
1
OPERATING SYSTEM II

You can use the Event Viewer utility to track information about your computer’s
hardware and software, as well as to monitor security events. Every Windows XP
computer will show three types of log files (depending on your configuration you
may also have other log files):
System log
Tracks events related to the Windows XP operating system. This log is useful in
troubleshooting Windows XP problems.
Security log
Tracks events related to Windows XP auditing. By default auditing is not enabled.
If you enable security auditing you can select what to track and whether you will
track security success and/or failure events.
Application log
Tracks events related to applications that are running on your computer. For
example, you might see that your e-mail program recorded an error. These errors
are useful in troubleshooting application problems or for developers to fix
application problems.

 INTERRUPT

Interrupts are central to operating systems as they provide an efficient way for the
operating system to interact and react to its environment. The alternative is to have
the operating system "watch" the various sources of input for events (polling) that
require action -- not a good use of CPU resources. Interrupt-based programming is
directly supported by most CPUs. Interrupts provide a computer with a way of
automatically running specific code in response to events. Even very basic
computers support hardware interrupts, and allow the programmer to specify code
which may be run when that event takes place.

When an interrupt is received the computer's hardware automatically suspends
whatever program is currently running, saves its status, and runs computer code
previously associated with the interrupt. This is analogous to placing a bookmark
in a book when someone is interrupted by a phone call and then taking the call. In
Windows operating systems interrupts are handled by the operating system's
kernel. Interrupts may come from either the computer's hardware or from the
running program.
kernel is the core process of a preemptive operating system, consisting of a
multitasking scheduler and the basic security services. Depending on the operating

2
OPERATING SYSTEM II

system, other services such as virtual memory drivers may be built into the kernel.
The kernel is responsible for managing the scheduling of threads and processes.

When a hardware device triggers an interrupt the operating system's kernel decides
how to deal with this event, generally by running some processing code. How
much code gets run depends on the priority of the interrupt (for example: a person
usually responds to a smoke detector alarm before answering the phone). The
processing of hardware interrupts is a task that is usually delegated to software
called device drivers, which may be either part of the operating system's kernel,
part of another program, or both. Device drivers may then relay information to a
running program by various means.

A program may also trigger an interrupt to the Windows operating system. If a
program wishes to access hardware for example, it may interrupt the operating
system's kernel, which causes control to be passed back to the kernel. The kernel
will then process the request. If a program wishes additional resources (or wishes
to shed resources) such as memory, it will trigger an interrupt to get the kernel's
attention.

Interrupt Architecture
The first step in exploring the interrupt architecture of Microsoft® Windows® is
defining an overall model of the hardware, kernel, OAL and thread interactions
during an interrupt. The following diagram is an overall picture of these different
levels of responsibility and the transitions that cause changes of state.

3
OPERATING SYSTEM II

The diagram represents the major transitions during an interrupt with time
increasing to the right of the diagram. The bottom most layer of the diagram is the
hardware and the state of the interrupt controller. The next layer is the kernel
interactions during interrupt servicing. The OAL describes the board support
package (BSP) responsibilities. The top most layer represents the application or
driver thread interactions needed to service an interrupt. The diagram represents
the interactions during a single interrupt; representing the new ability of Windows
to have shared interrupts. The activity starts with an interrupt represented by the
line at the left most section of the chart. An exception is generated causing the
kernel ISR vector to be loaded onto the processor. The kernel ISR interacts with
the hardware disabling all equal and lower priority interrupts on all processors
except for the ARM and Strong ARM architectures. The kernel then vectors to the
OAL ISR that has been registered for that particular interrupt. The OAL ISR then
can either directly handle the interrupt or can use NKCallIntChain to walk a list of
installed ISRs. The main ISR or any of the installed ISRs then performs any work
and returns the mapped interrupt called SYSINTR for that device. If the ISR
determines that its associated device is not causing the interrupt the ISR returns
SYSINTR_CHAIN, which causes NKCallIntChain() to walk the ISR list to the
next interrupt in the chain. The ISRs are called in the order that they were installed
creating a priority on the calling list.

Microsoft has advanced the Windows interrupt architecture. The ability of the OS
to deal with shared interrupts greatly extends the ability of Windows to support
many interrupt architectures. Knowledge of this interrupt architecture greatly
speeds up the investigation times into driver and latency issues. A Windows model
of the operating system interaction is the key to this understanding. Shared
interrupts have greatly increased the openness of Windows supporting the platform
provider and application developer scenarios that are pervasive from company to
company or within companies. Understanding latency sources will help in
diagnosis of driver and real-time issues. The interrupt structure in Windows is well
defined and understandable.

 SECURITY

Security has been a hot topic with Windows for many years, and even Microsoft
itself has been the victim of security breaches.[citation needed] Consumer versions
of Windows were originally designed for ease-of-use on a single-user PC without a
network connection, and did not have security features built in from the outset.

4
OPERATING SYSTEM II

Windows NT and its successors are designed for security (including on a network)
and multi-user PCs, but were not initially designed with Internet security in mind
as much since, when it was first developed in the early 1990s, Internet use was less
prevalent.
These design issues combined with flawed code (such as buffer overflows) and the
popularity of Windows means that it is a frequent target of computer worm and
virus writers.
Microsoft releases security patches through its Windows Update service
approximately once a month (usually the second Tuesday of the month), although
critical updates are made available at shorter intervals when necessary. In
Windows 2000 (SP3 and later), Windows XP and Windows Server 2003, updates
can be automatically downloaded and installed if the user selects to do so.

Use these steps to develop a strong password:

 Think of a sentence that you can remember. This will be the basis of your
strong password or pass phrase. Use a memorable sentence, such as "My son
Aiden is three years old."

 Check if the computer or online system supports the pass phrase directly. If
you can use a pass phrase (with spaces between characters) on your
computer or online system, do so.

 If the computer or online system does not support pass phrases, convert it to
a password. Take the first letter of each word of the sentence that you've
created to create a new, nonsensical word. Using the example above, you'd
get: "msaityo".

 Add complexity by mixing uppercase and lowercase letters and numbers. It
is valuable to use some letter swapping or misspellings as well. For instance,
in the pass phrase above, consider misspelling Aiden's name, or substituting
the word "three" for the number 3. There are many possible substitutions,
and the longer the sentence, the more complex your password can be. Your
pass phrase might become "My SoN Ayd3N is 3 yeeRs old." If the computer
or online system will not support a pass phrase, use the same technique on
the shorter password. This might yield a password like "MsAy3yo".

 Finally, substitute some special characters. You can use symbols that look
like letters, combine words (remove spaces) and other ways to make the

5
OPERATING SYSTEM II

password more complex. Using these tricks, we create a pass phrase of
"MySoN 8N i$ 3 yeeR$ old" or a password (using the first letter of each
word) "M$8ni3y0".

 Test your new password with Password Checker Password Checker is a non-
recording feature on this Web site that helps determine your password's
strength as you type.

