
1

Course Code: CSC 202

Course Title: Programming & Algorithms

Course Developer/Writer: A. J. Ikuomola

 &

 Dr. Akinwale

Department of Computer Science

College of Natural Science

University of Agriculture Abeokuta,

Ogun State, Nigeria

Programme Leader: Dr. Akinwale

Course Coordinator: Ikuomola A. J.

UNIVERSITY OF AGRICULTURE, ABEOKUTA

2

UNIT 1

INTRODUCTION TO PASCAL PROGRAMMING

INTRODUCTION
The Pascal programming language was created by Niklaus Wirth in 1970. It was named after
Blaise Pascal, a famous French Mathematician.

The Pascal language

 provides a teaching language that highlights concepts common to all computer languages
 standardizes the language in such a way that it makes programs easy to write

Strict rules make it difficult for the programmer to write bad code! A program is a sequence of
instructions which inform a computer of a required task.

BASIC FORMAT OF EVERY PASCAL PROGRAM
Every Pascal program has the same essential format, which is illustrated below,

 program TITLE (input, output);
 begin
 program statements;
 program statement
 end.

program is the first word of all Pascal programs. It is a keyword (Keywords are reserved, ie, you
cannot use keywords to describe variables). Keywords are used to implement the language.

TITLE is the name the programmer gives to the Pascal program being written. It is an identifier.
Identifiers begin with a letter, then followed by any digit, letter or the underscore character (_).
Identifiers are used to give names to user defined variables and methods used to perform
operations.

(input, output) states what the program will do, ie, input and/or output data. Data is inputted
from the keyboard, and outputted to the console screen.

begin defines the starting point of the program, and provides a means of grouping statements
together (i.e. all statements between a begin and end are considered part of the same group or
block). Program statements are commands or instructions to the computer which perform various
tasks.

end. This must always be the final statement of a Pascal program.

3

All program statements and lines are terminated with a semi-colon, except begin and end
keywords. Program statements preceding an end statement do not require a semi-colon.

Some valid keywords which implement Pascal are,

 Integer Char Record
 Case Real If
 While With Else

In addition, Pascal is NOT case sensitive. That means Else and else are treated the same

SELF TEST 1.1. Which of the following are valid Pascal identifiers?

 birthday Too_hot? First_Initial
 grade 1stprogram down.to.earth
 see you OldName case

Valid identifiers begin with a letter, then followed by any digit, letter or the underscore character
(_). Looking at the list above, the valid identifiers are

 birthday
 First_Initial
 grade
 OldName

Sample Identifier Reason why it is invalid
Too_hot? ?
1stprogram begins with a digit
down.to.earth .
see you illegal space
case reserved keyword

What you will need
Before you start learning Pascal, you will need a Pascal compiler.

STARTING A PROGRAM
The first thing to do is to either open your IDE if your compiler comes with one or open a text
editor. You can start a program by typing its name. Type program and the name of the program
next to it. We will call our first program "Hello" because it is going to print the words "Hello
world" on the screen.

program Hello;

4

Next we will type begin and end. We are going to type the main body of the program between
these 2 keywords. Remember to put the full stop after the end.

program Hello;

begin
end.

The Write command prints words on the screen.

program Hello;

begin
 Write('Hello world');
end.

You will see that the "Hello world" is between single quotes. This is because it is what is called a
string. All strings must be like this. The semi-colon at the end of the line is a statement separator.
You must always remember to put it at the end of the line.

MORE COMMANDS

Displaying information/data on the Screen
Writeln is just like Write except that it moves the cursor onto the next line after it has printed the
words. Here is a program that will print "Hello" and then "world" on the next line:

program Hello;
 begin
 Writeln('Hello');
 Write('world');
 Readln;
end.

If you want to skip a line then just use Writeln by itself without any brackets.

A simple Pascal Program
Write a program to print the words 'Hello. How are you?' on the console screen.

 program MYFIRST (output);
 begin
 writeln('Hello. How are you?')
 end.
 Sample Program Output
 Hello. How are you?
 _

5

The above shows both the program, and its sample output which is printed as a result of running
the program.

The keyword writeln writes text to the console screen. The text to be displayed is written inside
single quotes. After printing the text inside the single quotes, the cursor is positioned to the
beginning of the next line.

To print a single quote as part of the text, then use two quotes, eg,

 program TWOQUOTES (output);
 begin
 writeln('Hello there. I''m fine.')
 end.

 Sample program output is;
 Hello there. I'm fine.
 _

Note the underscore character represents the position of the cursor

write versus writeln
The write statement leaves the cursor at the end of the current output, rather than going to a new
line. By replacing the above program with a write statement, the result is,

 program TWOQUOTES (output);
 begin
 write('Hello there. I''m fine.')
 end.

 Sample program output is;
 Hello there. I'm fine._

 Note the underscore character represents the position of the cursor

Exercise 1.1: Write a program to print the following words on the console screen.

 Hello. How are you?
 I'm just fine.

The program can be implemented with writeln statements for each of the lines which need to be
printed. The text is enclosed in single quotes. The sample program below illustrates how this is
done. To display the single quote, two single quotes are used. This is due to Pascal using a single
quote to begin and end text strings, when two are encountered one after the other, Pascal
interprets this as a literal single quote.

6

 program MYSECOND (output);
 begin
 writeln('Hello. How are you?');
 writeln('I''m just fine.');
 end.

INTERACTIVE TEST 1.1

1: Comments are opened with { and closed with }
2: The end. statement signifies the end of a Pascal program.
3: The write statement sets the cursor at the end of the current text
4: Using the writeln statement, the cursor is positioned at the beginning of the next line
5: When printing text using write or writeln, the text is enclosed using single quotes
6: To print a single quote using write or writeln, use two single quotes one after the after, ''
7: Each program statement is terminated with a semi-colon
8: If the program is required to input data from the keyboard, the first line of the program reads
 program name (input);
9: If the program is required to input data from the keyboard, and also output data to the console
screen, the first line of the program reads
 program name (input, output);

Compiling
Our first program is now ready to be compiled. When you compile a program, the compiler reads
your source code and turns it into an executable file. If you are using an IDE then pressing
CTRL+F9 is usually used to compile and run the program. If you are compiling from the
command line with Free Pascal then enter the following:

fpc hello.pas

If you get any errors when you compile it then you must go over this lesson again to find out
where you made them. IDE users will find that their programs compile and run at the same time.
Command line users must type the name of the program in at the command prompt to run it.
You should see the words "Hello world" when you run your program and pressing enter will exit
the program. Congratulations! You have just made your first Pascal program.

Using commands from units
The commands that are built into your Pascal compiler are very basic. Units can be included in a
program to give you access to more commands. The crt unit is one of the most useful. The
ClrScr command in the crt unit clears the screen. Here is how you use it:

program Hello;
 uses
 crt;

begin

7

 ClrScr;
 Write('Hello world');
 Readln;
end.

Comments
Comments are things that are used to explain what a program does. Comments are inserted into
Pascal programs by enclosing the comment within { and } braces. Comments are ignored by the
computer, but are helpful to explain how the program works to other programmers or people who
use the source code.
You should always have a comment at the top of your program to say what it does as well as
comments for any code that is difficult to understand. Here is an example of how to comment the
program we just made:

{This program will clear the screen, print "Hello world" and wait for the user to press enter.}
program Hello;
 uses
 crt;
 begin
 ClrScr; {Clears the screen}
 Write('Hello world'); {Prints "Hello world"}
 Readln; {Waits for the user to press enter}
end.

program DEMOPROG (output);
 begin
 write('Hello there.');
 {the write statement does not set the cursor
 to the beginning of the next line. }
 writeln('This is getting boring.')
 { This is printed on the same line as Hello
 there, but now the cursor moves to the beginning
 of the next line, because this time we used writeln
 instead of write }
 end.

Sample Program Output
 Hello there. This is getting boring.

Indentation
You will notice that I have put 3 spaces in front of some of the commands. This is called
indentation and it is used to make a program easier to read. A lot of beginners do not understand
the reason for indentation and don't use it but when we start making longer, more complex
programs, you will understand.

8

UNIT 2

 COLORS, COORDINATES, WINDOWS AND SOUND

COLORS
To change the color of the text printed on the screen we use the TextColor command.

program Colors;
 uses
 crt;
 begin
 TextColor(Red);
 Writeln('Hello');
 TextColor(White);
 Writeln('world');
end.

The TextBackground command changes the color of the background of text. If you want to
change the whole screen to a certain color then you must use ClrScr.

program Colors;
 uses
 crt;
 begin
 TextBackground(Red);
 Writeln('Hello');
 TextColor(White);
 ClrScr;
end.

SCREEN COORDINATES
You can put the cursor anywhere on the screen using the GoToXY command. In DOS, the screen
is 80 characters wide and 25 characters high. The height and width varies on other platforms.
You may remember graphs from Maths which have a X and a Y axis. Screen coordinates work in
a similar way. Here is an example of how to move the cursor to the 10th column in the 5th row.

program Coordinates;
 uses
 crt;
 begin
 GoToXY(10,5);
 Writeln('Hello');
end.

9

WINDOWS
Windows let you define a part of the screen that your output will be confined to. If you create a
window and clear the screen it will only clear what is in the window. The Window command has
4 parameters which are the top left coordinates and the bottom right coordinates.

program Coordinates;
uses
 crt;

begin
 Window(1,1,10,5);
 TextBackground(Blue);
 ClrScr;
end.
Using window(1,1,80,25) will set the window back to the normal size.

SOUND

The Sound command makes a sound at the frequency you give it. It does not stop making a
sound until the NoSound command is used. The Delay command pauses a program for the
amount of milliseconds you tell it to. Delay is used between Sound and NoSound to make the
sound last for a certain amount of time.

program Sounds;

uses
 crt;
 begin
 Sound(1000);
 Delay(1000);
 NoSound;
end.

10

UNIT 3

VARIABLES AND CONSTANTS
WHAT ARE VARIABLES?
Variables are names given to blocks of the computer's memory. The names are used to store
values in these blocks of memory. Variables can hold values which are either numbers, strings or
Boolean. We already know what numbers are. Strings are made up of letters. Boolean variables
can have one of two values, either True or False.

PASCAL VARIABLES AND DATA TYPES
Variables store values and information. They allow programs to perform calculations and store
data for later retrieval. Variables store numbers, names, text messages, etc.

Pascal supports FOUR standard variable types, which are

 integer
 char
 boolean
 real

integer
Integer variables store whole numbers, ie, no decimal places. Examples of integer variables are,

 34 6458 -90 0 1112

char
Character variables hold any valid character which is typed from the keyboard, ie digits, letters,
punctuation, special symbols etc. Examples of characters are,

 XYZ 0ABC SAM_SAID.GET;LOST [] { } = + \ | % & () * $

boolean
Boolean variables, also called logical variables, can only have one of two possible states, true or
false.

real
Real variables are positive or negative numbers which include decimal places. Examples are,

 34.265 -3.55 0.0 35.997E+11

Here, the symbol E stands for 'times 10 to the power of'

11

Types integer, char and boolean are called ORDINAL types. This is because they have a limited,
specified range of values.

VARIABLE NAMES

Variable names are a maximum of 32 alphanumeric characters. Some Pascal versions only
recognize the first eight characters. The first letter of the data name must be ALPHABETIC (ie
A to Z). Lowercase characters (a to z) are treated as uppercase. Examples of variable names
are,
 RATE_OF_PAY HOURS_WORKED B41
 X y Home_score

Give variables meaningful names, which will help to make the program easier to read and
follow. This simplifies the task of error correction.

Assigning values to variables
Having declared a variable, you often want to make it equal to some value. In Pascal, the special
operator
 :=

provides a means of assigning a value to a variable. The following portion of code, which
appeared earlier, illustrates this.

 var number1, number2, number3 : integer;
 begin
 number1 := 43; { make number1 equal to 43 decimal }
 number2 := 34; { make number2 equal to 34 decimal }
 number3 := number1 + number2; { number3 equals 77 }

When assigning values to char variables, only one character is assigned, and it is enclosed inside
single quotes, eg,

 var letter : char;
 begin
 letter := 'W'; { this is correct }
 letter := 'WXY'; { this is wrong, only one character allowed }

When assigning values to real variables, if the value is less than one, use a leading zero, eg,

 var money : real;
 begin
 money := 0.34; { this is correct }
 money := .34; { this is wrong, must use leading zero }
 money := 34.5; { this is correct }

12

Using Pascal VARIABLES in a program
The basic format for declaring variables is,

 var name : type;

where name is the name of the variable being declared, and type is one of the recognized data
types for pascal.

Before any variables are used, they are declared (made known to the program). This occurs after
the program heading and before the keyword begin, e.g.,

 program VARIABLESINTRO (output);
 var number1: integer;
 number2: integer;
 number3: integer;
 begin
 number1 := 34; { this makes number1 equal to 34 }
 number2 := 43; { this makes number2 equal to 43 }
 number3 := number1 + number2;
 writeln(number1, ' + ', number2, ' = ', number3)
 end.

 Sample Program Output
 34 + 43 = 77
 _

The above program declares three integers, number1, number2 and number3.

To declare a variable, first write the variable name, followed by a colon, then the variable type
(int real etc). Variables of the same type can be declared on the same line, ie, the declaration of
the three integers in the previous program

 var number1: integer;
 number2: integer;
 number3:integer;

could've been declared as follows,

 var number1, number2, number3 : integer;

Each variable is separated by a comma, the colon signifies there is no more variable names, then
follows the data type to which the variables belong, and finally the trusty semi-colon to mark the
end of the line.

13

Some examples of variable declarations

 program VARIABLESINTRO2 (output);
 var number1: integer;
 letter : char;
 money : real;
 begin
 number1 := 34;
 letter := 'Z';
 money := 32.345;
 writeln('number1 is ', number1);
 writeln('letter is ', letter);
 writeln('money is ', money)
 end.

 Sample Program Output
 number1 is 34
 letter is Z
 money is 32.345
 _

SELF TEST 3.1
Are the following valid variable declarations?

 var day, month : integer;
 time : real;

 var time : real;
 day : integer;
 month: integer;

Answer: They are both identical and also valid!

Classify each of the following according to the four basic data types.
 34.276 ____________ -37 __________________

 H ____________ < __________________

 dd ____________ 5.09E+27 _______________

 0 ____________ 0.0 __________________

Answer:
34.276 Real -37 Integer

14

H Character < Character
dd Character 5.09E+27 Real
0 Integer 0.0 Real

Calculations with variables
Variables can be used in calculations. For example you could assign the value to a variable and
then add the number 1 to it. Here is a table of the operators that can be used:
+ Add
- Subtract
* Multiply
/ Floating Point Divide
div Integer Divide
mod Remainder of Integer Division

The following example shows a few calculations that can be done:

program Variables;
 var
 Num1, Num2, Ans: Integer;
 begin
 Ans := 1 + 1;
 Num1 := 5;
 Ans := Num1 + 3;
 Num2 := 2;
 Ans := Num1 - Num2;
 Ans := Ans * Num1;
end.

Strings hold characters. Characters include the letters of the alphabet as well as special characters
and even numbers. It is important to understand that integer numbers and string numbers are
different things. You can add strings together as well. All that happens is to joins the 2 strings. If
you add the strings '1' and '1' you will get '11' and not 2.

program Variables;
 var
 s: String;
 begin
 s := '1' + '1';
end.

You can read values from the keyboard into variables using Readln and ReadKey. ReadKey is
from the crt unit and only reads 1 character. You will see that ReadKey works differently to
Readln

15

program Variables;
 uses crt;
 var
 i: Integer;
 s: String;
 c: Char;
 begin
 Readln(i);
 Readln(s);
 c := ReadKey;
end.

Printing variables on the screen is just as easy. If you want to print variables and text with the
same Writeln then seperate them with commas.

program Variables;
var
 i: Integer;
 s: String;
begin
 i := 24;
 s := 'Hello';
 Writeln(i);
 Writeln(s,' world');
end.

Arithmetic Statements
The following symbols represent the arithmetic operators, ie, use them when you wish to
perform calculations.

Symbol Operation

+ Addition

- Subtraction

* Multiplication

/ Division

 Addition Example
 program Add (output);
 var number1, number2, result : integer;
 begin

16

 number1 := 10;
 number2 := 20;
 result := number1 + number2;
 writeln(number1, ' plus ', number2, ' is ', result)
 end.

