

I/O Ports

Each device connected to the I/O bus has its own set of I/O addresses, which are
usually called I/O ports. In the IBM PC architecture, the I/O address space
provides up to 65,536 8-bit
I/O ports. Two consecutive 8-bit ports may be regarded as a single 16-bit port,
which must start on an even address. Similarly, two consecutive 16-bit ports may
be regarded as a single 32-bit port, which must start on an address that is a multiple
of 4. Four special assembly language instructions called in, ins, out, and outs allow
the CPU to read from and write into an I/O port. While executing one of these
instructions, the CPU makes use of the address bus to select the required I/O port
and of the data bus to transfer data between a CPU register and the port. I/O ports
may also be mapped into addresses of the physical address space: the processor is
then able to communicate with an I/O device by issuing assembly language
instructions that operate directly on memory (for instance, mov, and, or, and so
on). Modern hardware devices tend to prefer mapped I/O, since it is faster and can
be combined with DMA.

An important objective for system designers is to offer a unified approach to I/O
programming without sacrificing performance. Toward that end, the I/O ports of
each device are structured into a set of specialized registers. The CPU writes into
the control register the commands to be sent to the device and reads from the
status register a value that represents the internal state of the device. The CPU also
fetches data from the device by reading bytes from the input register and pushes
data to the device by writing bytes into the output register.

Associating Files with I/O Devices

UNIX-like operating systems are based on the notion of a file, which is just an
information container structured as a sequence of bytes. According to this
approach, I/O devices are treated as files; thus, the same system calls used to
interact with regular files on disk can be used to directly interact with I/O devices.
As an example, the same write() system call may be used to write data into a
regular file, or to send it to a printer by writing to the /dev/lp0 device file. Let's
now examine in more detail how this schema is carried out.

 Device Files

Device files are used to represent most of the I/O devices supported by Linux.
Besides its name, each device file has three main attributes:

Type

Either block or character.

Major number

A number ranging from 1 to 255 that identifies the device type. Usually, all device
files having the same major number and the same type share the same set of file
operations, since they are handled by the same device driver.

Minor number

A number that identifies a specific device among a group of devices that share the
same major number. The mknod() system call is used to create device files. It
receives the name of the device file, its type, and the major and minor numbers as
parameters. The last two parameters are merged in a 16-bit dev_t number: the eight
most significant bits identify the major number, while the remaining ones identify
the minor number. The MAJOR and MINOR macros extract the two values from
the 16-bit number, while the MKDEV macro merges a major and minor number
into a 16-bit number. Actually, dev_t is the data type specifically used by
application programs; the kernel uses the kdev_t data type. In Linux 2.2 both types
reduce to an unsigned short integer, but kdev_t will become a complete device file
descriptor in some future Linux version.
Device files are usually included in the /dev directory. The following illustrates the
attributes of some device files. Notice how the same major number may be used to
identify both a character and a block device.

Name Type Major Minor Description

/dev/fd0 block 2 0 Floppy disk
/dev/hda block 3 0 First IDE disk
/dev/hda2 block 3 2 Second primary partition of first IDE disk
/dev/hdb block 3 64 Second IDE disk
/dev/hdb3 block 3 67 Third primary partition of second IDE disk
/dev/ttyp0 char 3 0 Terminal
/dev/console char 5 1 Console

/dev/lp1 char 6 1 Parallel printer
/dev/ttyS0 char 4 64 First serial port
/dev/rtc char 10 135 Real time clock
/dev/null char 1 3 Null device (black hole)

Usually, a device file is associated with a hardware device, like a hard disk (for
instance,
/dev/hda), or with some physical or logical portion of a hardware device, like a
disk partition
(for instance, /dev/hda2). In some cases, however, a device file is not associated to
any real hardware device, but represents a fictitious logical device. For instance,
/dev/null is a device
file corresponding to a "black hole": all data written into it are simply discarded,
and the file appears always empty. As far as the kernel is concerned, the name of
the device file is irrelevant. If you created a device file named /tmp/disk of type
"block" with major number 3 and minor number 0, it would be equivalent to the
/dev/hda device file shown in the table. On the other hand, device filenames may
be significant for some application programs. As an example, a communication
program might assume that the first serial port is associated with the /dev/ttyS0
device file. But usually most application programs can be configured to interact
with arbitrarily named device files.

File System Management

The Second Extended File system (Ext2) is native to Linux and is used on virtually
every Linux system, Furthermore, Ext2 illustrates a lot of good practices in its
support for modern file system features with fast performance.
General Characteristics Each Unix-like operating system makes use of its own file
system. Although all such file systems comply with the POSIX interface, each of
them is implemented in a different way.

The first versions of Linux were based on the Minix filesystem. As Linux matured,
the Extended Filesystem (Ext FS) was introduced; it included several significant
extensions but offered unsatisfactory performance. The Second Extended
Filesystem (Ext2) was introduced in 1994: besides including several new features,
it is quite efficient and robust and has become the most widely used Linux
filesystem.

The following features contribute to the efficiency of Ext2:

• When creating an Ext2 filesystem, the system administrator may choose the
optimal block size (from 1024 to 4096 bytes), depending on the expected average
file length.