 4 steps to protect your computer

Step 1. Keep your firewall turned on

What is a firewall?

A firewall helps protect your computer from hackers who might try to delete
information, crash your computer, or even steal your passwords or credit card
numbers. Make sure your firewall is always turned on.

Step 2. Keep your operating system up-to-date

What are operating system updates?

High priority updates are critical to the security and reliability of your computer.
They offer the latest protection against malicious online activities. Microsoft
provides new updates, as necessary, on the second Tuesday of the month.

Step 3. Use updated antivirus software

What is antivirus software?

Viruses and spyware are two kinds of usually malicious software that you need to
protect your computer against. You need antivirus technology to help prevent
viruses, and you need to keep it regularly updated.

Step 4. Use updated antispyware technology

What is antispyware software?

6
OPERATING SYSTEM II

Viruses and spyware are two kinds of usually malicious software that you need to
protect your computer against. You need antispyware technology to help prevent
spyware, and you need to keep it regularly updated.

Some threats to the security of Windows are;
I. Worms

II. Spyware
III. Viruses

 Security in Microsoft Windows
While the Windows 9x series offered the option of having profiles for multiple
users, they had no concept of access privileges, and did not allow concurrent
access; and so were not true multi-user operating systems. In addition, they
implemented only partial memory protection. They were accordingly widely
criticised for lack of security.
The Windows NT series of operating systems, by contrast, are true multi-user, and
implement absolute memory protection. However, a lot of the advantages of being
a true multi-user operating system were nullified by the fact that, prior to Windows
Vista, the first user account created during the setup process was an administrator
account, which was also the default for new accounts. Though Windows XP did
have limited accounts, the majority of home users did not change to an account
type with fewer rights – partially due to the number of programs which
unnecessarily required administrator rights – and so most home users ran as
administrator all the time.
Windows Vista changes this by introducing a privilege elevation system called
User Account Control. When logging in as a standard user, a logon session is
created and a token containing only the most basic privileges is assigned. In this
way, the new logon session is incapable of making changes that would affect the
entire system.
When logging in as a user in the Administrators group, two separate tokens are
assigned. The first token contains all privileges typically awarded to an
administrator, and the second is a restricted token similar to what a standard user
would receive. User applications, including the Windows Shell, are then started
with the restricted token, resulting in a reduced privilege environment even under
an Administrator account. When an application requests higher privileges or "Run
as administrator" is clicked, UAC will prompt for confirmation and, if consent is
given (including administrator credentials if the account requesting the elevation is
not a member of the administrators group), start the process using the unrestricted
token.

7
OPERATING SYSTEM II

Windows Defender

On January 6, 2005, Microsoft released a beta version of Microsoft AntiSpyware,
based upon the previously released Giant AntiSpyware. On February 14, 2006,
Microsoft AntiSpyware became Windows Defender with the release of beta 2.
Windows Defender is a freeware program designed to protect against spyware and
other unwanted software. Windows XP and Windows Server 2003 users who have
genuine copies of Microsoft Windows can freely download the program from
Microsoft's web site, and Windows Defender ships as part of Windows Vista.

File Permissions

At windows version from window NT3 have been based on a file system

permission system referred to as AGLP (Account, Global, Local, and Permission).

In essence, where file permissions are applied to the file and folder in the form of a

local group, which then has other global group.

8
OPERATING SYSTEM II

CHAPTER NINE

INTRODUCTION

The fact that an operating system is computer software makes it prone to error just
as any human creation. Programmers make mistakes, and inefficient code is often
implemented into programs even after testing. Some developers perform more
thorough testing and generally produce more efficient software. Therefore, some
operating systems are more error prone while others are more secure.

1.1 Security in Computer

The branch of computer technology known as information security as
applied to computers and networks is the computer security. The objective
of computer security includes protection of information and property from
theft, corruption, or natural disaster, while allowing the information and
property to remain accessible and productive to its intended users. The term
computer system security means the collective processes and mechanisms by
which sensitive and valuable information and services are protected from
publication, tampering or collapse by unauthorized activities or
untrustworthy individuals and unplanned events respectively.

The technologies of computer security are based on logic. As security is not
necessarily the primary goal of most computer applications, designing a
program with security in mind often imposes restrictions on that program's
behavior.
Security in this regard could be referred to as the protection mechanism used
to safeguard information in the computer. Security has many facets and the
three of the more important ones are

1. The threats

2. The nature of intruders

3. Accidental data loss

1. Threats: From security perspective, computer systems have three general
goals, with corresponding threats.

9
OPERATING SYSTEM II

(i) Data Confidentiality: Concerned with having secret data remain secret
meaning if the owner of some data has decided that these data are available
to certain people and no others, the system should guarantee that release of
the data to unauthorized people does not occur.

(ii) Data Integrity: Means that unauthorized users should not be able to
modify any data without the owner’s permission. If a system cannot
guarantee that data deposited in it remain unchanged until the owner decides
to change them, it is not worth much as an information system.

(iii) System Availability: Means that nobody can disturb the system to make
it usable. If a computer is an internet server, sending a flood of requests to it
may cripple it by eating up all of its CPU time just examining and discarding
incoming requests. Another aspect of security problem in operating system
is Privacy that is protecting individuals from misuse of information about
them.

(2) The nature of intruders: In the security literature, people who are nosing
around places where they have no business being are called intruders or
sometimes called adversaries. Intruders act in two different ways
 1 Passive Intruders: just want to read files they are not authorised to read.
 2 Active Intruders: are more malicious; they want to make unauthorised
changes to data.
When designing a system to be secure against intruders, it is important to keep in
mind the kind of intruder one is trying to protect against. Some categories are

(a) Casual prying by nontechnical users.

(b) Snooping by insiders.

(c) Determined attempts to make money.

(d) Commercial or military espionage.

Another category of security pest that has manifested itself in recent times is the
Virus. The term virus is a piece of code that replicates itself and usually does some
damage.

(3) Accidental data loss: In addition to threats caused by malicious intruders,
valuable data can be lost by accident. Some of the accidental data losses are
 (1) Acts of God: fires, flood, earthquakes, wars, etc.

10
OPERATING SYSTEM II

 (2) Hardware or software errors: CPU malfunction, unreadable disks or
tapes, telecommunication errors, program bugs.
 (3) Human errors: incorrect data entry, wrong tape or disk mounted, wrong
program run, lost disk or tape, or some other mistake.Most of these can be dealt
with by maintaining adequate backups, preferably far away from the original data.