 Sample Program Output
 10 plus 20 is 30

Subtraction Example
 program Subtract (output);
 var number1, number2, result : integer;
 begin
 number1 := 15;
 number2 := 2;
 result := number1 - number2;
 writeln(number1, ' minus ', number2, ' is ', result)
 end.

 Sample Program Output
 15 minus 2 is 13

Multiplication Example
 program Multiply (output);
 var number1, number2, result : integer;
 begin
 number1 := 10;
 number2 := 20;
 result := number1 * number2;
 writeln(number1, ' multiplied by ', number2, ' is ', result)
 end.

 Sample Program Output
 10 multiplied by 20 is 200

Division Example
 program Divide (output);
 var number1, number2, result : integer;
 begin
 number1 := 20;
 number2 := 10;
 result := number1 / number2;
 writeln(number1, ' divided by ', number2, ' is ', result)
 end.

17

Sample Program Output
 20 divided by 10 is 2

SELF TEST 3.2
The following program contains a few errors. Identify each error (there are seven), and show the
correct version on the right.

 progam TEST (output)
 var number1, number2; integer;
 begin;
 number1 = 24;
 number2 := number1 * 4;
 writeln('Help)
 end

Solution:
 program TEST (output);
 var number1, number2 : integer;
 begin
 number1 := 24;
 number2 := number1 * 4;
 writeln('Help')
 end.

Displaying the value or contents of variables
The write or writeln statement displays the value of variables on the console screen. To print
text, enclose inside single quotes. To display the value of a variable, do NOT enclose using
single quotes, eg, the following program displays the content of each of the variables declared.

 program DISPLAYVARIABLES (output);
 var number1 : integer;
 letter : char;
 money : real;
 begin
 number1 := 23;
 letter := 'W';
 money := 23.73;
 writeln('number1 = ', number1);
 writeln('letter = ', letter);
 writeln('money = ', money)
 end.

The display output from the above program will be,

18

 number1 = 23
 letter = W
 money = 2.3730000000E+01

SELF TEST 3.3
Each of the following expressions is wrong. Rewrite each using correct Pascal, in the space
provided.

 Firstletter := A;
 StartCount := Initial := 0;

 Taxrate := 5%;
 Total := 5 plus 7;
 Efficiency := .35;

Solution:
Firstletter := 'A';
StartCount := 0;
Initial := 0;
Taxrate := 0.05;
Total := 5 + 7;
Efficiency := 0.35;

SELF TEST 3.4
What is displayed by the following program.

 program EXERCISE1 (output);
 var a, b : integer;
 c : real;
 begin
 a := 1; b := 5; c := 1.20;
 writeln('A = ', a + 3);
 writeln('B = ', b - 2);
 writeln('C = ', c / 2)
 end.

Solution:
 Class Exercise .. program display is
 A = 4
 B = 3
 C = 6.0000000000E-01

19

PROGRAM 3.1
You are to write a program which calculates and prints on the screen, the time required to travel
3000 miles at a speed of 500 mph.

 program PROG1 (output);
 var Time, Distance, Speed : real;
 begin
 Distance := 3000;
 Speed := 500;
 Time := Distance / Speed;
 writeln('It takes ',Time,' hours.')
 end.

PROGRAM TWO
Write a program to calculate the gross pay for a worker named FRED given that FRED worked
40 hours at $2.90 per hour.

 program PROG2 (output);
 var grosspay, hoursworked, hourlyrate : real;
 begin
 hoursworked := 40;
 hourlyrate := 2.90;
 grosspay := hoursworked * hourlyrate;
 writeln('FRED''s gross pay is $', grosspay)
 end.

GETTING INFORMATION/DATA FROM THE KEYBOARD INTO A PROGRAM
It is convenient to accept data whilst a program is running. The read and readln statements allow
you to read values and characters from the keyboard, placing them directly into specified
variables.

The program that follows reads two numbers from the keyboard, assigns them to the specified
variables, then prints them to the console screen.

 program READDEMO (input, output);
 var numb1, numb2 : integer;
 begin
 writeln('Please enter two numbers separated by a space');
 read(numb1);
 read(numb2);
 writeln;
 writeln('Numb1 is ', numb1 , ' Numb2 is ', numb2)
 end.

20

When run, the program will display the message,

 Please enter two numbers separated by a space

waiting for you to enter in the two numbers. If you typed the two numbers, then pressed the
return key, e.g.,

 237 64 <return key press>

the program will accept the two numbers, assign the value 237 to numb1 and the value 64 to
numb2, then continue and finally print

 Numb1 is 237 Numb2 is 64

DIFFERENCES BETWEEN READ AND READLN

The readln statement discards all other values on the same line, but read does not. In the
previous program, replacing the read statements with readln and using the same input, the
program would assign 237 to numb1, discard the value 64, and wait for the user to enter in
another value which it would then assign to numb2.

The <return key> is read as a blank by read, and ignored by readln.

The Readln command will now be used to wait for the user to press enter before ending the
program.

program Hello;
begin
 Write('Hello world');
 Readln;
end.

You can now save your program as hello.pas.

SELF TEST 3.5: READ
Assuming that we made the following declaration
 var C1, C2, C3, C4, C5, C6 : char;
and that the user types
 ABCDE
then what would each of the following statements assign to the various variables,
 read(C1); C1 = __
 read(C2); read(C3); C2 = __ C3 = __
 read(C4, C5, C6); C4 = __ C5 = __ C6 = __

Answers:

21

 C1 = A
 C2 = B C3 = C
 C4 = D C5 = E C6 = <BLANK>

SELF TEST 3.6: READLN
Assuming that we made the following declaration
 var C1, C2, C3, C4, C5, C6 : char;
and that the user types
 ABCDE
FOR EACH LINE, then what would each of the following statements assign to the various
variables,
 readln(C1); C1 = __
 readln(C2); readln(C3); C2 = __ C3 = __
 readln(C4, C5, C6); C4 = __ C5 = __ C6 = __
 readln; _________________________

Answers:
 C1 = A
 C2 = A C3 = Waits for new input line
 C4 = A C5 = B C6 = C
 <clears input line, erasing ABCDE and waits for next line>

SELF TEST 3.7
Match the inputs and outputs for the following.....
 program READCHARACTERS (input, output);
 var C1, C2, C3, C4, C5, C6 : char;
 begin
 readln(C1, C2, C3, C4, C5, C6);
 writeln(C1, C2, C3, C4, C5, C6)
 end.

 Inputs Outputs (spaces shown as _)
 a) Hi there a) A1_B2_

 b) Hi b) 57_4_3
 there
 c) 694 c) Hi_the
 827
 d) 57 4 d) Hi_the
 329
 e) A1 e) 694_82
 B2 C3

Answers:
 a) Hi there c) Hi_ther
 b) Hi d) Hi_ther

22

 there
 c) 694 e) 694_82
 827
 d) 57 4 b) 57_4_3
 329
 e) A1 a) A1_B2_
 B2 C3

 a) Hi there c) Hi_ther
 b) Hi d) Hi_ther
 there
 c) 694 e) 694_82
 827
 d) 57 4 b) 57_4_3
 329
 e) A1 a) A1_B2_
 B2 C3

SPECIFYING THE DISPLAY FORMAT FOR THE OUTPUT OF VARIABLES
When variables are displayed, our version of Pascal assigns a specified number of character
spaces (called a field width) to display them. The field widths for the various data types are,

 INTEGER - Number of digits + 1 { or +2 if negative }
 CHAR - 1 for each character
 REAL - 12
 BOOLEAN - 4 if true, 5 if false

Often, the allotted field size is too big for the majority of display output. Pascal provides a way
in which the programmer can specify the field size for each output.

 writeln('WOW':10,'MOM!':10,'Hi there.');

The display output will be as follows,

 WOW.......MOM!......Hi there. ... indicates a space.

Note that to specify the field width of text or a particular variable, use a colon (:) followed by the
field size.

 'text string':fieldsize, variable:fieldsize

23

Integer Division
There is a special operator, DIV, used when you wish to divide one integer by another (ie, you
can't use /). The following program demonstrates this,

 program INTEGER_DIVISION (output);
 var number1, number2, number3 : integer;
 begin
 number1 := 4;
 number2 := 8;
 number3 := number2 DIV number1;
 writeln(number2:2,' divided by ',number1:2,' is ',number3:2)
 end.

 Sample Output
 8 divided by 4 is 2

Modulus
The MOD keyword means MODULUS, ie, it returns the remainder when one number is divided
by another,

 The modulus of 20 DIV 5 is 0
 The modulus of 21 DIV 5 is 1

 program MODULUS (output);
 var number1, number2, number3 : integer;
 begin
 number1 := 3;
 number2 := 10;
 number3 := number2 MOD number1;
 writeln(number2:2,' modulus ',number1:2,' is ',number3:2)
 end.

 Sample Output
 10 modulus 3 is 1

INTERACTIVE TEST 3.8:

1. Write a Pascal statement which sums the two integer variables digit and value into the variable
total

 Answer:
 total := digit + value;

24

2. Write a Pascal statement which subtracts the value 10 from the variable loop, leaving the
result in the variable sum

 Answer:
 sum := loop - 10;

3. Write a Pascal statement to display the value of the integer variable total
 Answer:
 writeln(total);

4. Write a Pascal statement to read in a character value into the variable letter
 Answer:
 readln(letter);

5. Write a Pascal statement to display the value of the real variable small_value using a field
width of three places
 Answer:
 writeln(small_value:3);

SPECIFYING THE NUMBER OF DECIMAL PLACES FOR DISPLAYING REALS
The following change to the above program will print out the circumference using a field width
of ten and two decimal places.

 writeln('The circles circumference is ',Circumference:10:2);

PROGRAM 3.2
Write a program which inputs the ordinary time and overtime worked, calculating the gross pay.
The rate is 4.20 per hour, and overtime is time and a half.

 program PROG8 (input, output);
 var grosspay, ordinary_time, hourlyrate, overtime, ot_rate: real;

 begin
 hourlyrate := 4.20;
 ot_rate := hourlyrate * 1.5;
 writeln('Please enter the number of hours worked');
 readln(ordinary_time);
 writeln('Please enter the number of overtime hours');
 readln(overtime);
 grosspay := (ordinary_time * hourlyrate) + (overtime * ot_rate);
 writeln('The gross pay is $', grosspay:5:2)
 end.

25

INTERACTIVE TEST 3.9:

1. Which of the following is an invalid Pascal relational operator
 ==
 <>
 <
 >
 Answer: ==

2. Write a Pascal statement which compares the integer variable sum to the constant value 10 and
if it is the same prints the string "Good guess"

 Answer: if sum = 10 then writeln('Good guess');

3. Write a Pascal statement which compares the character variable letter to the character variable
chinput, and if it is not the same, prints the value of letter

 Answer: if letter <> chinput then writeln(letter);

4. Write a Pascal statement to compare the character variable letter to the character constant 'A',
and if less, prints the text string "Too low", otherwise print the text string "Too high"

 Answer: if letter < 'A' then writeln('Too low')
 else writeln('Too high');

5. Write a Pascal statement to display the text string "Valve open", if the variable waterflow is
equal to 1, AND the variable outputvalue is equal to 0

 Answer: if (waterflow = 1) AND (outputvalue = 0) then writeln('Valve open');

6. Write a Pascal statement which declares a constant called MAXSIZE with a value of 80

 Answer: const MAXSIZE = 80;

7. Write a Pascal statement which will display the value of the real variable degrees using a
fieldwidth of 5 with three decimal places

 Answer: writeln('Degrees = ', degrees:5:3);

CONSTANTS
When writing programs, it is desirable to use values which do not change during the programs
execution. An example would be the value of PI, 3.141592654
In a program required to calculate the circumference of several circles, it would be simpler to
write the words PI, instead of its value 3.14. Pascal provides CONSTANTS to implement this.

26

To declare a constant, the keyword const is used, followed by the name of the constant, an
equals sign, the constants value, and then a semi-colon, eg,

 const PI = 3.141592654;

From now on, in the Pascal program, you use PI. When the program is compiled, the compiler
replaces every occurrence of the word PI with its actual value.
Thus, constants provide a short hand means of writing values and help to make programs easier
to read. The following program demonstrates the use of constants.

 program CIRCUMFERENCE (input, output);
 const PI = 3.141592654;
 var Circumfer, Diameter : real;
 begin
 writeln('Enter the diameter of the circle');
 readln(Diameter);
 Circumfer := PI * Diameter;
 writeln('The circles circumference is ',Circumfer)
 end.

27

UNIT 4

STRING HANDLING AND CONVERSIONS
STRING HANDLING
You can access a specific character in a string if you put the number of the position of that
character in square brackets behind a string.

program Strings;
 var
 s: String;
 c: Char;
 begin
 s := 'Hello';
 c := s[1]; {c = 'H'}
end.

You can get the length of a string using the Length command.

program Strings;
 var
 s: String;
 l: Integer;
 begin
 s := 'Hello';
 l := Length(s); {l = 5}
end.

To find the position of a string within a string use the Pos command.
Parameters:
1: String to find
2: String to look in

program Strings;
 var
 s: String;
 p: Integer;

begin
 s := 'Hello world';
 p := Pos('world',s);
end.

The Delete command removes characters from a string.
Parameters:

28

1: String to delete characters from
2: Position to start deleting from
3: Amount of characters to delete

program Strings;

var
 s: String;
 begin
 s := 'Hello';
 Delete(s,1,1); {s = 'ello'}
end.

The Copy command is like the square brackets but can access more than just one character.
Parameters:
1: String to copy characters from
2: Position to copy from
3: Amount of characters to copy

program Strings;
 var
 s, t: String;
 begin
 s := 'Hello';
 t := Copy(s,1,3); {t = 'Hel'}
end.

Insert will insert characters into a string at a certain position.
Parameters:
1: String that will be inserted into the other string
2: String that will have characters inserted into it
3: Position to insert characters

program Strings;
 var
 s: String;
 begin
 s := 'Hlo';
 Insert('el',s,2);
end.

The ParamStr command will give you the command-line parameters that were passed to a
program. ParamCount will tell you how many parameters were passed to the program.

29

Parameter 0 is always the program's name and from 1 upwards are the parameters that have been
typed by the user.

program Strings;
 var
 s: String;
 i: Integer;
 begin
 s := ParamStr(0);
 i := ParamCount;
end.

Conversions
The Str command converts an integer to a string.
program Convert;
 var
 s: String;
 i: Integer;
 begin
 i := 123;
 Str(i,s);
end.

The Val command converts a string to an integer.

program Convert;

var
 s: String;
 i: Integer;
 e: Integer;

begin
 s := '123';
 Val(s,i,e);
end.

Int will give you the number before the comma in a real number.

program Convert;
 var
 r: Real;
 begin
 r := Int(3.14);
end.

30

Frac will give you the number after the comma in a real number.

program Convert;
 var
 r: Real;
 begin
 r := Frac(3.14);
end.

Round will round off a real number to the nearest integer.
program Convert;
 var
 i: Integer;
 begin
 i := Round(3.14);
end.

Trunc will give you the number before the comma of a real number as an integer.

program Convert;
 var
 i: Integer;
 begin
 i := Trunc(3.14);
end.

Computers use the numbers 0 to 255 (1 byte) to represent characters internally and these are
called ASCII characters. The Ord command will convert a character to number and the Chr
command will convert a number to a character. Using a # in front of a number will also convert it
to a character.

program Convert;
 var
 b: Byte;
 c: Char;
 begin
 c := 'a';
 b := Ord(c);
 c := Chr(b);
 c := #123;
end.

The UpCase command changes a character from a lowercase letter to and uppercase letter.

31

program Convert;
 var
 c: Char;
begin
 c := 'a';
 c := UpCase(c);
end.

There is no lowercase command but you can do it by adding 32 to the ordinal value of an
uppercase letter and then changing it back to a character.

Extras

The Random command will give you a random number from 0 to the number you give it - 1. The
Random command generates the same random numbers every time you run a program so the
Randomize command is used to make them more random by using the system clock.

program Rand;
 var
 i: Integer;
 begin
 Randomize;
 i := Random(101);
end.

32

UNIT 5

MAKING DECISIONS

Most programs need to make decisions. There are several statements available in the Pascal
language for this. The IF statement is one of them. The RELATIONAL OPERATORS, listed
below, allow the programmer to test various variables against other variables or values.