For instance, a 1024 block size is preferable when the average file length is smaller
than a few thousand bytes because this leads to less internal fragmentation—that is,
less of a mismatch between the file length and the portion of the disk that stores it.
On the other hand, larger block sizes are usually preferable for files greater than a
few thousand bytes because this leads to fewer disk transfers, thus reducing
system overhead.

• When creating an Ext2 filesystem, the system administrator may choose how
many inodes to allow for a partition of a given size, depending on the expected
number of files to be stored on it. This maximizes the effectively usable disk space.

• The file system partitions disk blocks into groups. Each group includes data
blocks and inodes stored in adjacent tracks. Thanks to this structure, files stored in
a single block group can be accessed with a lower average disk seek time.

• The filesystem preallocates disk data blocks to regular files before they are
actually used. Thus, when the file increases in size, several blocks are already
reserved at physically adjacent positions, reducing file fragmentation.

• Fast symbolic links are supported. If the pathname of the symbolic link has 60
bytes or less, it is stored in the inode and can thus be translated without reading a
data block.

Disk Data Structures

Figure 2 Layouts of an Ext2 partition and of an Ext2 block group

The first block in any Ext2 partition is never managed by the Ext2 filesystem, since
it is reserved for the partition boot sector. The rest of the Ext2 partition is split
into block groups , each of which has the layout shown in Figure 2. As you will
notice from the figure, some data structures must fit in exactly one block while
others may require more than one block. All the block groups in the filesystem
have the same size and are stored sequentially, so the kernel can derive the location
of a block group in a disk simply from its integer index. Block groups reduce file
fragmentation, since the kernel tries to keep the data blocks belonging to a file in
the same block group if possible. Each block in a block group contains one of the
following pieces of information:

• A copy of the filesystem's superblock
• A copy of the group of block group descriptors
• A data block bitmap
• A group of inodes
• An inode bitmap
• A chunk of data belonging to a file; that is, a data block

If a block does not contain any meaningful information, it is said to be free.

Superblock
An Ext2 disk superblock is stored in an ext2_super_block structure. The __u8,
__u16, and __u32 data types denote unsigned numbers of length 8,
16, and 32 bits respectively, while the __s8, __s16, __s32 data types denote signed
numbers of length 8, 16, and 32 bits. The s_inodes_count field stores the number
of inodes, while the s_blocks_count field stores the number of blocks in the Ext2
filesystem. The s_log_block_size field expresses the block size as a power of 2,
using 1024 bytes as the unit. Thus, denotes 1024-byte blocks, 1 denotes 2048-byte
blocks, and so on. These_log_frag_size field is currently equal to
s_log_block_size, since block fragmentation is not yet implemented. The
s_blocks_per_group, s_frags_per_group, and s_inodes_per_group fields store the
number of blocks, fragments, and inodes in each block group, respectively. Some
disk blocks are reserved to the superuser (or to some other user or group of users
selected by the s_def_resuid and s_def_resgid fields). These blocks allow the
system administrator to continue to use the filesystem even when no more free
blocks are available for normal users. The s_mnt_count, s_max_mnt_count,
s_lastcheck, and s_checkinterval fields set up the Ext2 filesystem to be checked
automatically at boot time. These fields cause /sbin/e2fsck to run after a predefined

number of mount operations has been performed, or when a predefined amount of
time has elapsed since the last consistency check. (Both kinds of checks can be
used together.) The consistency check is also enforced at boot time if the
filesystem has not been cleanly unmounted (for instance, after a system crash) or
when the kernel discovers some errors in it. The s_state field stores the value if the
filesystem is mounted or was not cleanly unmounted, 1 if it was cleanly
unmounted, and 2 if it contains errors.

Group Descriptor And Bitmap

Each block group has its own group descriptor, an ext2_group_desc structure
The bg_free_blocks_count, bg_free_inodes_count, and bg_used_dirs_count fields
are used when allocating new inodes and data blocks. These fields determine the
most suitable block in which to allocate each data structure. The bitmaps are
sequences of bits, where the value specifies that the corresponding inode or data
block is free and the value 1 specifies that it is used. Since each bitmap must be
stored inside a single block and since the block size can be 1024, 2048, or 4096
bytes, a single bitmap describes the state of 8192, 16,384, or 32,768 blocks.

CHAPTER THREE – SOLARIS OPERATING SYSTEM

 HISTORY

The history of Solaris, a Unix-based operating system developed by Sun

Microsystems, displays that company's ability to be innovative and flexible. Solaris

was introduced in the year 1987 out of an alliance between AT&T and Sun

Microsystems to combine the leading Unix versions (BSD, XENIX, and System V)

into one operating system.In 1991, Sun replaced it's existing Unix operating system

(SunOS 4) with one based on SVR4. This new OS, Solaris 2, contained many new

advances, including use of the Open Windows graphical user interface, NIS+,

Open Network Computing (ONC) functionality, and was specially tuned for

symmetric multiprocessing.

This kicked off Solaris' history of constant innovation, with new versions of Solaris

being released almost annually over the next fifteen years. Sun was constantly

striving to stay ahead of the curve, while at the same time adapting Solaris to the

existing, constantly evolving wider computing world. The catalogue of innovations

in the Solaris OS are too numerous to list here, but a few milestones are worth

mentioning.

