alters the sequence of instructions
executed by a processor. Such events correspond to electrical signals generated by
hardware circuits both inside and outside of the CPU chip.
Interrupts are often divided into synchronous and asynchronous interrupts:

• Synchronous interrupts are produced by the CPU control unit while executing
instructions and are called synchronous because the control unit issues them only
after terminating the execution of an instruction.

• Asynchronous interrupts are generated by other hardware devices at arbitrary
times with respect to the CPU clock signals. Intel 80x86 microprocessor manuals
designate synchronous and asynchronous interrupts as exceptions and interrupts,
respectively. We'll adopt this classification, although we'll
occasionally use the term "interrupt signal" to designate both types together
(synchronous as well as asynchronous). Interrupts are issued by interval timers and
I/O devices; for instance, the arrival of a keystroke from a user sets off an interrupt.
Exceptions, on the other hand, are caused either by programming errors or by
anomalous conditions that must be handled by the kernel. In the first case, the
kernel handles the exception by delivering to the current process one of the signals
familiar to every Unix programmer. In the second case, the kernel performs all the
steps needed to recover from the anomalous condition, such as a page fault or a
request (via an int instruction) for a kernel service.

The Role of Interrupt Signals

As the name suggests, interrupt signals provide a way to divert the processor to
code outside the normal flow of control. When an interrupt signal arrives, the CPU
must stop what it's currently doing and switch to a new activity; it does this by
saving the current value of the program counter (i.e., the content of the eip and cs
registers) in the Kernel Mode stack and by placing an address related to the
interrupt type into the program counter. There is a key difference between interrupt
handling and process switching: the code executed by an interrupt or by an
exception handler is not a process. Rather, it is a kernel control path that runs on
behalf of the same process that was running when the interrupt occurred. As a
kernel control path, the interrupt handler is lighter than a process (it has less
context and requires less time to set up or tear down).

 Interrupt handling is one of the most sensitive tasks performed by the kernel, since
it must satisfy the following constraints:

• Interrupts can come at any time, when the kernel may want to finish something
else it was trying to do. The kernel's goal is therefore to get the interrupt out of the
way as soon as possible and defer as much processing as it can. For instance,
suppose a block of data has arrived on a network line. When the hardware
interrupts the kernel, it could simply mark the presence of data, give the processor
back to whatever was running before, and do the rest of the processing later (like
moving the data into a buffer where its recipient process can find it and restarting
the process). The activities that the kernel needs to perform in response to an
interrupt are thus divided into two parts: a top half that the kernel executes right

away and a bottom half that is left for later. The kernel keeps a queue pointing to
all the functions that represent bottom halves waiting to be executed and pulls them
off the queue to execute them at particular points in processing.

• Since interrupts can come at any time, the kernel might be handling one of them
while another one (of a different type) occurs. This should be allowed as much as
possible since it keeps the I/O devices busy. As a result, the interrupt handlers must
be coded so that the corresponding kernel control paths can be executed in a nested
manner. When the last kernel control path terminates, the kernel must be able to
resume execution of the interrupted process or switch to another process if the
interrupt signal has caused a rescheduling activity.

• Although the kernel may accept a new interrupt signal while handling a previous
one, some critical regions exist inside the kernel code where interrupts must be
disabled. Such critical regions must be limited as much as possible since,
according to the previous requirement, the kernel, and in particular the interrupt
handlers, should run most of the time with the interrupts enabled.

 Interrupts and Exceptions

The Intel documentation classifies interrupts and exceptions as follows:
• Interrupts:

Maskable interrupts

Sent to the INTR pin of the microprocessor. They can be disabled by clearing the
IF flag of the eflags register. All IRQs issued by I/O devices give rise to maskable
interrupts.

Nonmaskable interrupts

Sent to the NMI (Nonmaskable Interrupts) pin of the microprocessor. They are not
disabled by clearing the IF flag. Only a few critical events, such as hardware
failures,
give rise to nonmaskable interrupts.
• Exceptions:

Processor-detected exceptions

Generated when the CPU detects an anomalous condition while executing an
instruction. These are further divided into three groups, depending on the value of
the eip register that is saved on the Kernel Mode stack when the CPU control unit
raises the exception:

Faults

The saved value of eip is the address of the instruction that caused the fault, and
hence that instruction can be resumed when the exception handler terminates.
Resuming the same instruction is necessary whenever the handler is able to correct
the anomalous condition that caused the exception.