Symbol Meaning

= Equal to
> Greater than
< Less than

<> Not equal to
<= Less than or equal to
>= Greater than or equal to

The format for the IF THEN Pascal statement is,
 if condition_is_true then
 execute_this_program_statement;

The condition (i.e., A < 5) is evaluated to see if it's true. When the condition is true, the program
statement will be executed. If the condition is not true, then the program statement following the
keyword then will be ignored.

 program IF_DEMO (input, output); {Program demonstrating IF THEN statement}
 var number, guess : integer;
 begin
 number := 2;
 writeln('Guess a number between 1 and 10');
 readln(guess);
 if number = guess then writeln('You guessed correctly. Good on you!');
 if number <> guess then writeln('Sorry, you guessed wrong.')
 end.

IF THEN ELSE
The if statement allows a program to make a decision based on a condition. The following
example asks the user to enter a number and tells you if the number is greater than 5:

Example 5.1
program Decisions;
 var
 i: Integer;
 begin
 Writeln('Enter a number');

33

 Readln(i);
 if i > 5 then
 Writeln('Greater than 5');
end.

The above example only tells you if the number is greater than 5. If you want it to tell you that it
is not greater than 5 then we use else. When you use else you must not put a semi-colon on the
end of the command before it.

program Decisions;
 var
 i: Integer;
 begin
 Writeln('Enter a number');
 Readln(i);
 if i > 5 then
 Writeln('Greater than 5')
 else
 Writeln('Not greater than 5');
end.

If the condition is True then the then part is chosen but if it is False then the else part is chosen.
This is because the conditions such as i > 5 is a Boolean equation. You can even assign the result
of a Boolean equation to a Boolean variable.

Example 5.2
program Decisions;
 var
 i: Integer;
 b: Boolean;
 begin
 Writeln('Enter a number');
 Readln(i);
 b := i > 5;
end.

If you want to use more than 1 condition then you must put each condition in brackets. To join
the conditions you can use either AND or OR. If you use AND then both conditions must be true
but if you use OR then only 1 or both of the conditions must be true.

Example 5.3
program Decisions;
 var
 i: Integer;
 begin
 Writeln('Enter a number');

34

 Readln(i);
 if (i > 1) and (i < 100) then
 Writeln('The number is between 1 and 100');
end.

If you want to put 2 or more commands for an if statement for both the then and the else parts
you must use begin and end; to group them together. You will see that this end has a semi-colon
after it instead of a full stop.

Example 5.4
program Decisions;
 var
 i: Integer;
 begin
 Writeln('Enter a number');
 Readln(i);
 if i > 0 then
 begin
 Writeln('You entered ',i);
 Writeln('It is a positive number');
 end;
end.

You can also use if statements inside other if statements.

Example 5.5
program Decisions;
var
 i: Integer;
 begin
 Writeln('Enter a number');
 Readln(i);
 if i > 0 then
 Writeln('Positive')
 else
 if i < 0 then
 Writeln('Negative')
 else
 Writeln('Zero');
end.

EXECUTING MORE THAN ONE STATEMENT AS PART OF AN IF
To execute more than one program statement when an if statement is true, the program
statements are grouped using the begin and end keywords. Whether a semi-colon follows the end
keyword depends upon what comes after it. When followed by another end or end. then it no
semi-colon, e.g.,

35

 program IF_GROUP1 (input, output);
 var number, guess : integer;
 begin
 number := 2;
 writeln('Guess a number between 1 and 10');
 readln(guess);
 if number = guess then
 begin
 writeln('Lucky you. It was the correct answer.');
 writeln('You are just too smart.')
 end;
 if number <> guess then writeln('Sorry, you guessed wrong.')
 end.

 program IF_GROUP2 (input, output);
 var number, guess : integer;
 begin
 number := 2;
 writeln('Guess a number between 1 and 10');
 readln(guess);
 if number = guess then
 begin
 writeln('Lucky you. It was the correct answer.');
 writeln('You are just too smart.')
 end
 end.

IF THEN ELSE
The IF statement can also include an ELSE statement, which specifies the statement (or block or
group of statements) to be executed when the condition associated with the IF statement is false.
Rewriting the previous program using an IF THEN ELSE statement,

 { Program example demonstrating IF THEN ELSE statement }
 program IF_ELSE_DEMO (input, output);
 var number, guess : integer;
 begin
 number := 2;
 writeln('Guess a number between 1 and 10');
 readln(guess);
 if number = guess then
 writeln('You guessed correctly. Good on you!')
 else

36

 writeln('Sorry, you guessed wrong.')
 end.

There are times when you want to execute more than one statement when a condition is true (or
false for that matter). Pascal makes provision for this by allowing you to group blocks of code
together by the use of the begin and end keywords. Consider the following portion of code,

 if number = guess then
 begin
 writeln('You guessed correctly. Good on you!');
 writeln('It may have been a lucky guess though')
 end {no semi-colon if followed by an else }
 else
 begin
 writeln('Sorry, you guessed wrong.');
 writeln('Better luck next time')
 end; {semi-colon depends on next keyword }

SELF TEST 5.1
What is displayed when the following program is executed?

 program IF_THEN_ELSE_TEST (output);
 var a, b, c, d : integer;
 begin
 a := 5; b := 3; c := 99; d := 5;
 if a > 6 then writeln('A');
 if a > b then writeln('B');
 if b = c then
 begin
 writeln('C');
 writeln('D')
 end;
 if b <> c then writeln('E') else writeln('F');
 if a >= c then writeln('G') else writeln('H');
 if a <= d then
 begin
 writeln('I');
 writeln('J')
 end
 end.

Answer:
 Class Exercise .. Program output of IF_THEN_ELSE_TEST is...
 B
 E

37

 H
 I
 J
PROGRAM 5.1
Calculate the gross pay for an employee. Input the rate of pay, hours worked and the service
record in years. When the service record is greater than 10 years, an allowance of $15 is given.
Verify that the program works by supplying appropriate test data.

Solution:
 program PROGFIVE (input, output);
 var grosspay, hoursworked, hourlyrate : real;
 service_record : integer;
 begin
 writeln('Please enter the hourly pay rate');
 readln(hourlyrate);
 writeln('Please enter the number of hours worked');
 readln(hoursworked);
 grosspay := hoursworked * hourlyrate;
 writeln('Please enter the service record in years');
 readln(service_record);
 if service_record > 10 then grosspay := grosspay + 15;
 writeln('The gross pay is $', grosspay)
 end.

PROGRAM 5.2
Write a program which inputs two values, call them A and B. Print the value of the largest
variable.

Solution:
 program prog6 (input, output);
 var value1, value2 : integer;
 begin
 writeln('Please enter two numbers seperated by a space');
 readln(value1, value2);
 if value1 > value2 then
 writeln(value1,' is greater than ', value2)
 else
 if value1 = value2 then
 writeln(value1, ' is the same as ', value2)
 else
 writeln(value2, ' is greater than ', value1)
 end.

38

PROGRAM 5.3
Modify the program you wrote for program six, to accept three values, A B C, and print the
largest value.

Solution:
 program prog7 (input, output);
 var A, B, C : integer;
 begin
 writeln('Please enter three numbers seperated by spaces');
 readln(A, B, C);
 if A >= B then
 begin
 if A >= C then writeln(A,' is the largest')
 else writeln(C,' is largest')
 end
 else
 if B >= C then writeln(B,' is the largest')
 else writeln(C,' is the largest')
 end.

THE AND OR NOT STATEMENTS
The AND, OR and NOT keywords are used where you want to execute a block of code (or
statement) when more than one condition is necessary.
 AND The statement is executed only if BOTH conditions are true,
 if (A = 1) AND (B = 2) then writeln('Bingo!');

 OR The statement is executed if EITHER argument is true,
 if (A = 1) OR (B = 2) then writeln('Hurray!');

 NOT Converts TRUE to FALSE and vsvs
 if NOT ((A = 1) AND (B = 2)) then writeln('Wow, really heavy man!');

SELF TEST 5.1
What is displayed after the following program is executed?

 program AND_OR_NOT_DEMO (output);
 var a, b, c : integer;
 begin
 a := 5; b := 3; c := 99;
 if (a = 5) or (b > 2) then writeln('A');
 if (a < 5) and (b > 2) then writeln('B');
 if (a = 5) and (b = 2) then writeln('C');
 if (c <> 6) or (b > 10) then writeln('D') else writeln('E');
 if (b = 3) and (c = 99) then writeln('F');
 if (a = 1) or (b = 2) then writeln('G');

39

 if not((a < 5) and (b > 2)) then writeln('H')
 end.

Answers:
 Class Exercise .. Output of program AND_OR_NOT_DEMO is,
 A
 D
 F
 H

The CASE statement
The case statement allows you to rewrite code which uses a lot of if else statements, making the
program logic much easier to read. Consider the following code portion written using if else
statements,

 if operator = '*' then result := number1 * number2
 else if operator = '/' then result := number1 / number2
 else if operator = '+' then result := number1 + number2
 else if operator = '-' then result := number1 - number2
 else invalid_operator = 1;

Rewriting this using case statements,
 case operator of
 '*' : result:= number1 * number2;
 '/' : result:= number1 / number2;
 '+' : result:= number1 + number2;
 '-' : result:= number1 - number2;
 otherwise invalid_operator := 1
 end;

The value of operator is compared against each of the values specified. If a match occurs, then
the program statement(s) associated with that match are executed.
If operator does not match, it is compared against the next value. The purpose of the otherwise
clause ensures that appropiate action is taken when operator does not match against any of the
specified cases.
You must compare the variable against a constant, how-ever, it is possible to group cases as
shown below,
 case user_request of
 'A' :
 'a' : call_addition_subprogram;
 's' :
 'S' : call_subtraction_subprogram;
 end;

The case command is like an if statement but you can have many conditions with actions for
each one.

40

Example 5.6
program Decisions;
 uses
 crt;
 var
 Choice: Char;
 begin
 Writeln('Which on of these do you like?');
 Writeln('a - Apple:');
 Writeln('b - Banana:');
 Writeln('c - Carrot:');
 Choice := ReadKey;
 case Choice of
 'a': Writeln('You like apples');
 'b': Writeln('You like bananas');
 'c': Writeln('You like carrots');
 else
 Writeln('You made an invalid choice');
 end;
end.

PROGRAM 5.4
Convert the following program, using appropiate case statements.

 program PROG_TWELVE (input, output);
 var invalid_operator : boolean;
 operator : char;
 number1, number2, result : real;
 begin
 invalid_operator := FALSE;
 writeln('Enter two numbers and an operator in the format');
 writeln(' number1 operator number2');
 readln(number1); readln(operator); readln(number2);
 if operator = '*' then result := number1 * number2
 else if operator = '/' then result := number1 / number2
 else if operator = '+' then result := number1 + number2
 else if operator = '-' then result := number1 - number2
 else invalid_operator := TRUE;

 if invalid_operator then
 writeln('Invalid operator')
 else
 writeln(number1:4:2,' ', operator,' ', number2:4:2,' is '
 ,result:5:2)
 end.

41

Solution: Conversion of PROG_TWELVE using case operator

 program PROG_TWELVE (input, output); {Data General Version}
 var invalid_operator : boolean;
 operator : char;
 number1, number2, result : real;
 begin
 invalid_operator := FALSE;
 writeln('Enter two numbers and an operator in the format');
 writeln(' number1 operator number2');
 readln(number1); readln(operator); readln(number2);
 case operator of
 '*': result := number1 * number2;
 '/': result := number1 / number2;
 '+': result := number1 + number2;
 '-': result := number1 - number2;
 otherwise invalid_operator := TRUE
 end;
 if invalid_operator then
 writeln('Invalid operator')
 else
 writeln(number1:4:2,' ', operator,' ', number2:4:2,' is '
 ,result:5:2)
 end.
 {Note that turbo pascal does not support use of otherwise}
 {Special changes for Turbo are }

 case operator of
 '*': result := number1 * number2;
 '/': result := number1 / number2;
 '+': result := number1 + number2;
 '-': result := number1 - number2;
 else invalid_operator := TRUE
 end;

42

UNIT 6

LOOPS

Loops are used when you want to repeat code a lot of times. For example, if you wanted to print
"Hello" on the screen 10 times you would need 10 Writeln commands. You could do the same
thing by putting 1 Writeln command inside a loop which repeats itself 10 times.

There are 3 types of loops which are the for loop, while loop and repeat until loop.

The most common loop in Pascal is the FOR loop. The statement inside the for block is executed
a number of times depending on the control condition. The format's for the FOR command is,
 FOR var_name := initial_value TO final_value DO program_statement;

 FOR var_name := initial_value TO final_value DO
 begin
 program_statement; {to execute more than one statement in a for }
 program_statement; {loop, you group them using the begin and }
 program_statement {end statements }
 end; {semi-colon here depends upon next keyword }

 FOR var_name := initial_value DOWNTO final_value DO program_statement;

You must not change the value of the control variable (var_name) inside the loop. The following
program illustrates the for statement.

 program CELSIUS_TABLE (output);
 var celsius : integer; fahrenheit : real;
 begin
 writeln('Degree''s Celsius Degree''s Fahrenheit');
 for celsius := 1 to 20 do
 begin
 fahrenheit := (9 / 5) * celsius + 32;
 writeln(celsius:8, ' ',fahrenheit:16:2)
 end
 end.

The for loop uses a loop counter variable, which it adds 1 to each time, to loop from a first
number to a last number.

program Loops;
var
 i: Integer;
 begin
 for i := 1 to 10 do

43

 Writeln('Hello');
end.

If you want to have more than 1 command inside a loop then you must put them between a begin
and an end.

program Loops;
 var
 i: Integer;
 begin
 for i := 1 to 10 do
 begin
 Writeln('Hello');
 Writeln('This is loop ',i);
 end;
end.

SELF TEST 6.1
What is the resultant output when this program is run.

 program FOR_TEST (output);
 var s, j, k, i, l : integer;
 begin
 s := 0;
 for j:= 1 to 5 do
 begin
 write(j);
 s := s + j
 end;
 writeln(s);
 for k := 0 to 1 do write(k);
 for i := 10 downto 1 do writeln(i);
 j := 3; k := 8; l := 2;
 for i := j to k do writeln(i + l)
 end.

Solution:
 Class Exercise .. Output of program FOR_TEST is,
 1234515
 0110
 9
 8
 7
 6
 5
 4

44

 3
 2
 1
 5
 6
 7
 8
 9
 10

PROGRAM 6.2
For the first twenty values (1 - 20) of fahrenheit, print out the equivalent degree in celsius (Use a
tabular format, with appropiate headings). [C = (5 / 9) * (fahrenheit - 32)]

Use the statement writeln('<14>'); to clear the screen.

Solution:
PROGRAM NINE Table of 1 to 20 Celcius
program PROG9 (output);
var fahrenheit : real;
 celsius : integer;
begin
 writeln('<14>'); {clear screen on DG machine}
 writeln('Degrees Fahrenheit Degrees Celsius');
 for fahrenheit := 1 to 20 do
 begin
 celsius := (9 / 5) * (fahrenheit - 32);
 writeln(fahrenheit:16:2, ' ', celsius:8)
 end
end.

Turbo Pascal for DOS Version
PROGRAM NINE Table of 1 to 20 Celsius

program PROG9 (output);
uses DOS;
var fahrenheit : real;
 celsius : integer;
begin
 clrscr; {clear screen}
 writeln('Degrees Fahrenheit Degrees Celsius');
 for fahrenheit := 1 to 20 do
 begin
 celsius := (9 / 5) * (fahrenheit - 32);
 writeln(fahrenheit:16:2, ' ', celsius:8)
 end

45

end.

NESTED LOOPS
A for loop can occur within another, so that the inner loop (which contains a block of statements)
is repeated by the outer loop.

RULES RELATED TO NESTED FOR LOOPS
1. Each loop must use a separate variable
2. The inner loop must begin and end entirely within the outer loop.

SELF TEST 6.2
Determine the output of the following program,

 program NESTED_FOR_LOOPS (output);
 var line, column : integer;
 begin
 writeln('LINE');
 for line := 1 to 6 do
 begin
 write(line:2);
 for column := 1 to 4 do
 begin
 write('COLUMN':10); write(column:2)
 end;
 writeln
 end
 end.

Solution:
 Class exercise .. output of program NESTED_FOR_LOOPS is,
 LINE
 1 COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4
 2 COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4
 3 COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4
 4 COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4
 5 COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4
 6 COLUMN 1 COLUMN 2 COLUMN 3 COLUMN 4

PROGRAM 6.3
Given that the reactance (Xc) of a capacitor equals 1 / (2PIfC), where f is the frequency in hertz,
C is the capacitance in farads, and PI is 3.14159, write a program that displays the reactance of
five successive capacitor's (their value typed in from the keyboard), for the frequency range 100
to 1000 Hertz in 100Hz steps.