 Solar 2.5.1 in 1996 added CDE, the NFSv3 file system and NFS/TCP,

expanded user and group IDs to 32 bits, and included support for the

Macintosh PowerPC platform.

 Solaris 2.6 in 1997 introduced WebNFS file system, Kerberos 5 security

encryption, and large file support to increase Solaris' internet performance.

 Solaris 2.7 in 1998 (renamed just Solaris 7) included many new advances,

such as native support for file system meta-data logging (UFS logging). It

was also the first 64-bit release, which dramatically increased its

performance, capacity, and scalability.

 Solaris 8 in 2000 took it a step further was the first OS to combine

datacenter and dot-com requirements, offering support for IPv6 and IPSEC,

Multipath I/O, and IPMP.

 Solaris 9 in 2002 saw the writing on the wall of the server market, dropped

OpenWindows in favour of Linux compatibility, and added a Resource

Manager, the Solaris Volume Manager, extended file attributes, and the

iPlanet Directory Server.

 Solaris 10, the current version, was released to the public in 2005 free of

charge and with a host of new developments. The latest advances in the

computing world are constantly being incorporated in new versions of

Solaris 10 released every few months.

To mention just a few, Solaris features more and more compatibility with Linux

and IBM systems, has introduced the Java Desktop System based on GNOME,

added Dynamic Tracing (Dtrace), NFSv4, and later the ZFS file system in 2006.

Also in 2006, Sun set up the OpenSolaris Project. Within the first year, the

OpenSolaris community had grown to 14,000 members with 29 user groups

globally, working on 31 active projects. Although displaying a deep commitment

to open-source ideals, it also provides Sun with thousands of developers essentially

working for free.

 SOLARIS PROCESSES

The process is one of the fundamental abstractions of Unix. Every object in Unix is

represented as either a file or a process(with the introduction of the /proc structure,

there has been an effort to represent even processes as files). Processes are usually

created with forkor a less resource alternative such as fork1 or

vfork.forkduplicates the entire process context, while fork1 only duplicates the

context of the calling thread. This can be useful for example, when execwill be

called shortly.

Solaris like other UNIX systems, provide two modes of operation: user mode and

kernel (or system mode). Kernel mode is a more privileged mode of operation.

Processes can be executed in either mode, but user processes usually operate in

user mode.

 SOLARIS PROCESS SCHEDULING

In Solaris, highest priorities are scheduled first. Kernel thread scheduling

information can be revealed with ps –elcL. A process can exist in one of the

following states:

 Running

 Sleeping

 Ready

 KERNEL THREADS MODEL

The kernel threads model consist of the following objects:

 Kernel threads – this is what is scheduled/executed on a processor

 User threads – the user-level thread state within a process

 Process - the object that tracks the execution environment of a program

 Lightweight process (lwp) – Execution context for a user tread. It

associates a user thread with a kernel thread.

In Solaris 10 kernel, kernel services and tasks are executed as kernel threads. When

a user thread is created, the associated lwp and kernel threads are also created and

linked to the user thread.

KERNEL THREADS MODEL

An application's parallelism is the degree of parallel execution achieved.This is

limited by the number of processors available in the hardware configuration.

Concurrency is the maximum achievable parallelism in a theoretical machine that

has an unlimited number of processors.

Threads are frequently used to increase an application's concurrency. A thread

represents a relatively independent set of instructions within a program. A thread is

a control point within a process. It shares global resources within the context of the

process (address space, open files, user credentials, quotas, etc). Threads also have

private resources (program counter, stack, register context, etc).

The main benefit of threads (as compared to multiple processes) is that the context

switches are much cheaper than those required to change current processes. Even

within a single-processor environment, multiple threads are advantageous because

one thread may be able to progress even though another thread is blocked while

waiting for a resource. Inter-process communication also takes considerably less

time for threads than for processes, since global data can be shared instantly.

The kernel threads model consist of the following objects:

 Kernel threads – this is what is scheduled/executed on a processor

 User threads – the user-level thread state within a process

 Process - the object that tracks the execution environment of a program

 Lightweight process (lwp) – Execution context for a user tread. It

associates a user thread with a kernel thread.

In Solaris 10 kernel, kernel services and tasks are executed as kernel threads. When

a user thread is created, the associated lwp and kernel threads are also created and

linked to the user thread.

Kernel Threads

A kernel thread is the entity that is scheduled by the kernel. If no lightweight

process is attached, it is also known as a system thread. It uses kernel text and

global data, but has its own kernel stack, as well as a data structure to hold

scheduling and synchronization information.

Kernel threads can be independently scheduled on CPUs. Context switching

between kernel threads is very fast because memory mappings do not have to be

flushed.

Lightweight Processes

A lightweight process can be considered as the swappable portion of a kernel

thread.Another way to look at a lightweight process is to think of them as "virtual

CPUs" which perform the processing for applications. Application threads are

attached to available lightweight processes, which are attached to a kernel thread,

which is scheduled on the system's CPU dispatch queue. LWPs can make system

calls and can block while waiting for resources. All LWPs in a process share a

common address space. IPC (inter-process communication) facilities exist for

coordinating access to shared resources.