1.2 Operating system design, security and complexity

An operating system is a software component that acts as the core of a
computer system. It performs various functions and is essentially the
interface that connects your computer and its supported components.
Various operating systems are in use today to satisfy the ever changing
customer demands. Nevertheless the most widespread operating systems are:
Microsoft Windows, Linux/Unix and Macintosh. Windows are mostly
used as personal computers, Linux/Unix are mainly open source while
Apple Macs are often used for graphic designs or other specialist
applications. Irrespective of their application or use, all operating systems
up to date have been subject to security compromises or likewise failures. It
is a fact that the majority of hacking tools, viruses, worms or Trojan horses
are written for Windows, but this is merely due to the fact that Windows
occupy almost 90% of the global market.

The security of the operating system is therefore a necessity for the overall
system security. Today most commercially developed operating systems
provide security through authentication of the users, maintenance of access
control mechanisms, separation of kernel and user spaces and providing
trusted applications to modify or manage system resources. However the
above security features are inadequate to protect the operating system from
attacks in today’s environment.

SECURITY ISSUES IN THE LINUX OPERATING SYSTEMS

While companies like Microsoft and Apple own the commercial software
market, a variety of non profit organizations or intellectual individuals
contribute constantly to the proliferation of the open source software. In
terms of operating systems, Linux is the example par excellence of all free
open source systems, Introduced by Linux Torvalds, at the time a student.
Linux was the first fully functional operating system that was offered for
free under the open source agreement to the public. Following this event,

11
OPERATING SYSTEM II

with the participation of thousand of admirers across the globe, a myriad of
open source Linux based operation systems flooded the cyber world.

There are different reasons that motivate thousands of people around the
globe to participate in open source projects and release software to the
public. Intellectual gratification, pleasure of creativity or of solving complex
and challenging tasks, are of some the driving forces in this domain.
Whatever the reasons, the benefits of using open source are manifold. Open-
source software powers many of the web sites on the Internet, corporate
computer, servers used for research and development, it can be found in
digital video recorders , telephones, personal digital assistants (PDAs)
watches, networking hardware, MP3 players and automobiles

Nevertheless, open source software does not come without issues or
disadvantages. Even though the codes are available to thousands of eyes for
scrutiny, there is no guarantee for security or optimal performance. Although
that is ok for simple home applications it is not the case for enterprise,
commercial or critical applications. Also because of lack of standardization
and complex licensing issues, open source software is prone to misuse or
abuse. Standardization is hard to achieve, because open source creators are
completely free in their choice of design, implementation or adherence to
existing standards. Usually standardization is enforced by market forces and
industry regulators; however in the case of open source software both these
factors do not exercise enough pressure to drive the process. Version
proliferation is another major open source issue. As a matter of fact, this
matter does not concern only open source software but commercial software
as well. Nevertheless, the effect on the open source software is more evident.
Developing many versions of a program in a short period not only confuses
users but also requires a steep learning curve. This is true in particular in the
case of constant changes of graphical user interfaces and navigation
concepts from one version to the next one. At the same time, constant
introductions of new versions of a software package do not affect in positive
way its reputation since the user might believe this is a sign of instability.

Another issue that affects ICT today is that of the implementation of open
source software. Because, open source is developed by the co-operation of
different individuals, it is hard to establish a proper working relationship
with the person in charge (if there is any). Furthermore, technical support,
documentation issues, no access to advice, are some of the problems that a

12
OPERATING SYSTEM II

company or individual that uses open source software might face. Hardware
and software compatibilities influence also the processes ever since most of
hardware manufacturers do not expose their trade secrets, therefore not
allowing access to their codes to open source developers. Open source
developers have no other choice but to design and release their own code
(hardware drivers) therefore contributing to the complexity and lack of
standardization.

Future prognosis on the Linux operating system

The open source phenomenon is definitely influencing in a positive way ICT and
probably the trend will not change in the future. Open source projects are available
to “millions of eyes” for scrutiny, improvement or testing. Nevertheless, it is likely
that in the future will continue to experience the same issues mentioned above with
some improvements in the area of standardization. Some open source will
definitely transform in commercial software provided that they have matured
enough and captured a significant market share. Red Hat Linux for example, is a
typical example of how open source software becomes commercial under the right
circumstances.

 SECURITY ISSUES IN THE WINDOWS OPERATING SYSTEM

Security is the main problem that Windows operating systems are facing
since their introduction. Lack of vision from its developers regarding
security is probably the main reason behind this issue. The first windows
were designed to be simple and productive but not very secure. Although
new operating systems versions were introduced within the last 5-10 years,
the same issues with security persisted. In my opinion, because of market
pressure and product development circles, it was almost impossible for
Microsoft to totally change their operating system approach. Instead they
continued to build on top of each previous model. Unfortunately, their
operating systems are still vulnerable affecting significantly ICT
applications worldwide.

To understand the impact of operating system vulnerabilities on ICT suffice
to look at the case of “SQL slammer’, a worm released on the web in 2003
(Forte, 2003). Slammer, also known as “SQL hell”, is a worm that affected
Microsoft Windows operating systems in January 2003 affecting within ten
minutes 75 thousands machines worldwide. Slammer exploited vulnerability

13
OPERATING SYSTEM II

in SQL server and desktop engine slowing down communications and
affecting businesses financially worldwide. Following this incident several
modified slammer versions were released online. This is not an isolated
episode that demonstrates the lack of security vision and poor operating
system design. Viruses and worms like Melissa, code red, sasser, nimda,
donut, spida or slapper have also impacted information communication
telecommunications globally. In 2007 Computer Economics, a well known
research company conducted a research on the impact of the malware
globally estimating a $ 13 billion in financial losses in 2006 only. It is quite
obvious how ICT and global communications are affected by malware
which attributes its success to operating system vulnerabilities.

Microsoft has been able to take care of malware attacks by releasing patches
or services packs. Although, it looks like this is the right approach to this
problem it does eradicate the problem and provide temporarily relief from
threats. We need a holistic approach to deal with the root of the problem not
with it consequences. As a matter of fact operating system patches manage
to avoid the threat temporarily, since what they usually do is a mere change
of names or locations of important operating system files used by malware.
In other occasions Microsoft has even discontinued shipping certain
programs with its operating systems as a security measure against malware,
therefore not dealing with the main problems: design and security.

In 2007, Microsoft released officially to the public Windows Vista and in
October 2009 Windows seven. Although, the graphical user interfaces look
impressive, both operating systems are still vulnerable to malware or system
hacking. A very simple example is the ‘the sticky key backdoor’, one of
Vista’s vulnerabilities. Vinoo Thomas, a McAfee researcher, in 2007
released a blog online informing the public about the Sticky Keys
vulnerability. Vista apparently does allow the modification of sethc.exe file
(located at: C:/windows/system32/sethc.exe) and no integrity checks are
performed before execution. Authentication can simply be bypassed by
replacing this file with cmd.exe using a live CD like Backtrack or direct
logging and entering windows explorer (Vinoo, 2007).

Moreover, Vista activation mechanism has been broken almost one year
after its official release. The same security scenario applies to Windows
seven. This operating system can be bypassed in the same way as Windows
Vista (using the installation disk and entering recovery mode). Furthermore

14
OPERATING SYSTEM II

online news of a zero day attack is spreading around. Certainly, this poor
security performance of Microsoft Windows, the most used operating
system worldwide, does not sound promising for ICT and its future.