46

Solution:
 program PROG10 (input, output);
 const PI = 3.14159;
 var frequency , loopcount, innerloop : integer;
 capacitor, Xc : real;
 begin
 for loopcount := 1 to 5 do
 begin
 writeln;
 writeln('Enter capacitance farad value for capacitor #',
 loopcount);
 readln(capacitor);
 for innerloop := 1 to 10 do
 begin
 frequency := innerloop * 100;
 Xc := 1 / (2 * PI * frequency * capacitor);
 write('At ',frequency:4,'hz ');
 writeln('the reactance is ', Xc,' ohms.')
 end
 end
 end.

PROGRAM 6.4
The factorial of an integer is the product of all integers up to and including that integer, except
that the factorial of 0 is 1.

 eg, 3! = 1 * 2 * 3 (answer=6)

Evaluate the factorial of an integer less than 20, for five numbers input successively via the
keyboard.

Solution:
 program PROG11 (input, output);
 var loopcount, innerloop, number, factorial : integer;
 begin
 for loopcount := 1 to 5 do
 begin
 writeln;
 writeln('Enter number ',loopcount, ' for calculation');
 readln(number);
 if number = 0 then factorial := 0
 else
 begin
 factorial := 1;
 for innerloop := number downto 1 do
 factorial := factorial * innerloop

47

 end;
 writeln('The factorial of ',number,' is ',factorial)
 end
 end.

THE WHILE LOOP
The while loop is similar to the for loop shown earlier, in that it allows a {group of} program
statement(s) to be executed a number of times.
The while loop repeats while a condition is true. The condition is tested at the top of the loop and
not at any time while the loop is running as the name suggests. A while loop does not need a
loop variable but if you want to use one then you must initialize its value before entering the
loop.

The structure of the while statement is,
 while condition_is_true do
 begin
 program statement;
 program statement
 end; {semi-colon depends upon next keyword}

or, if only a single program statement is to be executed,
 while condition_is_true do program statement;

The program statement(s) are executed when the condition evaluates as true. Somewhere inside
the loop the value of the variable which is controlling the loop (ie, being tested in the condition)
must change so that the loop can finally exit.

program Loops;
 var
 i: Integer;
 begin
 i := 0;
 while i <= 10
 begin
 i := i + 1;
 Writeln('Hello');
 end;
end.

SELF TEST 6.4
Determine the output of the following program
 program WHILE_DEMO (output);
 const PI = 3.14;
 var XL, Frequency, Inductance : real
 begin
 Inductance := 1.0;

48

 Frequency := 100.00;
 while Frequency < 1000.00 do
 begin
 XL := 2 * PI * Frequency * Inductance;
 writeln('XL at ',Frequency:4:0,' hertz = ', XL:8:2);
 Frequency := Frequency + 100.00
 end
 end.

Solution:
 Self test .. Output of program WHILE_DEMO is..
 XL at 100 hertz =
 XL at 200 hertz =

 XL at 1000 hertz =

REPEAT
The REPEAT statement is similar to the while loop, however, with the repeat statement, the
conditional test occurs after the loop (that is, it tests the condition at the bottom of the loop. It
also doesn't have to have a begin and an end if it has more than one command inside it).
. The program statement(s) which constitute the loop body will be executed at least once. The
format is,

 repeat
 program statement;
 until condition_is_true; {semi-colon depends on next keyword}

There is no need to use the begin/end keywords to group more than one program statement, as all
statements between repeat and until are treated as a block.

program Loops;
 var
 i: Integer;
 begin
 i := 0;
 repeat
 i := i + 1;
 Writeln('Hello');
 until i = 10;
end.

If you want to use more than one condition for either the while or repeat loops then you have to
put the conditions between brackets.

49

program Loops;
 var
 i: Integer;
 s: String;
 begin
 i := 0;
 repeat
 i := i + 1;
 Write('Enter a number: ');
 Readln(s);
 until (i = 10) or (s = 0);
end.

Break and Continue
The Break command will exit a loop at any time. The following program will not print anything
because it exits the loop before it gets there.

program Loops;
 var
 i: Integer;
 begin
 i := 0;
 repeat
 i := i + 1;
 Break;
 Writeln(i);
 until i = 10;
end.

The Continue command will jump back to the top of a loop. This example will also not print
anything but unlike the Break example, it will count all the way to 10.

program Loops;
var
 i: Integer;
 begin
 i := 0;
 repeat
 i := i + 1;
 Continue;
 Writeln(i);
 until i = 10;
end.

50

UNIT 7

MODULAR PROGRAMMING USING PROCEDURES AND FUNCTIONS

Modular programming is a technique used for writing large programs. The program is
subdivided into small sections. Each section is called a module, and performs a single task.

Examples of tasks a module might perform are,

 displaying an option menu
 printing results
 calculating average marks
 sorting data into groups

A module is known by its name, and consists of a set of program statements grouped using the
begin and end keywords. The module (group of statements) is executed when you type the
module name.

Pascal uses three types of modules. The first two are called PROCEDURES, the other a
FUNCTION.

 Simple procedures do not accept any arguments (values or data) when the procedure is
executed (called).

 Complex procedures accept values to work with when they are executed.
 Functions, when executed, return a value (ie, calculate an answer which is made available

to the module which wants the answer)

Procedures help support structured program design, by allowing the independant development of
modules. Procedures are essentially sub-programs.

PROCEDURES
Procedures are sub-programs that can be called from the main part of the program. Procedures
are declared outside of the main program body using the procedure keyword. Procedures must
also be given a unique name. Procedures have their own begin and end. Here is an example of
how to make a procedure called Hello that prints "Hello" on the screen.

program Procedures;
 procedure Hello;
begin
 Writeln('Hello');
end;
 begin
end.

To use a procedure we must call it by using its name in the main body.

51

program Procedures;
 procedure Hello;
begin
 Writeln('Hello');
end;

begin
 Hello;
end.

Procedures must always be above where they are called from. Here is an example of a procedure
that calls another procedure.

program Procedures;
procedure Hello;
begin
 Writeln('Hello');
end;

procedure HelloCall;
begin
 Hello;
end;
 begin
 HelloCall;
end.

Procedures can have parameters just like the other commands we have been using. Each
parameter is given a name and type and is then used just like any other variable. If you want to
use more than one parameter then they must be separated with semi-colons.

program Procedures;
 procedure Print(s: String; i: Integer);
begin
 Writeln(s);
 Writeln(i);
end;

begin
 Print('Hello',3);
end.

1. SIMPLE PROCEDURES
Procedures are used to perform tasks such as displaying menu choices to a user. The procedure
(module) consists of a set of program statements, grouped by the begin and end keywords. Each
procedure is given a name, similar to the title that is given to the main module.

52

Any variables used by the procedure are declared before the keyword begin.

 PROCEDURE DISPLAY_MENU;
 begin
 writeln('<14>Menu choices are');
 writeln(' 1: Edit text file');
 writeln(' 2: Load text file');
 writeln(' 3: Save text file');
 writeln(' 4: Copy text file');
 writeln(' 5: Print text file')
 end;

The above procedure called DISPLAY_MENU, simply executes each of the statements in turn.
To use this in a program, we write the name of the procedure, eg,

 program PROC1 (output);

 PROCEDURE DISPLAY_MENU;
 begin
 writeln('<14>Menu choices are');
 writeln(' 1: Edit text file');
 writeln(' 2: Load text file');
 writeln(' 3: Save text file');
 writeln(' 4: Copy text file');
 writeln(' 5: Print text file')
 end;

 begin
 writeln('About to call the procedure');
 DISPLAY_MENU;
 writeln('Now back from the procedure')
 end.

In the main portion of the program, it executes the statement

 writeln('About to call the procedure');

then calls the procedure DISPLAY_MENU. All the statements in this procedure are executed, at
which point we go back to the statement which follows the call to the procedure in the main
section, which is,

53

 writeln('Now back from the procedure')

The sample output of the program is

 About to call the procedure
 Menu choices are
 1: Edit text file
 2: Load text file
 3: Save text file
 4: Copy text file
 5: Print text file
 Now back from the procedure

Self Test 7.1: Simple Procedures
What does this program display?

 program SIMPLE_PROCEDURES (input,output);
 var time, distance, speed : real;

 procedure display_title;
 begin
 writeln('This program calculates the distance travelled based');
 writeln('on two variables entered from the keyboard, speed and');
 writeln('time.')
 end;

 procedure get_choice;
 begin
 writeln('Please enter the speed in MPH');
 readln(speed);
 writeln('Please enter the time in hours');
 readln(time)
 end;

 procedure calculate_distance;
 begin
 distance := speed * time
 end;

 procedure display_answer;
 begin
 writeln('The distance travelled is ', distance:5:2,' miles.')
 end;

54

 begin {This is the actual start of the program}
 display_title;
 get_choice;
 calculate_distance;
 display_answer
 end.

Solution:
SELF TEST on Procedures, output of program SIMPLE_PROCEDURES is,

 This program calculates the distance travelled based
 on two variables entered from the keyboard, speed and
 time.
 Please enter the speed in MPH
 30
 Please enter the time in hours
 2
 The distance travelled is 60 miles.

{Note that the three variables, time, speed and distance, are available to all procedures. They
may be updated by any procedure, and are known as GLOBAL variables}.
Variables which are declared external (outside of) to any procedure are accessible anywhere in
the program. The use of global variables is limited. In a large program, it is difficult to determine
which procedure updates the value of a global variable.

PROGRAM 7.1
Convert the calculator program, using simple procedures, to perform the various calculations.
Use global variables for number1, operator and number2.

Solution:
 program PROG15 (input,output);
 var invalid_operator : boolean;
 operator : char;
 number1, number2, result : real;

 procedure MULTIPLY;
 begin
 result := number1 * number2
 end;

 procedure DIVIDE;
 begin
 result := number1 / number2
 end;

 procedure ADD;

55

 begin
 result := number1 + number2
 end;

 procedure SUBTRACT;
 begin
 result := number1 - number2
 end;

 procedure GET_INPUT;
 begin
 writeln('Enter two numbers and an operator in the format');
 writeln(' number1 operator number2');
 readln(number1); readln(operator); readln(number2)
 end;

 begin
 invalid_operator := FALSE;
 GET_INPUT;
 case operator of
 '*': MULTIPLY;
 '/': DIVIDE;
 '+': ADD;
 '-': SUBTRACT;
 otherwise invalid_operator := TRUE
 end;
 if invalid_operator then
 writeln('Invalid operator')
 else
 writeln(number1:4:2,' ', operator,' ', number2:4:2,' is '
 ,result:5:2)
 end.

 {Special changes for Turbo are
 case operator of
 '*': result := MULTIPLY;
 '/': result := DIVIDE;
 '+': result := ADD;
 '-': result := SUBTRACT;
 else invalid_operator := TRUE
 end; }

PROCEDURES AND LOCAL VARIABLES
program Procedures;
 procedure Print(s: String);
var

56

 i: Integer;
begin
 for i := 1 to 3 do
 Writeln(s);
end;

begin
 Print('Hello');
end.

A procedure can declare it's own variables to work with. These variables belong to the procedure
in which they are declared. Variables declared inside a procedure are known as local. Local
variables can only be used inside procedures but the memory they use is released when the
procedure is not being used. Local variables are declared just underneath the procedure name
declaration.

Local variables can be accessed anywhere between the begin and matching end keywords of the
procedure. The following program illustrates the use and scope (where variables are visible or
known) of local variables.

 program LOCAL_VARIABLES (input, output);
 var number1, number2 : integer; {these are accessible by all}

 procedure add_numbers;
 var result : integer; {result belongs to add_numbers}
 begin
 result := number1 + number2;
 writeln('Answer is ',result)
 end;

 begin {program starts here}
 writeln('Please enter two numbers to add together');
 readln(number1, number2);
 add_numbers
 end.

SELF TEST 7.2: LOCAL VARIABLES
Determine this programs output.

 program MUSIC (output);
 const SCALE = 'The note is ';
 var JohnnyOneNote : char;

 procedure Tune;

57

 const SCALE = 'The note now is ';
 var JohnnyOneNote : char;
 begin
 JohnnyOneNote := 'A';
 writeln(SCALE, JohnnyOneNote)
 end;

 begin
 JohnnyOneNote := 'D';
 writeln(SCALE, JohnnyOneNote);
 Tune;
 writeln(SCALE, JohnnyOneNote)
 end.

Solution
 Self Test on Local variables, output of program MUSIC is,
 The note is D
 The note now is A
 The note is D

PROCEDURES WHICH ACCEPT ARGUMENTS
Procedures may also accept variables (data) to work with when they are called.

Declaring the variables within the procedure

 The variables accepted by the procedure are enclosed using parenthesis.
 The declaration of the accepted variables occurs between the procedure name and the

terminating semi-colon.

Calling the procedure and Passing variables (or values) to it

 When the procedure is invoked, the procedure name is followed by a set of parenthesis.
 The variables to be passed are written inside the parenthesis.
 The variables are written in the same order as specified in the procedure.

Consider the following program example,

 program ADD_NUMBERS (input, output);

 procedure CALC_ANSWER (first, second : integer);
 var result : integer;
 begin
 result := first + second;
 writeln('Answer is ', result)
 end;

58

 var number1, number2 : integer;
 begin
 writeln('Please enter two numbers to add together');
 readln(number1, number2);
 CALC_ANSWER(number1, number2)
 end.

SELF TEST 7.3: PROCEDURES WHICH ACCEPT PARAMETERS
The output is?

 program TestValue (output);
 var x, y : integer;

 procedure NoEffect (x, y : integer);
 begin
 x := y; y := 0;
 writeln(x, y)
 end;

 begin
 x := 1; y := 2;
 writeln(x, y);
 NoEffect(x, y);
 writeln(x, y)
 end.

Solution
 Self test on procedures which accept arguments, output of Testvalue is
 1 2
 2 0
 1 2

VALUE PARAMETERS
In the previous programs, when variables are passed to procedures, the procedures work with a
copy of the original variable. The value of the original variables which are passed to the
procedure are not changed.

The copy that the procedure makes can be altered by the procedure, but this does not alter the
value of the original. When procedures work with copies of variables, they are known as value
parameters.

Consider the following code example,

 program Value_Parameters (output);

59

 procedure Nochange (letter : char; number : integer);
 begin
 writeln(letter);
 writeln(number);
 letter := 'A'; {this does not alter mainletter}
 number := 32; {this does not alter mainnumber}
 writeln(letter);
 writeln(number)
 end;

 var mainletter : char; {these variables known only from here on}
 mainnumber : integer;
 begin
 mainletter := 'B';
 mainnumber := 12;
 writeln(mainletter);
 writeln(mainnumber);
 Nochange(mainletter, mainnumber);
 writeln(mainletter);
 writeln(mainnumber)
 end.

PROGRAM 7.1
Write a program, using procedures which accept value parameters, to implement the calculator
program as derived in the previous program. Each procedure will print out its own result. No
global variables must be used.

Solution:
 program PROG16 (input,output);

 procedure MULTIPLY (var number1, number2 : real);
 var result : real;
 begin
 result := number1 * number2;
 writeln(number1:4:2,' * ',number2:4:2,' is ',result:5:2)
 end;

 procedure DIVIDE (var number1, number2 : real);
 var result : real;
 begin
 result := number1 / number2;
 writeln(number1:4:2,' / ',number2:4:2,' is ',result:5:2)
 end;

60

 procedure ADD (var number1, number2 : real);
 var result : real;
 begin
 result := number1 + number2;
 writeln(number1:4:2,' + ',number2:4:2,' is ',result:5:2)
 end;

 procedure SUBTRACT (var number1, number2 : real);
 var result : real;
 begin
 result := number1 - number2;
 writeln(number1:4:2,' - ',number2:4:2,' is ',result:5:2)
 end;

 var invalid_operator : boolean;
 operator : char;
 number1, number2, result : real;
 begin
 invalid_operator := FALSE;
 writeln('Enter two numbers and an operator in the format');
 writeln(' number1 operator number2');
 readln(number1); readln(operator); readln(number2);
 case operator of
 '*': MULTIPLY (number1, number2);
 '/': DIVIDE (number1, number2);
 '+': ADD (number1, number2);
 '-': SUBTRACT (number1, number2)
 otherwise invalid_operator := TRUE
 end;
 if invalid_operator then
 writeln('Invalid operator')
 end.