By default, one LWP is assigned to each process; additional LWPs are created if

all the process's LWPs are sleeping and there are additional user threads that

libthread can schedule. The programmer can specify that threads are bound to

LWPs.

User Threads

User threads are scheduled on their LWPs via a scheduler in libthread. This

scheduler does implement priorities, but does not implement time slicing. If time

slicing is desired, it must be programmed in. Locking issues must also be carefully

considered by the programmer in order to prevent several threads from blocking on

a single resource.

Each thread has the following characteristics:

 Has its own stack.

 Shares the process address space.

 Executes independently (and perhaps concurrently with other threads).

 Completely invisible from outside the process.

 Cannot be controlled from the command line.

 No system protection between threads in a process; the programmer is

responsible for interactions.

 Can share information between threads without IPC overhead.

 PRIORITY MODEL

The Solaris kernel is fully preemptible. This means that all threads, including the

threads that support the kernel’s own activities can be deferred to allow a higher-

priority thread to run.

Solaris recognizes 170 different priorities, 0-169. Within these priorities fall a

number of different scheduling classes:

 TS (Timeshare): This is the default class for processes and their associated

kernel threads. Priorities falling within this class range 0-59 and are

dynamically adjusted in an attempt to allocate processor resources evenly.

 IA (Interactive): This is an enhanced version of the TS class that applies to

the in-focus window in the GUI. Its intent is to give extra resources to

processes associated with that specific window. Like TS, IA’s range is 0-59.

 FSS (Fair-share scheduler): This class is share-based rather than priority-

based. Threads managed by FSS are scheduled based on their associated

shares and the processor’s utilization. FSS also has a range 0-59.

 FX (Fixed-priority): The priorities for threads associated with this class are

fixed (in other words, they do not vary dynamically over the lifetime of the

thread). FX also has a range 0-59.

 SYS (system): The SYS class is used to schedule kernel threads. Threads in

this class are “bound” threads, which mean that they run until they block or

complete. Priorities for SYS threads are in the 60-99 range.

 RT (Real-time): Threads in the RT class are fixed-priority, with a fixed

time quantum. Their priorities range 100-159, so an RT thread will preempt

a system thread. Of these, FSS and FX were implemented in Solaris 9.

Fair Share Scheduler

The default Timesharing (TS) scheduling class in Solaris attempts to allow each

process on the system to have relatively equal CPU access. The nice command

allows some management of process priority, but the new Fair Share Scheduler

(FSS) allows more flexible process priority management that integrates with the

project framework. Each project is allocated a certain number of CPU shares via

the project. CPU-shares resource control and each project is allocated CPU time

based on its CPU-shares value divided by the sum of the CPU-shares values for all

active projects. Anything with a zero CPU-shares value will not be granted CPU

time until all projects with non-zero CPU-shares are done with the CPU. The

maximum number of shares that can be assigned to any one project is 65535.

FSS can be assigned to processor sets, resulting in more sensitive control of

priorities on a server than raw processor sets.

The Fair Share Scheduler should not be combined with the TS, FX (fixed-priority)

or IA (interactive) scheduling classes on the same CPU or processor set. All of

these scheduling classes use priorities in the same range, so unexpected behavior

can result from combining FSS with any of these. (There is no problem, however,

with running TS and IA on the same processor set.)

Time Slicing for FSS

In FSS, the time quantum is the length of time that a thread is allowed to run

before it has to release the processor. The QUANTUM is reported in ms. (The

output of the above command displays the resolution in the RES parameter. The

default is 1000 slices per second.

Fixed Priority Scheduling

FX scheduler sets policy scheduling for processes used by applications and users.

These processes are fixed. For example, priocnt1 and dispadminare two utilities

that control the Fixed-Priority Scheduling. The FX class is the same priority as the

FSS, IA, and TS classes.

 THE SOLARIS BOOTUP AND SHUTDOWN

The Solaris Boot process is made up of four phases and is illustrated in the figure

below:

FIG. 1 SOLARIS BOOTUP PHASES

Boot PROM Phase: The hardware tests and initializes itself

Boot Programs Phase: The initial boot programs are loaded into the memory.

Kernel Phase: The kernel loads itself and its modules into memory and then

unloads the boot programs from memory.

Init Phase: The init process is started by the kernel. The initprocess then executes

the run control scripts.

Phase 1: The Boot PROM Phase

During this phase of the boot up, the system first powers up and checks itself. On

the PROM chip is a program known as the monitor program. This program is used

for initial system tests and diagnostics. It tests the system’s memory, CPU and

Boot PROM Phase

Boot Programs Phase

Kernel Phase

Init Phase

mother board. It does not test all devices attached to the server, only the server’s

main components.

If a third-party device is attached to anSBus controller, the device driver is then

loaded from a firmware chip on the device (some manufacturers don’t include

device drivers on the hardware itself). If the open boot variable diag-level is set to

max and the variable diag-switchis set to truethe system will perform extensive

diagnostics during the power on self test. The banner information looks like the

figure below:

Sun blade 100 (UltraSPARC-IIe) Keyboard present

OpenBoot 4.0, 128MB memory installed, Serial #50632835.

Ethernet Address 0:3:ba:2:c2:3d, Host ID: 8323c12b.