Future prognosis on the windows operating system

Operating system design is a factor that will influence ICT in the times to
come. The main reason is security. If we take in consideration the fact that
digital globalization is facilitating the distribution of malware and the
number of internet users is rising exponentially, we should expect more
sophisticated attacks on the windows operating systems and ICT. Under
these circumstances, we should review the windows operating system design
strategy, focusing on security and build reliable operating system.

15
OPERATING SYSTEM II

CHAPTER NINE:
SECURITY ISSUES IN THE UNIX OPERATING

SYSTEMS

There are a number of elements that have lead to the popularity of the UNIX
operating system in the world today. The most notable factors are its portability
among hardware platforms and the interactive programming environment that it
offers to users. In fact, these elements have had much to do with the successful
evolution of the UNIX system in the commercial market place.
As the UNIX system expands further into industry and government, the need to
handle UNIX system security will no doubt become imperative. For example, the
US government is committing several million dollars a year for the UNIX system
and its supported hardware. The security requirements for the government are
tremendous, and one can only guess at the future needs of security in industry.
In this paper, we will cover some of the more fundamental security risks in the
UNIX system. Discussed are common causes of UNIX system compromise in such
areas as file protection, password security, networking and hacker violations. In
our conclusion, we will comment upon ongoing effects in UNIX system security
and their direct influence on the portability of the UNIX operating system.

In the UNIX operating system environment, files and directories are organized in a
tree structure with specific access modes. The setting of these modes through
permission bits (as octal digits), is the basis of UNIX system security. Permission
bits determine how users can access files and the type of access they are allowed.
There are three user access modes for all UNIX system files and directories: the
owner, the group, and others. Access to read, write and execute within each of the
user types is also controlled by permission bits. Flexibility in file security is
convenient, but it has been criticized as an area of System security compromise.

 FILE AND DIRECTORY SECURITY

In the UNIX operating system environment, files and directories are organized in a
tree structure with specific access modes. The setting of these modes, through
permission bits (as octal digits), is the basis of UNIX system security. Permission
bits determine how users can access files and the type of access they are allowed.
There are three user access modes for all UNIX system files and directories: the
owner, the group, and others. Access to read, write and execute within each of the
user types is also controlled by permission bits (Figure 1). Flexibility in file

16
OPERATING SYSTEM II

security is convenient, but it has been criticized as an area of system security
compromise.

 Permission modes

 OWNER GROUP OTHERS

 --

 rwx : rwx : rwx

 --

 r=read w=write x=execute

 -rw--w-r-x 1 bob csc532 70 Apr 23 20:10 file

 drwx------ 2 sam A1 2 May 01 12:01 directory

FIGURE 1. File and directory modes: File shows Bob as the owner, with
read and writes permission. Group has write permission, while others has
read and execute permission. The directory gives a secure directory not
readable, writeable, or executable by Group and Others.

Since the file protection mechanism is so important in the UNIX operating
system, it stands to reason that the proper setting of permission bits is
required for overall security. Aside from user ignorance, the most common
area of file compromise has to do with the default setting of permission bits
at file creation. In some systems the default is octal 644, meaning that only
the file owner can write and read to a file, while all others can only read it.
(3) In many "open" environments this may be acceptable. However, in cases
where sensitive data is present, the access for reading by others should be
turned off. The file utility umask does in fact satisfy this requirement. A
suggested setting, umask 027, would enable all permission for the file
owner, disable write permission to the group, and disable permissions for all

17
OPERATING SYSTEM II

others (octal 750). By inserting this umask command in a user .profile or
.login file, the default will be overwritten by the new settings at file creation.
The CHMOD utility can be used to modify permission settings on files and
directories. Issuing the following command,

 chmod u+rwd,g+rw,g-w,u-rwx file

will provide the file with the same protection as the umask above (octal
750). Permission bits can be relaxed with chmod at a later time, but at least
initially, the file structure can be made secure using a restrictive umask. By
responsible application of such utilities as umask and chmod, users can
enhance file system security. The Unix system, however, restricts the
security defined by the user to only owner, group and others. Thus, the
owner of the file cannot designate file access to specific users. As Kowack
and Healy have pointed out, "The granularity of control that (file security)
mechanisms is often insufficient in practice (...) it is not possible to grant
one user write protection to a directory while granting another read
permission to the same directory. (4) A useful file security file security
extension to the Unix system might be Multics style access control lists.
With access mode vulnerabilities in mind, users should pay close attention to
files and directories under their control, and correct permissions whenever
possible. Even with the design limitations in mode granularity, following a
safe approach will ensure a more secure Unix system file structure.

DIRECTORIES

Directory protection is commonly overlooked component of file security in
the Unix system. Many system administrators and users are unaware of the
fact, that "publicly writable directories provide the most opportunities for
compromising the Unix system security" (6). Administrators tend to make
these "open" for users to move around and access public files and utilities.
This can be disastrous, since files and other subdirectories within writable
directories can be moved out and replaced with different versions, even if
contained files are unreadable or unwritable to others. When this happens, an

18
OPERATING SYSTEM II

unscrupulous user or a "password breaker" may supplant a Trojan horse of a
commonly used system utility’ For example:

Imagine that the /bin directory is publicly writable. The perpetrator could
first remove the old version (with rm utility) and then include his own fake
su to read the password of users who execute this utility.

Although writable directories can destroy system integrity, readable ones
can be just as damaging. Sometimes files and directories are configured to
permit read access by other. This subtle convenience can lead to
unauthorized disclosure of sensitive data: a serious matter when valuable
information is lost to a business competitor.
As a general rule, therefore, read and write access should be removed from
all but system administrative directories. Execute permission will allow
access to needed files; however, users might explicitly name the file they
wish to use. This adds some protection to unreadable and unwritable
directories. So, programs like lp file.x in an unreadable directory /ddr will
print the contents of file.x, while ls/ddr would not list the contents of that
directory.

 USER AUTHENTICATION

Another area is the user authentication. In the UNIX system, authentication
is accomplished by personal passwords. Though passwords offer an
additional level of security beyond physical constraints, they lend
themselves to the greatest area of computer system compromise. Lack of
user awareness and responsibility contributes largely to this form of
computer insecurity. This is true
of many computer facilities where password identification, authentication
and authorization are required for the access of resources, and the Unix
operating system is no exception. Password information in many time-
sharing systems are kept in restricted files that are not ordinarily readable by
users. The UNIX system differs in this respect, since it allows all users to
have read access to the /etc/passwd file where encrypted passwords and
other user information are stored.