VARIABLE PARAMETERS
Procedures can also be implemented to change the value of original variables which are accepted
by the procedure. To illustrate this, we will develop a little procedure called swap. This
procedure accepts two integer values, swapping them over.
Previous procedures which accept value parameters cannot do this, as they only work with a
copy of the original values. To force the procedure to use variable parameters, preceed the
declaration of the variables (inside the parenthesis after the function name) with the keyword
var.

This has the effect of using the original variables, rather than a copy of them.

 program Variable_Parameters (output);

61

 procedure SWAP (var value1, value2 : integer);
 var temp : integer;
 begin
 temp := value1;
 value1 := value2; {value1 is actually number1}
 value2 := temp {value2 is actually number2}
 end;

 var number1, number2 : integer;
 begin
 number1 := 10;
 number2 := 33;
 writeln('Number1 = ', number1,' Number2 = ', number2);
 SWAP(number1, number2);
 writeln('Number1 = ', number1,' Number2 = ', number2)
 end.

When this program is run, it prints out

 Number1 = 10 Number2 = 33
 Number1 = 33 Number2 = 10

Self Test 7.4
Why is the following procedure declaration incorrect?

 procedure Wrong (A : integer; var B : integer);
 var A : integer; B : real;

Answers
 Self Test .. why is it wrong?
 Variable A, accepted inside the parenthesis, is then redeclared
 Same goes for variable B

FUNCTIONS - A SPECIAL TYPE OF PROCEDURE WHICH RETURNS A VALUE
Procedures accept data or variables when they are executed. Functions also accept data, but have
the ability to return a value to the procedure or program which requests it. Functions are used to
perform mathematical tasks like factorial calculations.

A function
 begins with the keyword function
 is similar in structure to a procedure

62

 somewhere inside the code associated with the function, a value is assigned to the function
name

 a function is used on the righthand side of an expression
 can only return a simple data type

The actual heading of a function differs slightly than that of a procedure. Its format is,

 function Function_name (variable declarations) : return_data_type;

After the parenthesis which declare those variables accepted by the function, the return data type
(preceeded by a colon) is declared.

program Functions;
 function Add(i, j:Integer): Integer;
 begin
 end;
begin
end.

Assigning the value of a function to a variable make the variable equal to the return value. If you
use a function in something like Writeln it will print the return value. To set the return value just
make the name of the function equal to the value you want to return.

program Functions;
 var
 Answer: Integer;
 function Add(i, j:Integer): Integer;
begin
 Add := i + j;
end;

begin
 Answer := Add(1,2);
 Writeln(Add(1,2));
end.

function ADD_TWO (value1, value2 : integer) : integer;
 begin
 ADD_TWO := value1 + value2
 end;

The following line demonstrates how to call the function,

63

 result := ADD_TWO(10, 20);

thus, when ADD_TWO is executed, it equates to the value assigned to its name (in this case 30),
which is then assigned to result.

You can exit a procedure or function at any time by using the Exit command.

program Procedures;
procedure GetName;
var
 Name: String;
begin
 Writeln('What is your name?');
 Readln(Name);
 if Name = '' then
 Exit;
 Writeln('Your name is ',Name);
end;

begin
 GetName;
end.

SELF TEST 7.5
Determine the output of the following program

 program function_time (input, output);
 const maxsize = 80;
 type line = packed array[1..maxsize] of char;

 function COUNTLETTERS (words : line) : integer; {returns an integer}
 var loop_count : integer; {local variable}
 begin
 loop_count := 1;
 while (words[loop_count] <> '.') and (loop_count <= maxsize) do
 loop_count := loop_count + 1;
 COUNTLETTERS := loop_count - 1
 end;

 var oneline : line;
 letters : integer;
 begin
 writeln('Please enter in a sentence terminated with a .');
 readln(oneline);

64

 letters := COUNTLETTERS(oneline);
 writeln('There are ',letters,' letters in that sentence.')
 end.

Solution:
 Please enter in a sentence terminated with a .
 Hello there.
 There are 11 letters in that sentence.

PROGRAM 7.2
Write a program to calculate the cube of a given number (answer = number*number*number).
Use a function to calculate the cube.

Solution:
 program PROG17 (input,output); {cube program using a function}

 function CUBE(x : integer) : integer;
 begin
 CUBE := x * x * x
 end;

 var number, answer : integer;
 begin
 writeln('Enter integer to be cubed.');
 readln(number);
 answer := CUBE (number);
 writeln('The cube of ',number,' is ', answer)
 end.

INTERACTIVE TEST 7.1

1. Which of the following Pascal functions which change the value 6.6 to an integer value of 7
 odd
 round
 trunc
 abs

2. Which of the following Pascal operators has the least priority
 =
 +
 /
 NOT

3. Write a simple Pascal procedure called Welcome which prints the text string "Welcome to
Pascal"

65

Answer:
 procedure Welcome;
 begin
 writeln('Welcome to Pascal')
 end;

4. Write a Pascal procedure called Multiply, which accepts two integers, number1 and number2,
and prints the result of multiplying the two integers together.

Answer:

 procedure Multiply(number1, number2 : integer);
 var Result : integer;
 begin
 Result := number1 * number2;
 writeln(Result)
 end;

5. What is the output of the following Pascal program
 program Sample(output);
 var x, y : integer;

 procedure godoit(x, y : integer);
 begin
 x := y; y := 0;
 writeln(x, y);
 end;

 begin
 x := 1; y := 2;
 godoit(x, y);
 writeln(x, y)
 end.

 Answer:
 Program Output
 2 0
 1 2

6. Write a Pascal function called Multiply2 which returns an integer result. The function accepts
two integer parameters, number1 and number2 and returns the value of multiplying the two
parameters

66

Answer:
 function Multiply2(number1, number2 : integer) : integer;
 var Result : integer;
 begin
 Result := number1 * number2;
 Multiply2 := Result
 end;

67

UNIT 8

ENUMERATED DATA TYPES

Enumerated variables are defined by the programmer. It allows you to create your own data
types, which consist of a set of symbols. You first create the set of symbols and assign to them a
new data type variable name.
Having done this, the next step is to create working variables to be of the same type. The
following portions of code describe how to create enumerated variables.

 type civil_servant = (clerk, police_officer, teacher, mayor);
 var job, office : civil_servant;

The new data type created is civil_servant. It is a set of values, enclosed by the () parenthesis.
These set of values are the only ones which variables of type civil_servant can assume or be
assigned.
The next line declares two working variables, job and office, to be of the new data type
civil_servant.
The following assignments are valid,

 job := mayor;
 office := teacher;

 if office = mayor then writeln('Hello mayor!');

The list of values or symbols between the parenthesis is an ordered set of values. The first
symbol in the set has an ordinal value of zero and each successive symbol has a value of one
greater than its predecessor.

 police_officer < teacher
evaluates as true, because police_officer occurs before teacher in the set.

MORE EXAMPLES ON ENUMERATED DATA TYPES
 type beverage = (coffee, tea, cola, soda, milk, water);
 color = (green, red, yellow, blue, black, white);
 var drink : beverage;
 chair : color;

 drink := coffee;
 chair := green;

 if chair = yellow then drink := tea;

68

ADDITIONAL OPERATIONS WITH USER DEFINED VARIABLE TYPES
Consider the following code,

 type Weekday = (Monday, Tuesday, Wednesday, Thursday, Friday);
 var Workday : Weekday;

The first symbol of the set has the value of 0 and each symbol which follows is one greater.
Pascal provides three additional operations which are performed on user defined variables. The
three operations are,
 ord(symbol) returns the value of the symbol, thus ord(Tuesday)
 will give a value of 1

 pred(symbol) obtains the previous symbol, thus
 pred(Wednesday) will give Tuesday

 succ(symbol) obtains the next symbol, thus succ(Monday)
 gives Tuesday

Enumerated values can be used to set the limits of a for statement or as a constant in a case
statement, e.g.,

 for Workday := Monday to Friday

 case Workday of
 Monday : writeln('Mondays always get me down.');
 Friday : writeln('Get ready for partytime!')
 end;

Enumerated type values cannot be input from the keyboard or outputted to the screen, so the
following statements are illegal,

 writeln(drink);
 readln(chair);

SELF TEST 8.1 ON ENUMERATED DATA TYPES
Whats wrong with?

 type Day = (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday,
 Sunday);
 var Today : Day;

 for Today := Sunday to Monday do
 begin
 writeln(Today);
 Today := succ(Today)

69

 end;

 Whats wrong with .. Self test on enumerated variables
 for Today := Sunday to Monday do ...Sunday has no succ
 writeln(Today); ...Cannot print enum variables
 Today := succ(Today); ...will fail

What is wrong with
 type COLOR = (Red, Blue, Green, Yellow);
 var Green, Red : COLOR;

Answer: Whats wrong with....
 Green and Red have been type defined in a set called COLOR, so
 you cannot create variables called Green and Red

SUBRANGES
Just as you can create your own set of pre-defined data types, you can also create a smaller
subset or subrange of an existing set which has been previously defined. Each subrange consists
of a defined lower and upper limit. Consider the following,

 type DAY = (Monday,Tuesday,Wednesday,Thursday,Friday,Saturday,Sunday);
 Weekday = Monday..Friday; {subrange of DAY}
 Weekend = Saturday..Sunday; {subrange of DAY}
 Hours = 0..24; {subrange of integers}
 Capitals= 'A'..'Z'; {subrange of characters)

 NOTE: You cannot have subranges of type real.

SELF TEST 8.2:
Which of the following are legal
 type Gradepoints = 0.0..4.0;
 Numbers = integer;
 Alphabet = 'Z'..'A';

Answer:
 Which of the following are legal....NONE ARE!
 Cannot have subranges of real type
 Cannot do this, must be Numbers = 1..500;
 Cannot do this, must be Alphabet = 'A'..'Z' as 'A' comes before 'Z'

70

INTERACTIVE TEST 8.1
1. Write a for loop to display the following output
 1 2 3 4 5 6 7 8 9 10
 Answer: for loop := 1 to 10 do write(loop, ' ');

2. Write a for loop to display the following output
 1
 22
 333
 4444
 55555
 Answer:
 for loop := 1 to 5 do
 begin
 for loop1 := 1 to loop do write(loop);
 writeln
 end

3. Write a while loop to display the following output
 A B C D E F
 Answer:
 loop := 'A';
 while loop <= 'F' do
 begin
 write(loop, ' ');
 loop := loop + 1
 end;

4. Rewrite the following if statements as a Case statement
 if flag = 1 then number := 10
 else if flag = 2 then number := 20
 else if flag = 3 then number := 40;
 Answer:
 case flag of
 1 : number := 10;
 2 : number := 20;
 3 : number := 40
 end;

5. Define an enumerated data type called chair, which has the set of values lounge, deck,

executive
 Answer: type chair = (lounge, deck, executive);

6. Write pascal statements to define a new working variable mychair, of type chair, and assign

the value deck to this new variable.

71

 Answer:
 var mychair : chair;
 mychair := deck;

7. Define a new subrange called minutes, which has a set of ranges from 0 to 60.
 Answer: type minutes = 0..60;

72

UNIT 9

ARRAYS

An array is a structure which holds many variables, all of the same data type. The array consists
of so many elements, each element of the array capable of storing one piece of data (i.e., a
variable). Arrays are variables that are made up of many variables of the same data type but have
only one name. Here is a visual representation of an array with 5 elements:
1 value 1
2 value 2
3 value 3
4 value 4
5 value 5

Arrays are declared in almost the same way as normal variables are declared except that you
have to say how many elements you want in the array.

program Arrays;
 var
 a: array[1..5] of Integer;
 begin
end.

We access each of the elements using the number of the elements behind it in square brackets.

program Arrays;
 var
 a: array[1..5] of Integer;
 begin
 a[1] := 12;
 a[2] := 23;
 a[3] := 34;
 a[4] := 45;
 a[5] := 56;
end.

It is a lot easier when you use a loop to access the values in an array. Here is an example of
reading in 5 values into an array:

program Arrays;
 var
 a: array[1..5] of Integer;
 i: Integer;
 begin
 for i := 1 to 5 do

73

 Readln(a[i]);
end.

An array can be defined as a type, then a working variable created as follows,

 type array_name = ARRAY [lower..upper] of data_type;
 var myarray : array_name;
 {this creates myarray which is of type array_name }

or by using a var statement as follows.
 var myarray : ARRAY [1..100] of integer;
Lower and Upper define the boundaries for the array. Data_type is the type of variable which the
array will store, eg, type int, char etc. A typical declaration follows,

 type intarray = ARRAY [1..20] of integer;

This creates a definition for an array of integers called intarray, which has 20 separate locations
numbered from 1 to 20. Each of these positions (called an element), holds a single integer. The
next step is to create a working variable to be of the same type, e.g.,
 var numbers : intarray;
Each element of the numbers array is individually accessed and updated as desired.
To assign a value to an element of an array, use
 numbers[2] := 10;
This assigns the integer value 10 to element 2 of the numbers array. The value or element
number (actually its called an index) is placed inside the square brackets.
To assign the value stored in an element of an array to a variable, use
 number1 := numbers[2];
This takes the integer stored in element 2 of the array numbers, and makes the integer number1
equal to it.
If you are creating a number of arrays of the same type, it is best to declare a type, and use this
type in future var declarations.

Consider the following array declarations

 const size = 10;
 last = 99;
 type sub = 'a'..'z';
 color = (green, yellow, red, orange, blue);
 var chararray : ARRAY [1..size] of char;
 {an array of 10 characters. First element is chararray[1],
 last element is chararry[10] }

 intarray : ARRAY [sub] of integer;
 {an array of 26 integers. First element is intarray['a']
 last element is intarray['z'] }

74

 realarray : ARRAY [5..last] of real;
 {an array of 95 real numbers. First element is realarray[5]
 last element is realarray[99] }

 artstick : ARRAY [-3..2] of color;
 {an array of 6 colors. First element is artstick[-3]
 last element is artstick[2] }

 huearray : ARRAY [color] of char;
 {an array of 6 characters. First element is huearray[green]
 last element is huearray[blue] }

SORTING ARRAYS
You will sometimes want to sort the values in an array in a certain order. To do this you can use
a bubble sort. A bubble sort is only one of many ways to sort an array. With a bubble sort the
biggest numbers are moved to the end of the array.

You will need 2 loops. One to go through each number and another to point to the other number
that is being compared. If the number is greater then it is swapped with the other one. You will
need to use a temporary variable to store values while you are swapping them.

program Arrays;
 var
 a: array[1..5] of Integer;
 i, j, tmp: Integer;

begin
 a[1] := 23;
 a[2] := 45;
 a[3] := 12;
 a[4] := 56;
 a[5] := 34;

 for i := 1 to 4 do
 for j := i + 1 to 5 do
 if a[i] > a[j] then
 begin
 tmp := a[i];
 a[i] := a[j];
 a[j] := tmp;
 end;

 for i := 1 to 5 do
 writeln(i,': ',a[i]);
end.

75

2D arrays
Arrays can have 2 dimensions instead of just one. In other words they can have rows and
columns instead of just rows.

 1 2 3
1 1 2 3
2 4 5 6
3 7 8 9

Here is how to declare a 2D array:

program Arrays;
 var
 a: array [1..3,1..3] of Integer;
 begin
end.

To access the values of a 2d array you must use 2 numbers in the square brackets. 2D arrays also
require 2 loops instead of just one.

program Arrays;
 var
 r, c: Integer;
 a: array [1..3,1..3] of Integer;

begin
 for r := 1 to 3 do
 for c := 1 to 3 do
 Readln(a[r,c]);
end.

You can get multi-dimensional arrays that have more than 2 dimensions but these are not used
very often so you don't need to worry about them.

CHARACTER ARRAYS
You can have arrays of characters. Text strings from the keyboard may be placed directly into
the array elements. You can print out the entire character array contents. The following program
illustrates how to do this,

 program CHARRAY (input,output);
 type word = PACKED ARRAY [1..10] of char;
 var word1 : word;
 loop : integer;
 begin
 writeln('Please enter in up to ten characters.');

76

 readln(word1); { this reads ten characters directly from the
 standard input device, placing each character
 read into subsequent elements of word1 array }

 writeln('The contents of word1 array is ');

 for loop := 1 to 10 do {print out each element}
 writeln('word1[',loop,'] is ',word1[loop]);

 writeln('Word1 array contains ', word1) {print out entire array}
 end.