FIG. 2 Output from the banner command.

After the power on self test is complete, the boot process stops at the O.K prompt

or continues to boot the Solaris operating system. This depends on the value of the

OpenBootauto-boot? variable:

 If the auto-boot variable is set to true, the system boots the device specified

in the boot-device variable. The default boot device OpenBoot value on

most system is the disk or disk:a. A second boot device (net) can be also be

specified. If for some reason the first boot device does not work, the second

boot device is tried.

 If the auto-boot?variable is set to false the system stops at the OK prompt.

Phase 2: Boot Program Phase

This phase starts when the system has checked itself and starts to load the bootblk

program from the boot device. The bootblkprogram is a smallsection of code on

the first sector of the first track of the first drive of the hard drive or tape device.

When bootblk runs, it shows a message like

Fcode UFS Reader 1.12 00/07/17 15:48:16

Bootblkhas only one function. It loads theufsboot program into the memory and

then dies. When the Fcode UFS Reader …bootblkhas done its work. The

following message should now appear:

Loading: /platform/SUNW,Sun-Blade-100/ufsboot

Loading :/platform/sun4u/ufsboot

The ufsboot program loads the kernel into memory. After the program is loaded

into memory, the ufsboot program dies.

It is important that a system administrator understand what is happening with the

ufsbootprogram and the bootblk program. If the system messages shown above do

not appear, the server may be dead or something may be wrong with these two

programs, which will then need to be reloaded or repaired.

Phase 3: Kernel Phase

This phase starts when the initial boot programs bootblk and ufsboothave been

loaded and the kernel is now starting to load. The kernel can be thought as the core

program that defines the Solaris operating. The kernel uses the ufsbootprogram to

read kernel modules into memory. A kernel module can be thought of as a dynamic

piece of software code. Only the modules that are needed are loaded into the

kernel. This makes the kernel faster and more efficient than if it always had to load

all its modules into memory. After enough modules are loaded into memory, the

ufsboot program dies.

When the front slash symbol (/) starts to swirl, the kernel is starting to load. The

SunOS Release is now also shown. This indicates that the boot device is booting

and working. If there are any further problems with the boot process, they will

most likely be caused by an error in a run control script.

Phase 4: The Init Phase
The init phase starts after the kernel has loaded itself and its modules into memory.

The schedprocess is the first process to be loaded. It has a PID (Process

Identification Number) of zero (0), as shown with the ps–efcommand. Thesched

process is responsible for the scheduling policy and priority of processes. After

sched starts up, the process called init is started, with a PID of one (1). The innit

process reads a text file /etc/innittab. Among other things, this file defines the

default run level and controls how the init process calls up and executes run control

scripts.

 MEMORY MANAGEMENT

 The process Memory Usage

The /usr/proc/bin/pmap command is available in Solaris 2.6 and above. It

can help pin down which process is memory hog. /usr/proc/bin/pmap –x

PID prints out details of memory use by a process. Summary statistics

regarding process size can be found in the RSS column of ps – ly or top.

dbx, the debugging utility in the SunPro package, has extensive memory

leak detection built in. The source code will need to be compiled with the –g

flag by the appropriate SunPro compiler. Ipcs –mb shows memory statistics

for shared memory. This may be useful when attempting to size memory to

fit expected traffic.

 Swap Space

The Solaris virtual memory system combines physical memory with

available swap space via swapfs. If insufficient total virtual memory space is

provided, new processes will be unable to open.

 Paging

Solaris uses both common types of paging in its virtual memory system.

These types are:

o Swapping(swaps out all memory associated with a user process) and

o Download paging (swaps out the not recently used pages)

Which method is used is determined by comparing the amount of available

memory with several key parameters

 Solaris 8 Paging

Solaris 8 uses a different algorithm for removing from memory. This new

architecture is known as the cyclical page cache. The cyclical page cache

uses a file system free list to cache file system data only. Other memory

objects are managed on a separate free list

 SECURITY

File Integrity and Secure Execution

System administrators can detect possible attacks on their systems by monitoring

for changes to file information. In the Solaris 10 OS, binaries are digitally signed,

so administrators can track changes easily, and all patches or enhancements are

embedded with digital signatures, eliminating the false positives associated with

upgrading or patching file integrity-checking software.

User and Process Rights Management

In traditional UNIX platform-based operating systems, applications and users often

need administrative access to perform their jobs. However, most implementations

offer just one level of higher privilege: root or superuser. This means that any user

or application given root access has the ability to make major changes to the

operating system—and is typically the target of hacking attempts. The Solaris 10

OS offers unique User Rights Management (also known as role-based access

control, or RBAC) and Process Rights Management (also known as privileges)

Network Service Protection

The Solaris 10 OS ships with Solaris IP Filter firewall software preinstalled. This

integrated firewall can reduce the number of network services that are exposed to

attack and provides protection against maliciously crafted networking packets.

Starting in Solaris 10 8/07, the IP Filter firewall can also filter traffic flowing

between Solaris Containers when it is configured in the Global Zone. In addition,

TCP Wrappers are integrated into the Solaris 10 OS, limiting access to service-

based allowed domains.