DATA ENCRYPTION

19
OPERATING SYSTEM II

Although the Unix system implements a one-way encryption method, and in
most systems a modified version of the data encryption standard (DES),
password breaking methods are known. Among these methods, brute-force
attacks are generally the least effective, yet techniques involving the use of
heuristics (good guesses and knowledge about passwords) tend to be
successful. For example, the /etc/passwd file contains such useful
information as the login name and comments fields. Login names are
especially rewarding to the "password breaker" since many users will use
login variants for passwords (backward spelling, the appending of a single
digit etc.). The comment field often contains items such as surname, given
name, address, telephone number, project name and so on. To quote Morris
and Grampp in their landmark paper on Unix system security: The authors
made a survey of several dozen local machines, using as trial passwords a
collection of the 20 most common female first names, each followed by a
single digit. The total number of passwords tried was therefore 200. At least
one of these 200 passwords turned out to be a valid password on every
machine surveyed. If an intruder knows something about the people using a
machine, a whole new set of candidates is available. Family and friend's
names, auto registration numbers, hobbies, and pets are particularly
productive categories to try interactively in the unlikely event that a purely
mechanical scan of the password file turns out to be disappointing.
Thus, given a persistent system violator, there is strong evidence, that he will
find some information about users in the /etc/passwd file. With this in mind,
it is obvious that a password file should be unreadable to everyone except
those in charge of system administration.

SECURITY ISSUES IN THE MACINTOSH OPERATING

SYSTEM

It's been called one of the safest operating systems of all times, but the Mac's OS X
Tiger may not be as safe as it seems. Mac's OS X Tiger has become a favorite
among Mac users for its bells and whistles and its UNIX based architecture. From
a power user to newbie, Tiger provides both comfort and security for all OS X
users. Some of the flaws found in its security is as follows:

 FAILING TO USE ITS SOFTWARE UPDATE

20
OPERATING SYSTEM II

Regularly updating Tiger's software is one of the easiest ways to keep your
computer protected from the latest exploits and malicious Internet content.
In January of this year, a couple of computer guru's published "The Month
of Apple Bugs"(MoAB) -- a website dedicated to pointing out 31 of OS X's
vulnerabilities and security flaws. After reviewing the website, Apple acted
promptly and has since released several updates addressing the critical bugs.
With software updates turned off, there's a good chance the computer could
fall victim to one of MoAB's exploits.

 MINDLESSLY SURFING WITH SAFARI

Although much safer than Microsoft's Internet Explorer, Tiger's default
web browser Safari is not immune to security flaws. To obtain the safest
Internet browsing experience, a few of Safari's features should be modified:
Make sure all "AutoFill" options are disabled, and always use "Private
Browsing" on each of the computer's accounts. Although surfing without
"Private Browsing" enabled could save you some time, in the long run you're
simply opening yourself up to greater security risks.
To be ultra conservative with web browsing, one can disallow all cookies
and remove all existing cookies via the "Show Cookies" dialog. (Keeping in
mind that some websites require cookies for complete functionality). By not
accepting cookies, one may be limiting web browsing experience, so one is
torn in between securing his/her system or enjoying the web experience.

 INCORRECTLY CONFIGURING SECURITY PREFERENCES

Tiger's security panel features a handful of security preferences which
permit users to select varying levels of security based upon their particular
usage requirements. Obviously, however, when configuring your security
preference it's important to understand what each option does, and the
benefits of a particular setting: One of the most important and often
overlooked preferences is whether to permit automatic login. Requiring a
password to wake the computer is imperative in preventing unauthorized
access to unattended computers. "Disabling automatic login is necessary for
any level of security. If you enable automatic login, an intruder can
automatically log in without having to authenticate. Even if you
automatically log in with a very restricted user account, this makes it much
easier to perform malicious actions on the computer."
In addition to requiring a user to login after the computer has been asleep, it
is also important to require an additional login wherever an important system

21
OPERATING SYSTEM II

wide preference is being changed. In order to prevent faulty administration,
either from a malicious user or just from an unwitting friend who
accidentally makes a system change, it is important to require an extra step
of authentication when altering system preferences. After all, we can all
make mistakes when toggling options, but by requiring an extra
authentication step whenever a system preference is changed, you can make
sure that many of these types of errors never occur.

 LEAVING UNUSED HARDWARE DEVICES ENABLED

Most of us are no longer worried by our Internet connections, but instead
connect to the Internet through multiple styles of broadband connections.
For example, instead of being tied down to Ethernet cables at home, users
are taking advantage of wireless connections using their laptops from
anywhere, and connecting their Bluetooth devices to their computer for extra
support. While having different types of broadband connections is great for
the user, it's awful for the security of the computer. To protect your
computer, you should make sure to "disable any unused hardware devices
listed in Network preferences. Enabled, unused devices (such as AirPort and
Bluetooth) are a security risk." While we're not suggesting that you do away
with these great feature altogether, we are saying that when they're not in
use, you should turn them off.

 TROJAN HORSE ALERT

Recently, a new variant of the Hell Raiser Trojan Horse, which was
identified as OSX/HellRTS.D, has been discovered. Experts have analyzed
this new variant, and it is detected in the latest MacScan spyware definitions
update as HellRaiser Trojan Horse 4.2. MacScan has detected previous
variants of this trojan horse since 2005. HellRaiser is a trojan horse that
allows complete control of a computer by a remote attacker, giving the
attacker the ability to transfer files to and from the infected computer, pop
up chat messages on the infected system, display pictures, speak messages,
and even remotely restart or shut down the infected machine. The attacker
can search through the files on the infected computer, choosing exactly what
they want to steal, view the contents of the clipboard, or even watch the
user's actions on the infected computer.

In order to become infected, a user must run the server component of the
Trojan horse, which can be disguised as an innocent file. The attacker then

22
OPERATING SYSTEM II

uses the client component of the Trojan horse to take control of the infected
system.

SECURITY ISSUES IN SOLARIS OPERATING SYSTEM

Solaris or Oracle Solaris as it is now known is a UNIX-based operating system
introduced by Sun Microsystems in 1992 as the successor to SunOS. The
prominent flaw in Solaris operating system is the multiple security vulnerabilities
in PostgreSQL Shipped with Solaris 10 which allows the Elevation of Privileges or
Denial of Service (DoS)
Multiple Security vulnerabilities affecting the PostgreSQL software shipped with
Solaris 10 may allow a local or remote user who has access to the PostgreSQL
server to cause a Denial of Service (DoS) to the PostgreSQL instance or the server
it runs on (due to excessive resource consumption), or to gain elevated privileges
on the server.