Traps
The saved value of eip is the address of the instruction that should be executed
after the one that caused the trap. A trap is triggered only when there is no need to
re-execute the instruction that was terminated. The main use of traps is for
debugging purposes: the role of the interrupt signal in this case is to notify the
debugger that a specific instruction has been executed (for instance, a breakpoint
has been reached within a program). Once the user has examined the data provided
by the debugger, she may ask that execution of the debugged program resume
starting from the next instruction.

Aborts

A serious error occurred; the control unit is in trouble, and it may be unable to
store a meaningful value in the eip register. Aborts are caused by hardware failures
or by invalid values in system tables. The interrupt signal sent by the control unit is
an emergency signal used to switch control to the corresponding abort exception
handler. This handler has no choice but to force the affected process to terminate.

Programmed exceptions

Occur at the request of the programmer. They are triggered by int or int3
instructions; the ‘into’ (check for overflow) and ’bound’ (check on address bound)
instructions also give rise to a programmed exception when the condition they are
checking is not true. Programmed exceptions are handled by the control unit as
traps; they are often called software interrupts. Such exceptions have two common
uses: to implement system calls, and to notify a debugger of a specific event.
Linux uses two types of descriptors:

Interrupt gates & trap gates.
Trap gate: Trap gates are used for activating exception handlers.

Interrupt gate: Cannot be accessed by user mode progs

The Linux Booting Process

In most cases, the Linux kernel is loaded from a hard disk, and a two-stage boot
loader is required. The most commonly used Linux boot loader on Intel systems is
named LILO (Linux Loader); corresponding programs exist for other architectures.
LILO may be installed either on the MBR, replacing the small program that loads
the boot sector of the active partition, or in the boot sector of a (usually active) disk
partition. In both cases, the final result is the same: when the loader is executed at
boot time, the user may choose which operating system to load. The LILO boot
loader is broken into two parts, since otherwise it would be too large to fit into
the MBR. The MBR or the partition boot sector includes a small boot loader,
which is loaded into RAM starting from address 0x00007c00 by the BIOS. This
small program moves itself to the address 0x0009a000, sets up the Real Mode
stack (ranging from 0x0009b000 to 0x0009a200), and loads the second part of the
LILO boot loader into RAM starting from address 0x0009b000. In turn, this latter
program reads a map of available operating systems from disk and offers the user a
prompt so she can choose one of them. Finally, after the user has chosen the kernel
to be loaded (or let a time-out elapse so that LILO chooses a default), the boot
loader may either copy the boot sector of the corresponding partition into RAM
and execute it or directly copy the kernel image into RAM. Assuming that a Linux
kernel image must be booted, the LILO boot loader, which relies on BIOS
routines, performs essentially the same operations as the boot loader integrated into
the kernel image described in the previous section about floppy disks. The loader
displays the "Loading Linux" message; then it copies the integrated boot loader of
the kernel image to address 0x00090000, the setup() code to address 0x00090200,
and the rest of the kernel image to address 0x00010000 or 0x00100000. Then it
jumps to the setup() code.

The setup() functions
1. Invokes a BIOS procedure to find out the amount of RAM available in the
system.

2. Sets the keyboard repeat delay and rate. (When the user keeps a key pressed past
a certain amount of time, the keyboard device sends the corresponding keycode
over and over to the CPU.)

3. Initializes the video adapter card.

4. Reinitializes the disk controller and determines the hard disk parameters.

5. Checks for an IBM Micro Channel bus (MCA).

6. Checks for a PS/2 pointing device (bus mouse).

7. Checks for Advanced Power Management (APM) BIOS support.

8. If the kernel image was loaded low in RAM (at physical address 0x00010000),
moves it to physical address 0x00001000. Conversely, if the kernel image was
loaded high in RAM, does not move it. This step is necessary because, in order to
be able to store the kernel image on a floppy disk and to save time while booting,
the kernel image stored on disk is compressed, and the decompression routine
needs some free space to use as a temporary buffer following the kernel image in
RAM.

9. Sets up a provisional Interrupt Descriptor Table (IDT) and a provisional Global
Descriptor Table (GDT).

10. Resets the floating point unit (FPU), if any.

11. Reprograms the Programmable Interrupt Controller (PIC) and maps the 16
hardware interrupts (IRQ lines) to the range of vectors from 32 to 47. The kernel
must perform this step because the BIOS erroneously maps the hardware interrupts
in the range from to 15, which is already used for CPU exceptions (see Section
4.2.3 in Chapter 4).