Cryptographic Services and Encrypted Communication

For high-performance, system-wide cryptographic routines, the Solaris

Cryptographic Framework adds a standards-based, common API that provides a

single point of administration and uniform access to both software and hardware-

accelerated, cryptographic functions. The pluggable Solaris Cryptographic

Framework can balance loads across accelerators, increasing encrypted network

traffic throughput, and it is available to applications written to use Public Key

Cryptography Standards (PKCS) #11, Sun Java Enterprise System, NSS,

OpenSSL, and Java Cryptographic Extension software.

Flexible Enterprise Authentication

The Solaris 10 OS delivers a number of flexible authentication features. At the

foundation of Solaris is support for Pluggable Authentication Mechanism (PAM),

which make it possible to add authentication services to Solaris dynamically. Sun

and third-party vendors provide many PAM modules and customers can create

their own to meet specific security needs.

Repeatable Security Hardening and Monitoring

New features in the Solaris 10 OS make it easier than ever to minimize and harden

a system. The Reduced Networking Metacluster install option creates a minimized

Solaris OS image, ready for administrators to add functionality and services in

direct support of their system's purpose.

Mandatory Access Control and Labeling

If your system requirements include privacy, increased accountability, and reduced

risk of security violations, then Solaris Trusted Extensions is for you. A standard

part of Solaris, true multi-level security is available for the first time in a

commercial-grade operating system that runs all your existing applications and is

supported on over 1,200 x64/x86 and SPARC platforms.

 WEAKNESS AND STRENGHT

A security weakness in Solaris Trusted Extensions Policy configuration may allow

a remote unprivileged user who has authorized or unauthorized access to the X

server, to leverage an additional vulnerability which could lead to arbitrary code

execution as a local privileged or unprivileged user.

Sun has acknowledged a weakness in Pidgin on Solaris, which can be exploited by

malicious people to cause a DoS (Denial of Service).

 CONCLUSION

The development of the Solaris OS demonstrates Sun Microsystems' ability to be

on the cutting edge of the computing world without losing touch with the current

computing environment. Sun regularly releases new versions of Solaris

incorporating the latest development in computer technology, yet also included

more cross-platform compatibility and incorporating the advances of other

systems. The OpenSolaris project is the ultimate display of these twin strengths-

Sun has tapped into the creative energy of developers across the world and receives

instant feedback about what their audience wants and needs. If all software

companies took a lesson from Sun, imagine how exciting and responsive the

industry could be.

CHAPTER 4 : MS-DOS

1.0 INTRODUCTION

MS DOS is an acronym that stands for MicroSoft Disk Operating System. It is
often referred to as DOS. It is an old operating system for x86-based personal
computers, purchased by Microsoft that manages everything on your computer:
hardware, memory, files. It is an operating system that existed prior to Windows.
MS-DOS was the most commonly used member of the DOS family of operating
systems, and was the main operating system for personal computers during the
1980s up to mid 1990s. It was preceded by M-DOS (also called MIDAS), designed
and copyrighted by Microsoft in 1979. MSDOS was written for the Intel 8086
family of microprocessors, particularly the IBM PC and compatibles. It was
gradually replaced on consumer desktop computers by operating systems offering
a graphical user interface (GUI), in particular by various generations of the
Microsoft Windows operating system. MS-DOS developed out of QDOS (Quick
and Dirty Operating System), also known as 86-DOS. DOS, as with any operating
system, controls computer activity. It manages operations such as data flow,
display, data entry amongst other various elements that make up a system.
The role of DOS is to interpret commands that the user enters via the keyboard.
These commands allow the following tasks to be executed:
� file and folder management
� disk upgrades
� hardware configuration
� memory optimization
� program execution

These commands are typed after the prompt, in the case of MS-DOS (Microsoft
DOS, the most well known): the drive letter followed by a backslash, for example:
A:\ or C:\. And after them, the enter key. The files that make up DOS involves:
IO.SYS : This is a program to handle input/output to your peripheral devices. It
stays in memory when you run applications programs

MSDOS.SYS: This is a program for application programs to use. It contains
special subprograms to make many commonly needed operations easy for
programmers. COMMAND.COM : This program accepts the commands you enter
and runs the right program. CONFIG.SYS: Configures the hardware environment
Mouse , Printer, Keyboard , Country codes (time, date, currency),other devices and
system commands AUTOEXEC.BAT: Programs/commands to be run at system

start Batch file (automatically executing set of programs/commands) IO.SYS and
MSDOS are loaded into the PC memory by a special program called a boot record
each time you start up DOS . The command used to initialize new disks with
DOS,FORMAT/S puts this on the disk along with IO.SYS and MSDOS.SYS

2.0 HISTORY

MS-DOS (Microsoft Disk Operating System) is a single-user, single-tasking
computer operating system that uses a command line interface. In spite of its very
small size and relative simplicity, it is one of the most successful operating systems
that have been developed to date.

A Quick and Dirty History

When IBM launched its revolutionary personal computer, the IBM PC, in August
1981, it came complete with a 16-bit operating system from Microsoft, MS-DOS
1.0. This was Microsoft's first operating system, and it also became the first widely
used operating system for the IBM PC and its clones. MS-DOS 1.0 was actually a
renamed version of QDOS (Quick and Dirty Operating System), which Microsoft
bought from a Seattle company, appropriately named Seattle Computer Products,
in July 1981. QDOS had been developed as a clone of the CP/M eight-bit operating
system in order to provide compatibility with the popular business applications of
the day such as WordStar and dBase. CP/M (Control Program for
Microcomputers) was written by Gary Kildall of Digital Research several years
earlier and had become the first operating system for microcomputers in general
use.