Regular Expression Denial-of-Service
(CVE-2007-4772, CVE-2007-6067, CVE-2007-4769):
Three separate issues in the regular expression libraries used by PostgreSQL allow
malicious user to initiate a denial-of-service by passing certain regular expressions
in SQL queries.
First, users could create infinite loops using some specific regular expressions.
Second, certain complex regular expressions could consume some excessive
amounts of memory.
Third, out-of-range backref numbers could be used to crash the backend.
All of these issues have been patched.
DBLink privilege Escalation (CVE-2007-6601):
DBLink functions combined with local trust or ident authentication could be used
by malicious user to gain superuser privileges.
This issue has been fixed and does not affect users who have not installed DBLink
(an optional module), or who are using password authentication for local access.
This same problem was addressed in the previous release cycle.
These issues can occur in the following releases
SPARC (Scalable Processor Architecture) Platform
Solaris 10 PostgreSQL 8.1
Without patch 123590-08
Solaris 10 PostgreSQL 8.2
Without patch 136998-02
X86 Platform

23
OPERATING SYSTEM II

Solaris 10 PostgreSQL 8.1
Without patch 123591-08
Solaris 10 PostgreSQL 8.2
Without patch 136999-02

Solaris 8 and 9 do not ship with PostGreSQL and are not impacted by this issue.
A user exploiting this vulnerability must have an account on the PostgreSQL
server.
This issue affects PostGreSQL versions 7.4x prior to 7.4.19, 8.0.x prior to 8.0.15,
8.1.x prior to 8.1.11 and 8.2.x prior to 8.2.6.

CONCLUSION
Information and Communication Technologies (ICT) will provide benefits to our
society for years to come. The proliferation of these technologies or their decline
will be affected amongst all by security issues on the area of operating system
design and security, open source issues, and design complexity. Therefore,
designing better operating systems, improving on their security, are some of the
challenges for the future. If we take in consideration the fact that digital
globalization is facilitating the distribution of malware and the number of internet
users is rising exponentially, we should expect more sophisticated attacks on the
windows operating systems and ICT. Under these circumstances, we should review
the windows operating system design strategy, focusing on security and build
reliable operating system.

The open source phenomenon is definitely influencing in a positive way ICT and
probably the trend will not change in the future. Open source projects are available
to “millions of eyes” for scrutiny, improvement or testing. Nevertheless, it is likely
that in the future will continue to experience the same issues mentioned above with
some improvements in the area of standardization.

Some open source will definitely transform in commercial software provided that
they have matured enough and captured a significant market share. Red Hat

Linux for example, is a typical example of how open source software
becomes
commercial under the right circumstances.

CHAPTER TEN:

24
OPERATING SYSTEM II

DISTRIBUTED OPERATING SYSTEM

INTRODUCTION

An operating system is a program that controls the resources of a computer and
provides its user with an interface or a virtual machine that’s more convenient to
use than bear machine.

To begin with, we use the term distributed system to mean a distributed operating
system as opposed to a database system or some distributed application system
such as a banking system, another name for a distributed operating system is DIS-
CENTRALIZED OPERATING SYSTEM.
Example of a centralized (not distributed) operating system are; MS-DOS, UNIX,
and CP/M.

A distributed operating system is the one that look to its user like an ordinary
centralized operating system but runs on multiple, independent, central processing
unit (CPU). The key concept in distributed operating system is the
TRANPARENCY. What determine a distributed operating system are the software
and not the hardware.

In distributed system, the error can be made to tolerate both hardware and software
error but it is the software error and not the hardware that cleans the error when it
occurs.

Network OS is used to manage Networked computer systems and create, maintain
and transfer files in that Network.
Distributed OS is also similar to Networked OS but in addition to it the platform on
which it is running should have high configuration such as more capacity RAM,
High speed Processor. The main difference between the DOS and the NOS is the
transparent issue: Transparency:

- How aware are users of the fact that multiple computers are
being used?

Types of Distributed Operating Systems

- Network Operating Systems
- Distributed Operating Systems

25
OPERATING SYSTEM II

Network-Operating Systems

- Users are aware where resources are located
- Network OS is built on top of centralized OS.
- Handles interfacing and coordination between local OSs.
- Users are aware of multiplicity of machines.

Distributed-Operating Systems

 Designed to control and optimize operations and resources in
distributed system.
- Users are not aware of multiplicity of machines
- Access to remote resources similar to access to local resources
- Data Migration – transfer data by transferring entire file, or
transferring only those portions of the file necessary for the immediate
task
 - Computation Migration – transfer the computation, rather than the
data, across the system

- Computation speedup – sub processes can run concurrently on different sites
- Process Migration – execute an entire process, or parts of it, at
different sites
- Load balancing – distribute processes across network to even the
workload
- Hardware preference – process execution may require specialized
processor
- Software preference – required software may be available at only a
particular site
- Data access – run process remotely, rather than transfer all data
locally

EXAMPLES OF DISTRIBUTED OPERATING SYSTEM

 The Cambridge Distributed Computing System
 Amoeba

26
OPERATING SYSTEM II

 The V Kernel
 The Eden Project

There are so many types of distributed operating system but these are chosen based
on three criteria which are:

First, we only chose systems that were designed from scratch as-distributed
systems (systems that gradually evolved by connecting together existing
centralized systems or are multiprocessor versions of UNIX were excluded).

Second, we only chose systems that have actually been implemented; paper
designs did not count.

Third, we only chose systems about which a reasonable amount of information was
available.

NOTE: if a user can tell which computer he/she is using, then he/she is not using a
distributed system. The user of a true distributed operating system should not know
(or care) on which machine (or machines) their programs are running, where their
files are stored and so on.

27
OPERATING SYSTEM II

TRANSPARENCY

• Goal motivated by the desire to hide all irrelevant system-dependent details from
the user, whenever possible.

• It is more important in distributed systems due to higher implementation
complexities.

• Shielding the system-dependent information from the users is a trade-off
between simplicity and effectiveness.

• Access transparency - Local and remote system entities must remain
indistinguishable when viewed through the user interface. The distributed
operating system maintains this perception through the exposure of a single access
mechanism for a system entity, regardless of that entity being local or remote to the

28
OPERATING SYSTEM II

user. Transparency dictates that any differences in methods of accessing any
particular system entity—either local or remote—must be both invisible to, and
undetectable by the user.

• Location transparency - Location transparency comprises two distinct sub-
aspects of transparency, Naming transparency and User mobility. Naming
transparency requires that nothing in the physical or logical references to any
system entity should expose any indication of the entities location, or its local or
remote relationship to the user. User mobility requires the consistent referencing of
system entities, regardless of the system location from which the reference
originates. Transparency dictates that the relative location of a system entity—
either local or remote—must be both invisible to, and undetectable by the user.

• Migration transparency - Logical resources and physical processes migrated by
the system, from one location to another in an attempt to maximize efficiency,
reliability, availability, security, or whatever reason, should do so automatically
controlled solely by the system. There are a myriad of possible reasons for
migration; in any such event, the entire process of migration before, during, and
after should occur without user knowledge or interaction. Transparency dictates
that both the need for, and the execution of any system entity migration must be
both invisible to, and undetectable by the user.