Note the declaration of PACKED ARRAY, and the use of just the array name in conjuction
with the readln statement. If the user typed in
 Hello there
then the contents of the array word1 will be,
 word1[1] = H
 word1[2] = e
 word1[3] = l
 word1[4] = l
 word1[5] = o
 word1[6] = { a space }
 word1[7] = t
 word1[8] = h
 word1[9] = e
 word1[10]= r

The entire contents of a packed array of type char can also be outputted to the screen simply the
using the array name without an index value, i.e., the statement
 writeln('Word1 array contains ', word1);
will print out all elements of the array word1, displaying
 Hello there

INTEGER ARRAYS

Arrays can hold any of the valid data types, including integers. Integer arrays cannot be read or
written as an entire unit, only packed character arrays can. The following program demonstrates
an integer array, where ten successive numbers are inputted, stored in separate elements of the
array numbers, then finally outputted to the screen one at a time.

 program INT_ARRAY (input,output);
 type int_array = ARRAY [1..10] of integer;
 var numbers : int_array;
 loop : integer;
 begin
 writeln('Please enter in up to ten integers.');

77

 for loop := 1 to 10 do
 readln(numbers[loop]);

 writeln('The contents of numbers array is ');
 { print out each element }
 for loop := 1 to 10 do
 writeln('numbers[',loop:2,'] is ',numbers[loop])
 end.

SELF TEST 9.1
What does the following program display on the screen.
 program ARRAY_TEST (output);
 var numbers : ARRAY [1..5] of integer;
 begin
 numbers[1] := 7;
 numbers[2] := 13;
 numbers[3] := numbers[2] - 1;
 numbers[4] := numbers[3] DIV 3;
 numbers[5] := numbers[3] DIV numbers[4];
 for loop := 1 to 5 do
 writeln('Numbers[',loop,'] is', numbers[loop])
 end.

Answers:
 Self Test .. Output of ARRAY_TEST is..
 Numbers[1] is 7
 Numbers[2] is 13
 Numbers[3] is 12
 Numbers[4] is 4
 Numbers[5] is 3

INITIALIZATION OF PACKED CHARACTER ARRAYS
Packed arrays of characters are initialized by equating the array to a text string enclosed by
single quotes, e.g.,
 type string = PACKED ARRAY [1..15] of char;
 var message : string;

 message := 'Good morning! '; {must be fifteen characters long}

MULTIDIMENSIONED ARRAYS
The following statement creates a type definition for an integer array called multi of 10 by 10
elements (100 in all). Remember that arrays are split up into row and columns. The first index is
the row, the second index is the column.
 type multi = ARRAY [1..10, 1..10] of integer;
 begin work : multi;
To print out each of the various elements of work, consider

78

 for row := 1 to 10 do
 for column := 1 to 10 do
 writeln('work[',row,',',column,'] is ',work[row,column];

PROGRAM 9.1
Given the following marks achieved in a programming test, and that the pass mark is the average
of all the marks, write a program to list those students who have passed.

 FRED 21 GEORGE 56
 ANNE 52 MARY 89
 ROBERT 71 ALFRED 71
 CECIL 33 MIKE 54
 JENNIFER 41 PAULINE 48

Solution:
 program PROG13 (output);
 const maxstudents = 10;
 type namestr = PACKED ARRAY [1..20] of char;
 var NAME : ARRAY [1..10] of namestr;
 mark : ARRAY [1..10] of integer;
 totalmarks, loopcount : integer;
 averagemk : real;
 begin
 NAME[1] := 'FRED '; MARK[1] := 21;
 NAME[2] := 'GEORGE '; MARK[2] := 56;
 NAME[3] := 'ANNE '; MARK[3] := 52;
 NAME[4] := 'MARY '; MARK[4] := 89;
 NAME[5] := 'ROBERT '; MARK[5] := 71;
 NAME[6] := 'ALFRED '; MARK[6] := 71;
 NAME[7] := 'CECIL '; MARK[7] := 33;
 NAME[8] := 'MIKE '; MARK[8] := 54;
 NAME[9] := 'JENNIFER '; MARK[9] := 41;
 NAME[10] := 'PAULINE '; MARK[10] := 48;

 { find totalmarks first }
 totalmarks := 0;
 for loopcount := 1 to maxstudents do
 totalmarks := totalmarks + mark[loopcount];

 { calculate average mark }
 averagemk := totalmarks / maxstudents;

 { display those who have passed }
 writeln('The students who passed the test are ');

79

 for loopcount := 1 to maxstudents do
 if mark[loopcount] >= averagemk then
 writeln(NAME[loopcount]);
 writeln;
 writeln('The average mark was ',averagemk:2:2)
 end.

HOW CHARACTERS ARE INTERNALLY REPRESENTED

Internally, most computers store characters according to the ASCII format. ASCII stands for
American Standard Code for Information Interchange. Characters are stored according to a
numbered sequence, whereby A has a value of 65 decimal, B a value of 66 etc. Several functions
which manipulate characters follow.

 CHR
The chr or character position function returns the character associated with the ASCII
value being asked, eg,

 chr(65) will return the character A
 ORD

The ord or ordinal function returns the ASCII value of a requested character. In essence,
it works backwards to the chr function. Ordinal data types are those which have a
predefined, known set of values.
Each value which follows in the set is one greater than the previous. Characters and
integers are thus ordinal data types.

 ord('C') will return the value 67
 SUCC

The successor function determines the next value or symbol in the set, thus

 succ('d') will return e
 PRED

The predecessor function determines the previous value or symbol in the set, thus

 pred('d') will return c

COMPARISON OF CHARACTER VARIABLES
Character variables, when compared against each other, is done using the ASCII value of the
character. Consider the following portion of code,

 var letter1, letter2 : char;
 begin
 letter1 := 'A'; letter2 := 'C';
 if letter1 < letter2 then

80

 writeln(letter1, ' is less than ',letter2)
 else
 writeln(letter2, ' is less than ',letter1)
 end.

STRING ARRAYS, COMPARISON OF
Packed character arrays of the same length are comparable. There follows a short program
illustrating this,

 program PACKED_CHAR_COMPARISON (output);
 type string1 = packed array [1..6] of char;
 var letter1, letter2 : string1;
 begin
 letter1 := 'Hello ';
 letter2 := 'HellO ';

 if letter1 < letter2 then
 writeln(letter1,' is less than ',letter2)
 else
 writeln(letter2,' is less than ',letter1)
 end.

INTERACTIVE TEST 9.1
1. Write a Pascal statement to define an array called numbers, which is an integer array with

elements ranging from 1 to 20
 Answer: type numbers = ARRAY[1..20] of integer;

2. Write a Pascal statement to create an array called mynumbers, of type numbers, which was

defined in 1. above
 Answer: var mynumbers : numbers;

3. Write a Pascal statement which assigns the integer value 20 to element 4 of the array
mynumbers, which was declared in 2. above
 Answer: mynumbers[4] := 20;

4. Write Pascal statements which define a packed array of characters (15 elements), called word,
create a working variable of type word called myword, and then reads input from the keyboard
into the array myword
 Answer: type word = PACKED ARRAY[1..15] of char;
 var myword : word;
 begin
 readln(myword);
5. Write Pascal statements which will sum the contents of an integer array called mynumbers,

which has 20 elements numbered 1 to 20
 Answer:

81

 total := 0;
 for loop := 1 to 20 do
 total := total + mynumbers[loop];
6. Write a Pascal statement which will initialize a packed character array called message to the

string 'Hello there!'. The array has thirteen elements
 Answer: message := 'Hello there! ';

7. Write a Pascal statement to display the ASCII value of the letter 'A'
 Answer: writeln(ord('A'));

8. Write a Pascal statement to display the character represented by the ASCII value 52
 Answer: writeln(chr(52));

9. Write a Pascal statement to display the character which follows 'F'
 Answer: writeln(succ('F'));

10. Write a Pascal statement to display the character which comes before 'Z'
 Answer: writeln(pred('Z'));

COMMON FUNCTIONS
The Pascal language provides a range of functions to perform data transformation and
calculations. The following section provides an explanation of the commonly provided functions,

 ABS
The ABSolute function returns the absolute value of either an integer or real, eg,
 ABS(-21) returns 21

 ABS(-3.5) returns 3.5000000000E+00
 COS

The COSine function returns the cosine value, in radians, of an argument, eg,
 COS(0) returns 1.0
 EXP

The exponential function calculates e raised to the power of a number, eg,
 EXP(10) returns e to the power of 10

There is no function in Pascal to calculate expressions such as an, ie,
 23 is 2*2*2 = 8

 These are calculated by using the formula
 an = exp(n * ln(a))

 LN
The logarithm function calculates the natural log of a number greater than zero.

 ODD
The odd function determines when a specified number is odd or even, returning true when
the number is odd, false when it is not.

82

 ROUND
The round function rounds its number (argument) to the nearest integer. If the argument is
positive

 rounding is up for fractions greater than or equal to .5
 rounding is down for fractions less than .5
 If the number is negative

 rounding is down (away from zero) for fractions >= .5
 rounding is up (towards zero) for fractions

 SIN
The sine function returns the sine of its argument, eg,

 SIN(PI / 2) returns 1.0
 SQR

The square function returns the square (ie the argument multiplied by itself) of its supplied
argument,

 SQR(2) returns 4
 SQRT

This function returns {always returns a real} the square root of its argument, eg,
 SQRT(4) returns 2.0000000000E+00
 TRUNC

This function returns the whole part (no decimal places) of a real number.
 TRUNC(4.87) returns 4

 TRUNC(-3.4) returns 3

PROGRAM
Given the following list of wages stored in an array,

 210.33 119.78 191.05 222.94

calculate the total breakdown of required coins (ignore dollars) into 50c, 20c, 10c, 5c, 2c, and 1c
pieces.

Solution:
program PROG14 (output); {coin program}
var wages : array[1..6] of real;
 cents : real;
 loop, fiftys, twentys, tens, fives, twos, ones : integer;
begin
 {initialise wages}
 wages[1] := 210.33; wages[2] := 119.78;
 wages[3] := 191.05; wages[4] := 222.94;
 wages[5] := 0.0; { end of wage terminator }
 loop := 1;

83

 fiftys := 0; twentys := 0; tens := 0; fives := 0; twos := 0;
 ones := 0;

 while (wages[loop] <> 0.0) do
 begin
 cents := wages[loop] - trunc(wages[loop]); {get cents}
 while cents >= 0.4999 do
 begin
 fiftys := fiftys + 1;
 cents := cents - 0.50
 end;
 while cents >= 0.1999 do
 begin
 twentys := twentys + 1;
 cents := cents - 0.20
 end;
 while cents >= 0.0999 do
 begin
 tens := tens + 1;
 cents := cents - 0.10
 end;
 while cents >= 0.0499 do
 begin
 fives := fives + 1;
 cents := cents - 0.05
 end;
 while cents >= 0.0199 do
 begin
 twos := twos + 1;
 cents := cents - 0.02
 end;
 while cents >= 0.00999 do
 begin
 ones := ones + 1;
 cents := cents - 0.01
 end;
 loop := loop + 1
 end;
 writeln;
 writeln('The total breakdown of coins required is');
 writeln(' 50c 20c 10c 5c 2c 1c');
 writeln(fiftys:7,twentys:7,tens:7,fives:7,twos:7,ones:7)
end.

84

OPERATOR PRECEDENCE
Pascal, when determining how to perform calculations, works according to pre-defined rules.
These rules may be overridden by the use of parenthesis ().

The priority given to the various operators, from highest to lowest, are

 NOT Negation
 * / DIV MOD AND
 + - OR
 = <> < <= > >= IN

 The operators are always evaluated left to right

Parenthesis are used to override the order of precedence. Consider the expression
 A + B
 X = -------
 C + D
becomes in Pascal
 X := (A + B) / (C + D)
and the expression
 B
 X = A + --- + D
 C
becomes in Pascal
 X := A + (B / C) + D

SELF TEST 9.2: Operator precedence
Given that

 A := 1; B := 2; C := 4;

What does X equal after each of the following statements,

 X := A / B / C; ________________
 X := A + B / C; ________________
 X := A * B * C; ________________
 X := A * B - C; ________________
 X := A + B + C; ________________
 X := A / B * C; ________________
 X := A * B / C; ________________
 X := A + B - C; ________________

Answers:
 X := A / B / C; 0.125

85

 X := A + B / C; 1.5
 X := A * B * C; 8
 X := A * B - C; -2
 X := A + B + C; 7
 X := A / B * C; 2
 X := A * B / C; 0.5
 X := A + B - C; -1

SELF TEST 9.3 ON OPERATOR PRECEDENCE
Write statements in Pascal which correctly express each of the following mathematical
expressions.
1. Z = X + Y2 2. Z = (X + Y)2

 A + B + E B
 3. Z = ----------- 4. Z = A + ---
 D + E C

 A + B B
 5. Z = ------- 6. Z = A + -------
 C D - C

Answers:
 1. Z = X + Y2 2. Z = (X + Y)2

 Z := X + (Y * Y); Z := (X + Y) * (X + Y);

 A + B + E B
 3. Z = ----------- 4. Z = A + ---
 D + E C

 Z := (A+B+E) / (D+E); Z := A + (B / C);

 A + B B
 5. Z = ------- 6. Z = A + -------
 C D - C

 Z := (A + B) / C; Z := A + (B / (D - C));

SELF TEST 9.4:
STATE which of the following statements is wrong and why,
 Y := 2X + A
 4 := X - Y
 A := 1 / (X + (Y - 2)
 -J := K + 1
 S := T / * 3
 Z + 1 := A

86

Answers:
 Y := 2X + A 2 * X + A {missing operator}
 4 := X - Y 4 is a constant
 A := 1 / (X + (Y - 2) missing bracket
 -J := K + 1 rewrite as j := - (k + 1);
 S := T / * 3 one too many operators
 Z + 1 := A rewrite as z:= A - 1;

87

UNIT 10

TYPES & RECORDS

TYPES
It is possible to create your own variable types using the type statement. The first type you can
make is records. Records are 2 or more variables of different types in one. An example of how
this could be used is for a student who has a student number and a name. Here is how you create
a type:

program Types;
 Type
 Student = Record
 Number: Integer;
 Name: String;
 end;
 begin
end.

After you have created the type you must declare a variable of that type to be able to use it.

program Types;
 Type
 StudentRecord = Record
 Number: Integer;
 Name: String;
 end;
 var
 Student: StudentRecord;
 begin
end.

To access the Number and Name parts of the record you must do the following:

program Types;
 Type
 StudentRecord = Record
 Number: Integer;
 Name: String;
 end;
 var
 Student: StudentRecord;
 begin
 Student.Number := 12345;
 Student.Name := 'John Smith';
end.

88

The other type is a set. Sets are not very useful and anything you can do with a set can be done
just as easily in another way. The following is an example of a set called Animal which has dog,
cat and rabbit as the data it can store:

program Types;
 Type
 Animal = set of (dog, cat, rabbit);
 var
 MyPet: Animal;
 begin
 MyPet := dog;
end.

You can't use Readln or Writeln on sets so the above way of using it is not very useful. You can
create a range of values as a set such as 'a' to 'z'. This type of set can be used to test if a value is
in that range.

program Types;
uses
 crt;
 Type
 Alpha = 'a'..'z';
 var
 Letter: set of Alpha;
 c: Char;
 begin
 c := ReadKey;
 if c in [Letter] then
 Writeln('You entered a letter');
end.

RECORDS
A record is a user defined data type suitable for grouping data elements together. All elements of
an array must contain the same data type.

A record overcomes this by allowing us to combine different data types together. Suppose we
want to create a data record which holds a student name and mark. The student name is a packed
array of characters and the mark is an integer.

We could use two seperate arrays for this, but a record is easier. The method to do this is,

 define or declare what the new data group (record) looks like
 create a working variable to be of that type

The following portion of code shows how to define a record, then create a working variable to be
of the same type.

89

 TYPE studentname = packed array[1..20] of char;
 studentinfo = RECORD
 name : studentname;
 mark : integer
 END;

 VAR student1 : studentinfo;

The first portion defines the composition of the ecord identified as studentinfo. It consists of two
parts (called fields).

The first part of the record is a packed character array identified as name. The second part of
studentinfo consists of an integer, identified as mark.

The declaration of a record begins with the keyword record, and ends with the keyword end;

The next line declares a working variable called student1 to be of the same type (ie composition)
as studentinfo.