QDOS was written by Tim Paterson, a Seattle Computer Products employee, for
the new Intel 16-bit 8086 CPU (central processing unit), and the first version was
shipped in August, 1980. Although it was completed in a mere six weeks, QDOS
was sufficiently different from CP/M to be considered legal. Paterson was later
hired by Microsoft. Microsoft initially kept the IBM deal a secret from Seattle
Computer Products. And in what was to become another extremely fortuitous
move, Bill Gates, the not uncontroversial cofounder of Microsoft, persuaded IBM
to let his company retain marketing rights for the operating system separately from
the IBM PC project. Microsoft renamed it PC-DOS (the IBM version) and MS-
DOS (the Microsoft version). The two versions were initially nearly identical, but
they eventually diverged.

The acronym DOS was not new even then. It had originally been used by IBM in
the 1960sin the name of an operating system (i.e., DOS/360) for its System/360
computer. At that time the use of disks for storing the operating system and data
was considered cutting edge technology. Until its acquisition of QDOS, Microsoft
had been mainly a vendor of computer programming languages. Gates and co-
founder Paul Allen had written Microsoft BASIC and were selling it on disks and
tape mostly to PC hobbyists.

MS-DOS soared in popularity with the surge in the PC market. Revenue from its
sales fuelled Microsoft's phenomenal growth, and MS-DOS was the key to
company's rapid emergence as the dominant firm in the software industry. This
product continued to be the largest single contributor to Microsoft's income well
after it had become more famous for Windows. Subsequent versions of MS-DOS
featured improved performance and additional functions, not a few of which were
copied from other operating systems. For example, version 1.25, released in 1982,
added support for double-sided disks, thereby eliminating the need to manually
turn the disks over to access the reverse side.

Version 2.0, released the next year, added support for directories, for IBM's then
huge 10MB hard disk drive (HDD) and for 360KB, 5.25-inch floppy disks. This
was followed by version 2.11 later in the same year, which added support for
foreign and extended characters. Version 3.0 launched in 1984, added support for
1.2MB floppy disks and 32MB HDDs. This was soon followed by version 3.1,
which added support for networks. Additions and improvements in subsequent
versions included support for multiple HDD partitions, for disk compression and
for larger partitions as well as an improved diskchecking utility, enhanced memory
management, a disk defragmenter and an improved text editor.

The final major version was 7.0, which was released in 1995 as part of Microsoft
Windows 95. It featured close integration with that operating system, including
support for long filenames and the removal of numerous utilities, some of which
were on the Windows 95 CDROM. It was revised in 1997 with version 7.1, which
added support for the FAT32 file system on HDDs.

3.0 OPERATING SYSTEM FUNCTIONS

3.1 SCHEDULING
Scheduling is a key concept in computer multitasking, multiprocessing operating
system and real-time operating system designs. Scheduling refers to the way
processes are assigned to run on the available CPUs, since there are typically many

more processes running than there are available CPUs. This assignment is carried
out by software’s known as a scheduler and dispatcher.
Objectives of a scheduler

� CPU utilization - to keep the CPU as busy as possible.
� Throughput - number of processes that complete their execution per time unit.
� Turnaround - total time between submission of a process and its completion.
� Waiting time - amount of time a process has been waiting in the ready queue.
� Response time - amount of time it takes from when a request was submitted ntil
the first response is produced.
� Fairness - Equal CPU time to each thread.

But MS-DOS is non-multitasking, and as such did not feature a scheduler. MS-
DOS was not designed to be a multi-user or multitasking operating system, but
many attempts were made to retrofit these capabilities. Since it does not perform
scheduling functions, when you run a sub process synchronously on MS-DOS,
make sure the program terminates and does not try to read keyboard input. If the
program does not terminate on its own, you will be unable to terminate it, because
MS-DOS provides no general way to terminate a process. Pressing “ctrl C” or `C-
<BREAK>' might
sometimes help in these cases.
Group C Page 6

3.2 MEMORY MANAGEMENT

MS-DOS Memory Management Functions

� Provide students with a brief overview of memory management in the MS-DOS
operating system. Mention that to run a second job, the user must close or pause
the first file before opening the second.

� Point out that the Memory Manager uses a first-fit memory allocation scheme in
early DOS versions because it is the most efficient strategy in a single-user
environment.

� Discuss briefly the two forms of main memory, ROM and RAM. MS-DOS
provides three memory management functions- allocate, deallocate, and resize
(modify). For most programs, these three memory allocation calls are not
used.When DOS executes a program, it gives all of the available memory, from the
start of that program to the end of RAM, to the executing process. Any attempt to

allocate memory without first giving unused memory back to the system will
produce an “insufficient memory” error.