• Concurrency transparency - The distributed operating system allows for
simultaneous use of system resources by multiple users and processes, which are
kept completely unaware of the concurrent usage. Transparency dictates that both
the necessity for concurrency and the multiplexed usage of system resources must
be both invisible to, and undetectable by the user.

• Replication transparency - A system's elements or components may need to be
copied to strategic remote points in the system in an effort to possibly increase
efficiencies through better proximity, or provide for improved reliability through
the duplication of a back-up. This duplication of a system entity and its subsequent
movement to a remote system location may occur for any number of possible
reasons; in any event, the entire process before, during, and after should occur
without user knowledge or interaction. Transparency dictates that the necessity and
execution of replication, as well as the existence of replicated entities throughout
the system must be both invisible to, and undetectable by the user.

29
OPERATING SYSTEM II

• Parallelism transparency - Arguably the most difficult aspect of transparency,
and described by Tanenbaum as the "Holy grail" for distributed system designers.
A system's parallel execution of a task among various processes throughout the
system should occur without any required user knowledge or interaction.
Transparency dictates that both the need for, and the execution of parallel
processing must be both invisible to, and undetectable by the user.

• Failure transparency - In the event of a partial system failure, the system is
responsible for the automatic, rapid, and accurate detection and orchestration of a
remedy. These measures should exhibit minimal user imposition, and should
initiate and execute without user knowledge or interaction. Transparency dictates
that users and processes be exposed to absolute minimal imposition as a result of
partial system failure; and any system-employed techniques of detection and
recovery must be both invisible to, and undetectable by the user.

• Performance transparency - In any event where parts of the system experience
significant delay or load imbalance, the system is responsible for the automatic,
rapid, and accurate detection and orchestration of a remedy. These measures
should exhibit minimal user imposition, and should initiate and execute without
user knowledge or interaction. While reasonable and predictable performances are
important goals in these situations, there should be no expressed or implied
concepts of fairness or equality among affected users or processes. Transparency
dictates that users and processes be exposed to absolute minimal imposition as a
result of performance delay or load imbalance; and any system-employed
techniques of detection and recovery must be both invisible to, and undetectable by
the user.

• Size transparency - A system's geographic reach, number of nodes, level of
node capability, or any changes therein should exists without any required user
knowledge or interaction. Transparency dictates that system and node composition,
quality, or changes to either must be both invisible to, and undetectable by the user.

• Revision transparency - System occasionally have need for system-software
version changes and changes to internal implementation of system infrastructure.
While a user may ultimately become aware of, or discover the availability of new
system functions or services, their implementation should in no way be the prompt
for this discovery. Transparency dictates that the implementation of system-
software version changes and changes to internal system infrastructure must be

30
OPERATING SYSTEM II

both invisible to, and undetectable by the user; except as revealed by
administrators of the system.

SCHEDULLING TECHNIQUES
The hierarchical model provides a general model for resource control but does not
provide any specific guidance on how to do scheduling. If each process uses an
entire processor (i.e., no multiprogramming), and each process is independent of
all the others, any process can be assigned to any processor at random. However, if
it is common that several processes are working together and must communicate
frequently with each other, as in UNIX pipelines or in cascaded (nested) remote
procedure calls, then it is desirable to make sure that the whole group runs at once.
Let us assume that each processor can handle up to N processes. If there are plenty
of machines and N is reasonably large, the problem is not finding a free machine
(i.e., a free slot in some process table), but something more subtle. The basic
difficulty can be illustrated by an example in which processes A and B run on one
machine and processes C and D run on another. Each machine is time shared in,
say, 100-millisecond time slices, with A and C running in the even slices, and B
and D running in the odd ones. Suppose that A sends many messages or makes
many remote procedure calls to D. During time slice 0, A starts up and
immediately calls D, which unfortunately is not running because it is now C’s turn.
After 100 milliseconds, process switching takes place, and D gets A’s message,
carries out the work, and quickly replies. Because B is now running, it will be
another 100 milliseconds before A gets the reply and can proceed. The net result is
one message exchange every 200 milliseconds. What is needed is a way to ensure
that processes that communicate frequently run simultaneously. Although it is
difficult to determine dynamically the inter-process communication patterns, in
many cases a group of related processes will be started off together.

PROCESS MANAGEMENT

Process management provides policies and mechanisms for effective and efficient
sharing of a system's distributed processing resources between that system's
distributed processes. These policies and mechanisms support operations involving
the allocation and de-allocation of processes and ports to processors, as well as
provisions to run, suspend, migrate, halt, or resume execution of processes. While
these distributed operating system resources and the operations on them can be
either local or remote with respect to each other, the distributed operating system

31
OPERATING SYSTEM II

must still maintain complete state of and synchronization over all processes in the
system; and do so in a manner completely consistent from the user's unified system
perspective.

As an example, load balancing is a common process management function. One
consideration of load balancing is which process should be moved. The kernel may
have several mechanisms, one of which might be priority-based choice. This
mechanism in the kernel defines what can be done; in this case, choose a process
based on some priority. The system management components would have policies
implementing the decision making for this context. One of these policies would
define what priority means, and how it is to be used to choose a process in this
instance.

RESOURCES MANAGEMENT

Resource management in a distributed system differs from that in a centralized
system in a fundamental way. Centralized systems always have tables that give
complete and up-to-date status information about all the resources being managed;
distributed systems do not. For example, the process manager in a traditional
centralized operating system normally uses a “process table” with one entry per
potential process. When a new process has to be started, it is simple enough to scan
the whole table to see whether a slot is free. A distributed operating system, on the
other hand, has a much harder job of finding out whether a processor is free,
especially if the system designers have rejected the idea of having any central
tables at all, for reasons of reliability. Furthermore, even if there is a central table,
recent events on outlying processors may have made some table entries obsolete
without the table manager knowing it. The problem of managing resources without
having accurate global state information is very difficult.

PROCESSOR ALLOCATION

One of the key resources to be managed in a distributed system is the set of
available processors. One approach that has been proposed for keeping tabs on a
collection of processors is to organize them in a logical hierarchy independent of
the physical structure of the network, as in MICROS. This approach organizes the
machines like people in corporate, military, academic, and other real-world
hierarchies. Some of the machines are workers and others are managers. For each
group of k workers, one manager machine (the “department head”) is assigned the
task of keeping track of who is busy and who is idle. If the system is large, there
will be an unwieldy number of department heads; so some machines will function