Each of the individual fields of a record are accessed by using the format,

 recordname.fieldname := value or variable;

An example follows,

 student1.name := 'JOE BLOGGS '; {20 characters}
 student1.mark := 57;

Lets create a new data record suitable for storing the date

 type date = RECORD
 day : integer;
 month : integer;
 year : integer
 END;

90

This declares a NEW data type called date. This date record consists of three basic data
elements, all integers. Now declare working variables to use in the program. These variables will
have the same composition as the date record.

 var todays_date : date;

defines a variable called todays_date to be of the same data type as that of the newly defined
record date.

ASSIGNING VALUES TO RECORD ELEMENTS
These statements assign values to the individual elements of the record todays_date,

 todays_date.day := 21;
 todays_date.month := 07;
 todays_date.year := 1985;

NOTE the use of the .fieldname to reference the individual fields within todays_date.

Sample program illustrating records

 program RECORD_INTRO (output);
 type date = record
 month, day, year : integer
 end;
 var today : date;

 begin
 today.day := 25;
 today.month := 09;
 today.year := 1983;
 writeln('Todays date is ',today.day,':',today.month,':',
 today.year)
 end.

Records of the same type are assignable.

 var todays_date, tomorrows_date : date;
 begin
 todays_date.day := 9;
 todays_date.month := 7;

91

 todays_date.year := 1976;
 tomorrows_date := todays_date;

The last statement copies all the elements of todays_date into the elements of tomorrows_date.

This statement adds one to the value stored in the field day of the record tomorrows_date.

 tomorrows_date.day := tomorrows_date.day + 1;

PROGRAM 10.1

Write a program that prompts the user for todays date, a procedure using variable parameters
which calculates tomorrows date, and the main program displaying tommorrows date.

Use records for todays date, tomorrows date, An array can be used to hold the days for each
month of the year.

 Jan to Dec = 31,28,31,30,31,30,31,31,30,31,30,31

Remember to change the month or year as necessary

program PROG18 (input,output); {date calculation program}
 type date = record
 day, month, year : integer;
 end;
 datename = array[1..12] of integer;

 procedure update(var tomorrow : date; days_in_month : datename);
 begin
 tomorrow.day := tomorrow.day + 1; {increment day}
 if tomorrow.day > days_in_month[tomorrow.month] then
 begin
 tomorrow.day := 1;
 tomorrow.month := tomorrow.month + 1; {adjust month }
 if tomorrow.month > 12 then {adjust year }
 begin
 tomorrow.month := 1;
 tomorrow.year := tomorrow.year + 1
 end
 end
 end;

 var todays_date : date;
 days : datename;

92

 begin
 days[1] := 31; days[2] := 28; days[3] := 31; days[4] := 30;
 days[5] := 31; days[6] := 30; days[7] := 31; days[8] := 31;
 days[9] := 30; days[10] := 31; days[11] := 30; days[12] := 31;

 writeln('Enter todays date dd mm yy ');
 readln(todays_date.day, todays_date.month, todays_date.year);
 update(todays_date, days);
 writeln('Tomorrows date will be ', todays_date.day,'-',
 todays_date.month,'-',todays_date.year)
 end.

RECORDS AND PROCEDURES
The following program demonstrates passing a record to a procedure, which updates the record,
then prints the updated time.

 program TIME (input,output);
 type time = record
 seconds, minutes, hours : integer
 end;
 var current, next : time;

 { function to update time by one second }
 procedure timeupdate(var now : time); {variable parameter}
 var newtime : time; {local variable}
 begin
 newtime := now; {use local instead of orginal}
 newtime.seconds := newtime.seconds + 1;

 if newtime.seconds = 60 then
 begin
 newtime.seconds := 0;
 newtime.minutes := newtime.minutes + 1;
 if newtime.minutes = 60 then
 begin
 newtime.minutes := 0;
 newtime.hours := newtime.hours + 1;
 if newtime.hours = 24 then
 newtime.hours := 0
 end
 end;
 writeln('The updated time is ',newtime.hours,':',newtime.minutes,
 ':',newtime.seconds)
 end;

93

 begin
 writeln('Please enter in the time using hh mm ss');
 readln(current.hours, current.minutes, current.seconds);
 timeupdate(current)
 end.

ARRAYS OF RECORDS
can also be created, in the same way as arrays of any of the four basic data types. The following
statement declares a record called date.

 type date = record
 month, day, year : integer
 end;

Lets now create an array of these records, called birthdays.

 var birthdays : array[1..10] of date;

This creates an array of 10 elements. Each element consists of a record of type date, ie, each
element consists of three integers, called month, day and year.

Pictorially it looks like,

 |----------------|
 | month | <----<----------------
 |----------------| | |
 | day | |--Element 1 |
 |----------------| | |
 | year | <---- |
 |----------------| |
 | month | <---- |
 |----------------| | |
 | day | |--Element 2 |
 |----------------| | |--< birthdays
 | year | <---- |
 |----------------| |
 |
 |----------------| |

94

 | month | <---- | |
 |----------------| | |
 | day | |--Element 10 |
 |----------------| | |
 | year | <----<----------------
 |----------------|

Consider the following assignment statements.

 birthdays[1].month := 2;
 birthdays[1].day := 12;
 birthdays[1].year := 1983;
 birthdays[1].year := birthdays[2].year;

which assign various values to the array elements.

RECORDS CONTAINING ARRAYS
Records can also contain arrays as a field. Consider the following example, which shows a
record called month, whose element name is actually an array.

 type monthname = packed array[1..4] of char;
 month = RECORD
 days : integer;
 name : monthname
 END;
 var this_month : month;
 this_month.days := 31; this_month.name[0] := 'J';
 this_month.name[1] := 'a'; this_month.name[2] := 'n';
 this_month.name := 'Feb ';

SELF TEST 10.1

 Determine the program output
 Draw a table illustrating the memory contents of array test_times after initilization.

 program RECORD_TEST (output);
 type time = RECORD
 hours, minutes, seconds : integer
 END;

95

 procedure timeupdate (var newtime : time);
 begin
 newtime.seconds := newtime.seconds + 1;
 if newtime.seconds = 60 then
 begin
 newtime.seconds := 0;
 newtime.minutes := newtime.minutes + 1;
 if newtime.minutes = 60 then
 begin
 newtime.minutes := 0;
 newtime.hours := newtime.hours + 1;
 if newtime.hours = 24 then
 newtime.hours := 0
 end
 end
 end;

 var test_times : array [1..3] of time;
 loop : integer;
 begin
 test_times[1].hours := 11;
 test_times[1].minutes := 59;
 test_times[1].seconds := 59;
 test_times[2].hours := 12;
 test_times[2].minutes := 0;
 test_times[2].seconds := 0;
 test_times[3].hours := 1;
 test_times[3].minutes := 29;
 test_times[3].seconds := 59;
 for loop := 1 to 3 do
 begin
 writeln('Time is ',test_times[loop].hours,':',
 test_times[loop].minutes,':',test_times[loop].seconds);
 timeupdate(test_times[loop]);
 write('One second later its ');
 writeln(test_times[loop].hour,s':',test_times[loop].minutes,
 ':',test_times[loop].seconds)
 end
 end.

 Class Exercise..Program output is,
 Time is 11:59:59
 One second later its 12:0:0
 Time is 12:0:0

96

 One second later its 12:0:1
 Time is 1:29:59
 One second later its 1:30:0

Table illustrating array test_times contents after initialisation,

 |---------------|<---------- -------------
 | 11 | hours | |
 |---------------| | |
 | 59 | minutes |- Element 1 |
 |---------------| | |
 | 59 | seconds | |
 |---------------|<---------- |
 | 12 | hours | |
 |---------------| | |
 | 00 | minutes |- Element 2 |-- test_times
 |---------------| | |
 | 00 | seconds | |
 |---------------|<---------- |
 | 01 | hours | |
 |---------------| | |
 | 29 | minutes |- Element 3 |
 |---------------| | |
 | 59 | seconds | |
 |---------------|<---------- -------------

RECORDS WITHIN RECORDS
Records can also contain other records as a field. Consider where both a date and time record are
combined into a single record called date_time, eg,

 type date = RECORD
 day, month, year : integer
 END;
 time = RECORD
 hours, minutes, seconds : integer
 END;
 date_time = RECORD
 sdate : date;
 stime : time
 END;

97

This defines a record whose elements consist of two other previously declared records. The
statement

 var today : date_time;

declares a working variable called today, which has the same composition as the record
date_time. The statements

 today.sdate.day := 11;
 today.sdate.month := 2;
 today.sdate.year := 1985;
 today.stime.hours := 3;
 today.stime.minutes := 3;
 today.stime.seconds := 33;

sets the sdate element of the record today to the eleventh of february, 1985. The stime element of
the record is initialised to three hours, three minutes, thirty-three seconds.

with RECORDS
The with statement, in association with records, allows a quick and easy way of accessing each
of the records members without using the dot notation.

Consider the following program example, where the variable student record is initialised. Note
how the name of the record is associated with each of the initialised parts. Then look at the code
that follows, and note the difference being the absence of the record name.

 program withRecords(output);

 type Gender = (Male, Female);
 Person = Record
 Age : Integer;
 Sex : Gender
 end;

 var Student : Person;

 begin
 Student.Age := 23;
 Student.Sex := Male;

 with Student do begin
 Age := 19;
 Sex := Female

98

 end;

 with Student do begin
 Writeln('Age := ', Age);
 case Sex of
 Male : Writeln('Sex := Male');
 Female : Writeln('Sex := Female')
 end
 end
 end.

99

UNIT 11

TEXT AND DATA FILES

TEXT FILES

A text file is a file with lines of text. When you want to access a file in Pascal you have to first
create a file variable.

program Files;
 var
 f: Text;
 begin
end.

After the variable has been declared you must assign the file name to it.

program Files;
var
 f: Text;
 begin
 Assign(f,'MyFile.txt');
end.

To create a new empty file we use the Rewrite command. This will overwrite any files that exist
with the same name.

program Files;
 var
 f: Text;
 begin
 Assign(f,'MyFile.txt');
 Rewrite(f);
end.

The Write and Writeln commands work on files in the same way they work on the screen except
that you must use an extra parameter to tell it to write to the file.

program Files;
 var
 f: Text;
 begin
 Assign(f,'MyFile.txt');
 Rewrite(f);
 Writeln(f,'A line of text');
end.

100

If you want to read from a file that already exists then you must use Reset instead of Rewrite.
Use Readln to read lines of text from the file. You will also need a while loop that repeats until it
comes to the end of the file.

program Files;
 var
 f: Text;
 s: String;
 begin
 Assign(f,'MyFile.txt');
 Reset(f);
 while not eof(f) do
 Readln(f,s);
end.

Append opens a file and lets you add more text at the end of the file.

program Files;
 var
 f: Text;
 s: String;
 begin
 Assign(f,'MyFile.txt');
 Append(f);
 Writeln(f,'Some more text');
end.

No matter which one of the 3 access types you choose, you must still close a file when you are
finished using it. If you don't close it then some of the text that was written to it might be lost.

program Files;
 var
 f: Text;
 s: String;
 begin
 Assign(f,'MyFile.txt');
 Append(f);
 Writeln(f,'Some more text');
 Close(f);
end.

You can change a file's name with the Rename command and you can delete a file with the Erase
command.

101

program Files;
 var
 f: Text;
 begin
 Assign(f,'MyFile.txt');
 Rename(f,'YourFile.txt');
 Erase(f);
 Close(f);
end.

To find out if a file exists, you must first turn off error checking using the {$I-} compiler
directive. After that you must Reset the file and if IOResult = 2 then the file was not found. If
IOResult = 0 then the file was found but if it is any other value then the program must be ended
with the Halt command. IOResult loses its value once it has been used so we also have to put that
into another variable before using it. You must also use {$I+} to turn error checking back on.

program Files;
 var
 f: Text;
 IOR: Integer;
 begin
 Assign(f,'MyFile.txt');
{$I-}
 Reset(f);
{$I+}
 IOR := IOResult;
 if IOR = 2 then
 Writeln('File not found');
 else
 if IOR <> 0 then
 Halt;
 Close(f);
end.

102

DATA FILES

Data files are different from text files in a few ways. Data files are random access which means
you don't have to read through them line after line but instead access any part of the file at any
time. Here is how you declare a data file:

program DataFiles;
 var
 f: file of Byte;
 begin
end.

We then use Assign in the same way as we do with a text file.

program DataFiles;
var
 f: file of Byte;
begin
 Assign(f,'MyFile.dat');
end.

You can use Rewrite to create a new file or overwrite an existing one. The difference between
text files and data files when using Rewrite is that data files can be read and written to.

program DataFiles;
 var
 f: file of Byte;
 begin
 Assign(f,'MyFile.dat');
 Rewrite(f);
end.

Reset is the same as Rewrite except that it doesn't overwrite the file.

program DataFiles;
 var
 f: file of Byte;
 begin
 Assign(f,'MyFile.dat');
 Reset(f);
end.

103

When you write to a file using the Write command you must first put the value to be written to
the file into a variable. Before you can write to or read from a data file you must use the Seek
command to find the right place to start writing. You must also remember that data files start
from position 0 and not 1.

program DataFiles;
 var
 f: file of Byte;
 b: Byte;
 begin
 Assign(f,'MyFile.dat');
 Reset(f);
 b := 1;
 Seek(f,0);
 Write(f,b);
end.

The Read command is used to read from a data file.

program DataFiles;
 var
 f: file of Byte;
 b: Byte;
 begin
 Assign(f,'MyFile.dat');
 Reset(f);
 Seek(f,0);
 Read(f,b);
end.

You must close a data file when you are finished with it just like with text files.

program DataFiles;
var
 f: file of Byte;
 b: Byte;
 begin
 Assign(f,'MyFile.dat');
 Reset(f);
 Seek(f,0);
 Read(f,b);
 Close(f);
end.

104

The FileSize command can be used with the FilePos command to find out when you have
reached the end of the file. FileSize returns the actual number of records which means it starts at
1 and not 0. The FilePos command will tell at what position in the file you are.

program DataFiles;
 var
 f: file of Byte;
 b: Byte;
 begin
 Assign(f,'MyFile.dat');
 Reset(f);
 while FilePos(f) <> FileSize(f) do
 begin
 Read(f,b);
 Writeln(b);
 end;
 Close(f);
end.

The Truncate command will delete everything in the file from the current position.

program DataFiles;
 var
 f: file of Byte;
 begin
 Assign(f,'MyFile.dat');
 Reset(f);
 Seek(f,3);
 Truncate(f);
 Close(f);
end.

One of the most useful things about data files is that you can use them to store records.

program DataFiles;
 type
 StudentRecord = Record
 Number: Integer;
 Name: String;
 end;
 var
 Student: StudentRecord;
 f: file of StudentRecord;
 begin
 Assign(f,'MyFile.dat');
 Rewrite(f);

105

 Student.Number := 12345;
 Student.Name := 'John Smith';
 Write(f,Student);
 Close(f);
end.

106

UNIT 12

FILE HANDLING

The keyboard is known as the standard input device, and the console screen is the standard
output device. Pascal names these as INPUT and OUTPUT respectively.

Occasions arise where data must be derived from another source other than the keyboard. This
data will exist external to the program, either stored on diskette, or derived from some hardware
device.

In a lot of cases, hardcopy (a printout) of program results is needed, thus the program will send
the output to either the printer or the disk instead of the screen.

A program which either reads information from, or writes information to, a place on a disk, is
performing FILE Input/Output (I/O).

A File is a collection of information. In Pascal, this information may be arranged as text (ie a
sequence of characters), as numbers (a sequence of integers or reals), or as records. The
information is collectively known by a sequence of characters, called a FILENAME.

You have already used filenames to identify the source programs written and used in this tutorial.

USING A FILE IN PASCAL
Files are referred to in Pascal programs by the use of filenames. You have already used two
default filenames, input and output. These are associated with the keyboard and console screen.
To derive data from another source, it must be specified in the program heading, eg,

 program FILE_OUTPUT(input, fdata);

This informs Pascal that you will be using a file called fdata. Within the variable declaration
section, the file type is declared, eg

 var fdata : file of char;

This declares the file fdata as consisting of a sequence of characters. Pascal provides a standard
definition called TEXT for this, so the following statement is identical,

 var fdata : TEXT;

BASIC FILE OPERATIONS
Once the file is known to the program, the operations which may be performed are,

107

1. The file is prepared for use by RESET or REWRITE
2. Information is read or written using READ or WRITE
3. The file is then closed by using CLOSE

PREPARING A FILE READY FOR USE
The two commands for preparing a file ready for use in a program are RESET and REWRITE.
Both procedures use the name of the file variable you want to work with. They also accept a
string which is then associated with the file variable, e.g.

 var filename : string[15];

 readln(filename);

 RESET (fdata, filename);
This prepares the file specified by filename for reading. All reading operations are
performed using fdata.