ALLOCATE MEMORY

Function (ah): 48h
Entry parameters: bx- Requested block size (in paragraphs)
Exit parameters: If no error (carry clear):
ax:0 points at allocated memory block
If an error (carry set):
bx- maximum possible allocation size
ax- error code (7 or 8)
This call is used to allocate a block of memory. On entry into DOS, bx contains the
size of the requested block in paragraphs (groups of 16 bytes). On exit, assuming
no error, the ax register contains the segment address of the start of the allocated
block. If an error occurs, the block is not allocated and the ax register is returned
containing the error code.
If the allocation request failed due to insufficient memory, the bx register is
returned containing the maximum number of paragraphs actually available.
Group C Page 7

DEALLOCATE MEMORY

Function (ah): 49h
Entry parameters: es:0- Segment address of block to be deallocated
Exit parameters: If the carry is set, ax contains the error code (7,9)
This call is used to deallocate memory allocated via function 48h above. The es
register cannot contain an arbitrary memory address. It must contain a value
returned by the allocate memory function. You cannot use this call to deallocate a
portion of an allocated block. The modify allocation function is used for that
operation.

MODIFY MEMORY ALLOCATION

Function (ah): 4Ah
Entry parameters: es:0- address of block to modify allocation size
bx- size of new block
Exit parameters: If the carry is set, then
ax contains the error code 7, 8, or 9
bx contains the maximum size possible (if error 8)

This call is used to change the size of an allocated block. On entry, es must contain
the segment address of the allocated block returned by the memory allocation
function. Bx must contain the new size of this block in paragraphs. While you can
almost always reduce the size of a block, you cannot normally increase the size of
a block if other blocks have been allocated after the block being modified. Keep
this in mind when using this function.
Group C Page 8

3.3 FILE SYSTEM

Before we go any further, it would be a good idea to look at the DOS file system.
The file system lets us store information in named files. You can call a file
anything you like which might help you remember what it contains as long as you
follow certain basic rules:

1. File names can be up to 8 characters long. You can use letters and digits but only
a few punctuation marks (! $ % # ~ @ - () _ { }). You can't exceed 8 characters or
use spaces or characters like * or ? or +. Names are case-insensitive, i.e. it doesn't
matter whether you use capitals or lowercase letters; "A" and "a" are treated as the
same thing.
2. File names can also have an extension of up to three characters which describes
the type of file. There are some standard extensions, but you don't have to use
them.
Examples include COM and EXE for executable programs, TXT for text files,
BAK
for backup copies of files, or CPP for C++ program files. The extension is
separated by a dot from the rest of the filename.
For example, a file called FILENAME.EXT has an 8-character name
(FILENAME) followed by a three-character extension (.EXT). You could also
refer to it as filename.txt since case doesn't matter, but I'm going to use names in
capitals for emphasis throughout this document. Files are stored in directories; a
directory is actually just a special type of file which holds a list of the files within
it. Since a directory is a file, you can have directories within directories. Directory
names also follow the same naming rules as other files, but although they can have
an extension they aren't normally given one (just an 8-character name). The system
keeps track of your current directory, and if you just refer to a file using a name
like FILENAME.EXT it's assumed you mean a file of that name in the current
directory. You can specify a pathname to identify a file which includes the
directory name as well; the directory is separated from the rest of the name by a
backslash ("\"). For example, a file called LETTER1.TXT in a directory called

LETTERS can be referred to as LETTERS\LETTER1.TXT (assuming that the
current directory contains the LETTERS directory as a subdirectory). If LETTERS
contains a subdirectory called PERSONAL, which in turn contains a file called
DEARJOHN.TXT, you would refer to this file as Group C Page 9

LETTERS\PERSONAL\DEARJOHN.TXT (i.e. look in the LETTERS directory
for PERSONAL\DEARJOHN.TXT, which in turn involves looking in the
PERSONAL subdirectory for the file DEARJOHN.TXT).
Every disk has a root directory which is the main directory that everything else is
part of. The root directory is called "\", so you can use absolute pathnames which
don't depend on what your current directory is. A name like
\LETTERS\LETTER1.TXT always refers to the same file regardless of which
directory you happen to be working in at the time; the "\" at the beginning means
"start looking in the root directory", so \LETTERS\LETTER1.TXT means "look in
the root directory of the disk for a subdirectory called LETTERS, then look in this
subdirectory for a file called LETTER1.TXT". Leaving out the "\" at the beginning
makes this a relative pathname whose meaning is relative to the current directory
at the time. If you want to refer to a file on another disk, you can put a letter
identifying the disk at the beginning of the name separated from the rest of the
name by a colon (":"). For example,

A:\LETTER1.TXT refers to a file called LETTER1.TXT in the root directory of
drive A. DOS keeps track of the current directory on each disk separately, so a
relative pathname like A:LETTER1.TXT refers to a file called LETTER1.TXT in
the currently-selected directory on drive A. For convenience, all directories (except
root directories) contain two special names: "." refers to the directory itself, and ".."
refers to the parent directory (i.e. the directory that contains this one). For example,
if the current directory is \LETTERS\PERSONAL, the name ".." refers to the
directory \LETTERS, "..\BUSINESS" refers to \LETTERS\BUSINESS, and "..\.."
refers to the root directory "\".
Group C Page 10

3.4 PROCESS MANAGEMENT

MS-DOS boot process