12. Switches the CPU from Real Mode to Protected Mode by setting the PE bit in
the cr0 status register. The provisional kernel page tables contained in
swapper_pg_dir and pg0 identically map the linear addresses to the same physical
addresses. Therefore, the transition from Real Mode to Protected Mode goes
smoothly.

13. Jumps to the startup_32() assembly language function.

The startup_32() Functions

There are two different startup_32() functions; the one we refer to here is coded in
the arch/i386/boot/compressed/head.S file. After setup() terminates, the function
has been moved either to physical address 0x00100000 or to physical address
0x00001000, depending on whether the kernel image was loaded high or low in
RAM.

This function performs the following operations:

1. Initializes the segmentation registers and a provisional stack.

2. Fills the area of uninitialized data of the kernel identified by the _edata and _end
symbols with zeros.

3. Invokes the decompress_kernel() function to decompress the kernel image. The
"Uncompressing Linux . . . " message is displayed first. After the kernel image has
been decompressed, the "O K, booting the kernel." message is shown. If the kernel
image was loaded low, the decompressed kernel is placed at physical address
0x00100000. Otherwise, if the kernel image was loaded high, the decompressed
kernel is placed in a temporary buffer located after the compressed image. The
decompressed image is then moved into its final position, which starts at physical
address 0x00100000.

4. Jumps to physical address 0x00100000. The decompressed kernel image begins
with another startup_32() function included in the arch/i386/kernel/head.S file.
Using the same name for both the functions does not create any problems (besides
confusing our readers), since both functions are executed by jumping to their initial
physical addresses.

The second startup_32() function essentially sets up the execution environment for
the first Linux process (process 0). The function performs the following
operations:

1. Initializes the segmentation registers with their final values.

2. Sets up the Kernel Mode stack for process.

3. Invokes setup_idt() to fill the IDT with null interrupt handlers.

4. Puts the system parameters obtained from the BIOS and the parameters passed
to the operating system into the first page frame.

5. Identifies the model of the processor.

6. Loads the gdtr and idtr registers with the addresses of the GDT and IDT tables.

7. Jumps to the start_kernel() function.

A.5 Modern Age: The start_kernel() Function

The start_kernel() function completes the initialization of the Linux kernel. Nearly
every kernel component is initialized by this function; we mention just a few of
them:

• The page tables are initialized by invoking the paging_init() function.
• The page descriptors are initialized by the mem_init() function
• The final initialization of the IDT is performed by invoking trap_init() and
init_IRQ().
• The slab allocator is initialized by the kmem_cache_init() and
kmem_cache_sizes_init() functions.
• The system date and time are initialized by the time_init() function (see
• The kernel thread for process 1 is created by invoking the kernel_thread()
function. In turn, this kernel thread creates the other kernel threads and executes
the /sbin/init program.

 Device Management(Managing I/O Devices)

The aim of this section is to illustrate the overall organization of device drivers in
Linux.

I/O ARCHITECTURE

In order to make a computer work properly, data paths must be provided that let
information flow between CPU(s), RAM, and the score of I/O devices that can be
connected nowadays to a personal computer. These data paths, which are denoted
collectively as the bus, act as the primary communication channel inside the

computer. Several types of buses, such as the ISA, EISA, PCI, and MCA, are
currently in use. In this section we'll discuss the functional characteristics common
to all PC architectures, without giving details about a specific bus type.
In fact, what is commonly denoted as bus consists of three specialized buses:

Data bus

A group of lines that transfers data in parallel. The Pentium has a 64-bit-wide data
bus.

Address bus

A group of lines that transmits an address in parallel. The Pentium has a 32-bit-
wide address bus.

Control bus

A group of lines that transmits control information to the connected circuits. The
Pentium makes use of control lines to specify, for instance, whether the bus is used
to allow data transfers between a processor and the RAM or alternatively between
a processor and an I/O device. Control lines also determine whether a read or a
write transfer must be performed. When the bus connects the CPU to an I/O
device, it is called an I/O bus. In this case, Intel 80x86 microprocessors use 16 out
of the 32 address lines to address I/O devices and 8, 16, or 32 out of the 64 data
lines to transfer data. The I/O bus, in turn, is connected to each I/O Understanding
the Linux Kernel 344 device by means of a hierarchy of hardware components
including up to three elements: I/O ports, interfaces, and device controllers.
architecture.