32
OPERATING SYSTEM II

as “deans,” riding herd on k department heads. If there are many deans, they too
can be organized hierarchically, with a “big cheese” keeping tabs on k deans. This
hierarchy can be extended ad infinitum, with the number of levels needed growing
logarithmically with the number of workers. Since each processor need only
maintain communication with one superior and k subordinates, the information
stream is manageable. An obvious question is, “What happens when a department
head, or worse yet, a big cheese, stops functioning (crashes)?” One answer is to
promote one of the direct subordinates of the faulty manager to fill in for the boss.
The choice of which one can either be made by the subordinates themselves, by the
deceased’s peers, or in a more autocratic system, by the sick manager’s boss. To
avoid having a single (vulnerable) manager at the top of the tree, one can truncate
the tree at the top and have a committee as the ultimate authority. When a member
of the ruling committee malfunctions, the remaining members promote someone
one level down as a replacement. Although this scheme is not completely
distributed, it is feasible and works well in practice. In particular, the system is self
repairing, and can survive occasional crashes of both workers and managers
without any long-term effects. In MICROS, the processors are monoprogrammed,
so if a job requiring S processes suddenly appears, the system must allocate S
processors for it. Jobs can be created at any level of the hierarchy. The strategy
used is for each manager to keep track of approximately how many workers below
it are available (possibly several levels below it). If it thinks that a sufficient
number are available, it reserves some number R of them, where R 2 S, because
the estimate of available workers may not be exact and some machines may be
down. If the manager receiving the request thinks that it has too few processors
available, it passes the request upward in the tree to its boss. If the boss cannot
handle it either, the request continues propagating upward until it reaches a level
that has enough available workers at its disposal. At that point, the manager splits
the request into parts and parcels them out among the managers below it, which
then do the same thing until the wave of scheduling requests hits bottom. At the
bottom level, the processors are marked as “busy,” and the actual number of
processors allocated is reported back up the tree. To make this strategy work well,
R must be large enough so that the probability is high that enough workers will be
found to handle the whole job. Otherwise, the request will have to move up one
level in the tree and start all over, wasting considerable time and computing power.
On the other hand, if R is too large, too many processors will be allocated, wasting
computing capacity until word gets back to the top and they can be released. The
whole situation is greatly complicated by the fact that requests for processors can
be generated randomly anywhere in the system, so at any instant, multiple requests
are likely to be in various stages of the allocation algorithm, potentially giving rise

33
OPERATING SYSTEM II

to out-of-date estimates of available workers, race conditions, deadlocks, and
more.

Failure Recovery
 Failure Detection
Detecting hardware failure is difficult. To detect a link failure, a handshaking
protocol can be used. Assume Site A and Site B has established a link. At fixed
intervals, each site will exchange an I-am-up message indicating that they are up
and running. If Site A does not receive a message within the fixed interval, it
assumes either (a) the other site is not up or (b) the message was lost. Then, Site A
can now send an “Are-you-up?” message to Site B. If Site A does not receive a
reply, it can repeat the message or try an alternate route to Site B.
 If Site A does not ultimately receive a reply from Site B, it concludes some type of
failure has occurred in site B. Such failure could be that:
Types of failures:
- Site B is down
- The direct link between A and B is down
- The alternate link from A to B is down
- The message has been lost.
 However, Site A cannot determine exactly why the failure has occurred

Reconfiguration

 When Site A determines a failure has occurred, it must reconfigure the system:
1. If the link from A to B has failed, this must be broadcast to every site in the
system
2. If a site has failed, every other site must also be notified indicating that the
services offered by the failed site are no longer available.
 When the link or the site becomes available again, this information must again be
broadcast to all other sites.

Distributed Deadlock Detection

There are two kinds of potential deadlocks which are:

34
OPERATING SYSTEM II

- resource deadlocks
- communication deadlocks

Resource deadlocks are traditional deadlocks, in which all of some set of processes
are blocked waiting for resources held by other blocked processes. For example, if
A holds X and B holds Y, and A wants Y and B wants X, a deadlock will result. In
principle, this problem is the same in
Centralized and distributed systems, but it is harder to detect in the latter because
there are no centralized tables.
 The other kind of deadlock that can occur in a distributed system is a
communication deadlock. Suppose A is waiting for a message from B and B is
waiting for C and C is waiting for A. Then we have a deadlock. Chandy et al.
[1983] present an algorithm for detecting (but not preventing) communication
deadlocks. Very crudely summarized, they assume that each process that is
blocked waiting for a message knows which process or processes might send the
message. When a process logically blocks, they assume that it does not really block
but instead sends a query message to each of the processes that might send it a real
(data) message. If one of these processes is blocked, it sends query messages to the
processes it is waiting for. If certain messages eventually come back to the original
process, it can conclude that a deadlock exists. In effect, the algorithm is looking
for a knot in a directed graph.

Redundancy Techniques

All the redundancy techniques that have emerged take advantage of the existence
of multiple processors by duplicating critical processes on two or more machines.
A particularly simple, but effective, technique is to provide every process with a
backup process on a different processor. All processes communicate by message
passing.

Whenever anyone sends a message to a process, it also sends the same message to
the backup process. The system ensures that neither the primary nor the backup
can continue running until it has been verified that both have correctly received the
message. Thus, if one process crashes because of any hardware fault, the other one
can continue. Furthermore, the remaining process can then clone itself, making a
new backup to maintain the fault tolerance in the future. One disadvantage of
duplicating every process is the extra processors required, but another, more subtle
problem is that, if processes exchange messages at a high rate, a considerable
amount of CPU time may go into keeping the processes synchronized at each
message exchanged. If a process crashes, recovery is done by sending the most

35
OPERATING SYSTEM II

recent checkpoint to an idle processor and telling it to start running. The recorder
process then spoon feeds it all the messages that the original process received
between the checkpoint and the crash. Messages sent by the newly restarted
process are discarded. Once the new process has worked its way up to the point of
crash, it begins sending and receiving messages normally, without help from the
recording process.

STRENGTH AND WEAKNESS OF DISTRIBUTED OPERATING SYSTEM

STRENGTH
 The main goal of distributed system is the enormous rate of technological

change in micro processor technology.
 Micro processors have become powerful and cheap compared with

mainframes and minicomputer, so it has become attractive to think about
designing large system that composes of many processors.

 Relative simplicity of software: each software has a dedicated function.
 Incremental growth.
 Reliability and availability.

WEAKNESS
 Unless one is very careful, it is easy for the communication protocol

overhead to become a major source of in efficiency.
 With distributed systems, a high degree of fault tolerance is often, at least,

an implicit goal.
 A more fundamental problem in distributed system is the lack of global state

information.
 It is hard to schedule the processor optimally if you are not sure how many

are up at the moment.

CONCLUSION

Distributed operating systems are still in an early phase of development, with many
unanswered questions and relatively little agreement among workers in the field
about how things should be done. Many experimental systems use the client-server
model with some form of remote procedure call as the communication base, but
there are also systems built on the connection model. Relatively little has been
done on distributed naming, protection, and resource management, other than
building straightforward name servers and process servers.
Fault tolerance is an up-and-coming area, with work progressing in redundancy
techniques and atomic actions. Finally, a considerable amount of work has gone
into the construction of file servers, print servers, and various other servers, but

36
OPERATING SYSTEM II

here too there is much work to be done. The only conclusion that we draw is that
distributed operating systems will be an interesting and fruitful area of research for
a number of years to come.