 REWRITE (fdata, filename);
This prepares the file specified by filename for writing. All write operations are
performed using fdata. If the file already exists, it is re-created, and all existing
information lost!

READING AND WRITING TO A FILE OF TYPE TEXT
The procedures READ and WRITE can be used. These procedures also accept the name of the
file, e.g.,

 writeln(fdata, 'Hello there. How are you?');

writes the text string to the file fdata rather than the standard output device.

Turbo Pascal users must use the assign statement, as only one parameter may be supplied to
either reset or rewrite.

 assign(fdata, filename);
 reset(fdata);
 rewrite(fdata);

CLOSING A FILE
When all operations are finished, the file is closed. This is necessary, as it informs the program
that you have finished with the file. The program releases any memory associated with the file,
ensuring its (the files) integrity.

108

 CLOSE(fdata); {closes file associated with fdata}

Once a file has been closed, no further file operations on that file are possible (unless you
prepare it again).

SAMPLE FILE OUTPUT PROGRAM TO WRITE DATA TO A TEXT FILE

 program WRITETEXT (input, output, fdata);
 var fdata : TEXT;
 ch : char;
 fname : packed array [1..15] of char;
 begin
 writeln('Enter a filename for storage of text.');
 readln(fname);
 rewrite(fdata, fname); {create a new fdata }
 readln; {clear input buffer }
 read(ch); {read character from keyboard}
 while ch <> '*' do {stop when an * is typed }
 begin
 write(fdata, ch); {write character to fdata }
 read(ch) {read next character }
 end;
 write(fdata, '*'); {write an * for end of file }
 close(fdata) {close file fdata }
 end.

SELF TEST 12.1
Determine what the following code statements do

 writeln(output, 'Hello there. It''s me again');
 writeln('The time has come, the Walrus said,');
 readln(input, ch);
 readln(ch);

 Self Test .. File statements
 Both writeln statements display info on screen
 Both readln statements accept info from keyboard

THE COMPOSITION OF TEXT FILES
Text files are arranged as a sequence of variable length lines.

 Each line consists of a sequence of characters.
 Each line is terminated with a special character, called

END-OF-LINE (EOLN)

109

 The last character is another special character, called
END-OF-FILE (EOF)

THIS IS WHAT A TEXT FILE LOOKS LIKE

He was not quite as old as people estimated. In fact, the furrowedEOLN
brow that swept many a street was only fourty-five.EOLN
Life had not been easy for the hunchback, it's difficult to playEOLN
any game when all you can see are your feet. In spite of theEOLN
hardships, he was as gentle as a roaring elephant going overEOLN
Niagara falls.EOF

End of File and End of Line

EOF
Accepts the name of the input file, and returns true if there is no more data to be read.

EOLN
Accepts the name of the input file, and is true if there are no more characters on the current line.

When reading information from a text file, the character which is read can be compared against
EOLN or EOF. Consider the following program which displays the contents of a text file on the
console screen.

 program SHOWTEXT (infile, input, output);
 var ch : char;
 fname : packed array [1..15] of char;
 infile: TEXT;
 begin
 writeln('Please enter name of text file to display.');
 readln(fname);

 reset(infile, fname); {open a file using filename stored in}
 {array fname }
 while not eof(infile) do
 begin
 while not eoln(infile) do
 begin
 read(infile, ch);
 write(ch)
 end;
 readln(infile); {read eoln character}
 writeln {write eoln character}
 end;
 close(infile) {close filename specified by fname}
 end.

110

PROGRAM 12.1
Write a program to count the number of characters in a text file. The valid characters are 'A' to
'Z', and 'a' to 'z'.

 program PROG21 (input,output, infile); {count characters in file}
 type legal1 = 'A'..'Z';
 legal2 = 'a'..'z';
 var infile : TEXT;
 fname : string[15];
 ch : char;
 count : integer;
 begin
 count := 0;
 writeln('Please enter name of text file to count.');
 readln(fname);
 { for turbo pascal
 assign(infile, fname);
 reset(infile);
 }

 reset(infile, fname); {open a file using filename stored in}
 {array fname }
 while not eof(infile) do
 begin
 while not eoln(infile) do
 begin
 read(infile, ch);
 if ((ch>='A')and(ch<='Z'))or((ch >='a')and(ch<='z')) then
 count := count + 1
 end;
 readln(infile) {read eof character}
 end;
 close(infile); {close filename specified by fname}
 writeln('The number of characters in ',fname,' is ',count)
 end.

PROGRAM 12.2
Write a program to count the number of words in a text file.

{ Program to count words in a text file. Adapted from C program found}
{ in Programming in C : S Kochan, pg 174 - }
program PROG22 (input, output, infile);
type oneline = packed array[1..81] of char;

111

{ a function to determine if a character is alphabetic }
function alphabetic (ch : char) : boolean;
begin
 if (((ch >= 'a') AND (ch <= 'z')) OR ((ch >= 'A') AND (ch <= 'Z'))) then
 alphabetic := TRUE
 else
 alphabetic := FALSE
end;

{ a function to count the number of words in a string }
function count_words (var line : oneline) : integer;
var i, word_count : integer;
 looking_for_word : boolean;
begin
 looking_for_word := TRUE;
 word_count := 0;
 for i := 1 to 81 do
 begin
 if alphabetic(line[i]) then
 begin
 if looking_for_word then
 begin
 word_count := word_count + 1;
 looking_for_word := FALSE
 end
 end
 else
 looking_for_word := TRUE
 end;
 count_words := word_count
end;

var infile : text;
 tline : oneline;
 fname : string[15];
 total,count : integer;
 ch : char;
begin
 total := 0;
 writeln('Please enter name of input file to count');
 readln (fname);
 assign (infile, fname);
 reset(infile);
 while not eof(infile) do
 begin
 for count := 1 to 81 do

112

 tline[count] := ' ';
 count := 1;
 while not eoln(infile) do
 begin
 read(infile, ch);
 tline[count] := ch;
 count := count + 1
 end;
 total := total + count_words(tline);
 readln(infile) { read eoln character }
 end;
 writeln('There are ',total,' words in the text file.')
end.

FILES OF NUMBERS
Files may also consist of integers or reals. The procedures read and write can be used to transfer
one value at a time.

The procedures readln and writeln cannot be used with file types other than text.

PROGRAM 12.3
Write a program which adds up a list of numbers from a file. Create a sample file to test your
program.

{developed from a routine in OH PASCAL, pg 444 }
program PROG23A (input,output,outfile); {create a file of integers }
var outfile : file of integer;
 current, total : integer;
 fname : string[15];
begin
 total := 0;
 writeln('Enter name of file to contain numbers');
 readln (fname);
 assign(outfile, fname);
 rewrite(outfile);
 writeln('Enter in integers, a value of 0 stops');
 read(current);
 while current <> 0 do
 begin
 write(outfile, current);
 read(current)
 end;
 close(outfile)
end.

113

{developed from a routine in OH PASCAL, pg 444 }
program PROG23 (input,output,infile); {sum of integers in a file}
var infile : file of integer;
 current, total : integer;
 fname : string[15];
begin
 total := 0;
 writeln('Enter name of file containing numbers');
 readln (fname);
 assign(infile, fname);
 reset(infile);
 while not eof(infile) do
 begin
 read(infile, current);
 total := total + current
 end;
 writeln('The sum of all numbers is ', total)
end.

FILES OF RECORDS
Files can also contain records. Using read or write, it is possible to transfer a record at a time.

PROGRAM 12.4
Implement a Pascal program which allows the recalling of a group of student marks. The
program is to output the highest and lowest marks, as well as the mean.

Use an array of records to store the names and marks. Using an output file, sort the student
names, marks into ascending order, so that the student with the highest mark will be written first.

The details are,

 Student 1 Joe Bloggs 56
 2 Bill Anderson 24
 3 William Tell 78
 4 Bob Crane 23
 5 Peter Hall 57
 6 Charles French 76
 7 Bryan Goldwater 65
 8 Stewart Phelps 89
 9 Dave Stevens 78
 10 Ted Rosse 64

The student name consists of 16 characters, and the student mark is an integer in the range 0 to
100. Our example has a maximum of ten students.

114

program prog25A (input,output,outfile); {create student file}
const outname = 'STUDENT.DAT';
type student = record
 name : string[16];
 mark : integer;
 end;
var class : array [1..10] of student;
 loopcount : integer;
 outfile : file of student;
begin
 class[1].name := 'Joe Bloggs '; class[1].mark := 56;
 class[2].name := 'Bill Anderson '; class[2].mark := 24;
 class[3].name := 'William Tell '; class[3].mark := 78;
 class[4].name := 'Bob Crane '; class[4].mark := 23;
 class[5].name := 'Peter Hall '; class[5].mark := 57;
 class[6].name := 'Charles French '; class[6].mark := 76;
 class[7].name := 'Bryan Goldwater '; class[7].mark := 65;
 class[8].name := 'Stewart Phelps '; class[8].mark := 89;
 class[9].name := 'Dave Stevens '; class[9].mark := 78;
 class[10].name := 'Ted Rosse '; class[10].mark := 64;

{ for turbo pascal assign(outfile, outname); rewrite(outfile); }
 rewrite(outfile, outname);
 for loopcount := 1 to 10 do
 write(outfile, class[loopcount]);
 writeln('Student.dat created and written.');
 close(outfile)
end.

program prog25B (input,output,infile); {read back in student file}
const inname = 'STUDENT.DAT';
type student = record
 name : string[16];
 mark : integer;
 end;
var class : array [1..10] of student;
 loopcount, classsize : integer;
 infile : file of student;
begin
{ for turbo pascal assign(infile, inname); reset(infile); }
 rewrite(infile, inname);
 classsize := 1;
 while not eof(infile) do
 begin

115

 read(infile, class[classsize]);
 classsize := classsize + 1
 end;

 for loopcount := 1 to (classsize - 1) do
 begin
 write('Student ',loopcount:2,' is ');
 writeln(class[loopcount].name,' ',class[loopcount].mark)
 end;
 close(infile)
end.

 {read back, sort, write, student file}
program prog25C (input, output, infile, outfile);
const inname = 'STUDENT.DAT';
 outname = 'STUDENT.SRT';
type student = record
 name : string[16];
 mark : integer;
 end;
 class = array [1..10] of student;

{ find highest mark }
function gethighest(studclass : class; sizeclass : integer) : integer;
var temp, count : integer;
begin
 temp := studclass[1].mark;
 count := 2;
 while count <= sizeclass do
 begin
 if studclass[count].mark > temp then
 temp := studclass[count].mark;
 count := count + 1
 end;
 gethighest := temp;
end;

{ find lowest mark }
function getlowest(studclass : class; sizeclass : integer) : integer;
var temp, count : integer;
begin
 temp := studclass[1].mark;
 count := 2;
 while count <= sizeclass do

116

 begin
 if studclass[count].mark < temp then
 temp := studclass[count].mark;
 count := count + 1
 end;
 getlowest := temp;
end;

{ find mean }
function getmean (studclass : class; sizeclass : integer) : real;
var total, loop : integer;
begin
 total := 0;
 for loop := 1 to sizeclass do
 total := total + studclass[loop].mark;

 getmean := total / sizeclass;
end;

{ sort into ascending order, standard sequential sort used here }
procedure sort(var studclass : class; sizeclass : integer);
var temp : student;
 loop, base, index : integer;
begin
 base := 1;
 while base < sizeclass do
 begin
 index := base + 1;
 while index <= sizeclass do
 begin
 if studclass[base].mark < studclass[index].mark then
 begin
 temp.mark := studclass[base].mark;
 temp.name := studclass[base].name;
 studclass[base].name := studclass[index].name;
 studclass[base].mark := studclass[index].mark;
 studclass[index].name := temp.name;
 studclass[index].mark := temp.mark
 end;
 index := index + 1
 end;
 base := base + 1
 end;
end;

var mainclass : class;

117

 loopcount, classsize, highest, lowest : integer;
 mean : real;
 infile, outfile : file of student;
begin
{ for turbo pascal assign(infile, inname);
 reset (infile);
 assign(outfile, outname);
 rewrite(outfile);
}
 reset(infile, inname);
 rewrite(outfile, outname);
 classsize := 1;
 while not eof(infile) do
 begin
 read(infile, mainclass[classsize]);
 classsize := classsize + 1
 end;
 close(infile);

 { find highest, lowest and average marks }
 highest := gethighest(mainclass, classsize - 1);
 lowest := getlowest (mainclass, classsize - 1);
 mean := getmean (mainclass, classsize - 1);

 { now sort into ascending order }
 sort(mainclass, classsize - 1);

 { now write out sorted class to outfile }
 for loopcount := 1 to (classsize - 1) do
 write(outfile,mainclass[loopcount]);

 writeln('The highest mark was ', highest);
 writeln('The lowest mark was ', lowest);
 writeln('The mean mark was ', mean:3:2);
 close(outfile)
end.

STRINGS
The following program illustrates using STRINGS (a sequence of characters) in a DG Pascal
program. STRING is type defined as a packed array of type char.

Message is then declared as the same type as STRING, ie, a packed array of characters, elements
numbered one to eight.

118

 PROGRAM DGSTRING (INPUT, OUTPUT);
 TYPE STRING = PACKED ARRAY [1..8] OF CHAR;
 VAR MESSAGE : STRING;
 BEGIN
 WRITELN('HELLO BRIAN.');
 MESSAGE := '12345678';
 WRITELN('THE MESSAGE IS ', MESSAGE)
 END.

Turbo Pascal, how-ever, allows an easier use of character strings by providing a new keyword
called STRING. Using STRING, you can add a parameter (how many characters) specifying the
string length. Consider the above program re-written for turbo pascal.

 PROGRAM TPSTRING (INPUT, OUTPUT);
 VAR MESSAGE : STRING[8];
 BEGIN
 WRITELN('HELLO BRIAN.');
 MESSAGE := '12345678';
 WRITELN('THE MESSAGE IS ', MESSAGE)
 END.

Obviously, the turbo pascal version is easier to use. BUT, the following program shows a similar
implementation for use on the DG.

 PROGRAM DGSTRING2 (INPUT, OUTPUT);
 CONST $STRINGMAXLENGTH = 8; {defines maxlength of a string}
 %INCLUDE 'PASSTRINGS.IN'; {include code to handle strings}
 VAR MESSAGE : $STRING_BODY;
 BEGIN
 WRITELN('HELLO BRIAN.');
 MESSAGE := '12345678';
 WRITELN('THE MESSAGE IS ', MESSAGE)
 END.

Strings
DG Pascal also provides the following functions for handling and manipulating strings.

APPEND
concatenate two strings. calling format is

APPEND(string1, string2);

119

where string2 is added onto the end of string1.

LENGTH
returns a short_integer which represents the length (number of
characters) of the string.

 LENGTH(stringname);

SETSUBSTR
replaces a substring in a target string with a substring from
a source string.

 SETSUBSTR(Targetstr, tstart, tlen, Sourcestr, sstart);

 where
 Targetstr is the target string

 tstart is an integer representing the start position

 (within Targetstr) of the substring that is to be replaced

 tlen is an integer representing the length of the substring

 that you are replacing in Targetstr

Sourcestr is the source string which contains the substring

 sstart is an integer which specifies the starting position

 of the substring within Sourcestr

120

UNIT13

UNITS

We already know that units, such as the crt unit, let you use more procedures and functions than
the built-in ones. You can make your own units which have procedures and functions that you
have made in them.

To make a unit, you need to create new Pascal file which we will call MyUnit.pas. The first line
of the file should start with the unit keyword followed by the unit's name. The unit's name and
the unit's file name must be exactly the same.

unit MyUnit;

The next line is the interface keyword. After this you must put the names of the procedures that
will be made available to the program that will use your unit. For this example we will be
making a function called NewReadln which is like Readln but it lets you limit the amount of
characters that can be entered.

unit MyUnit;
 interface
 function NewReadln(Max: Integer): String;

The next line is implementation. This is where you will type the full code for the procedures and
functions. We will also need to use the crt unit to make NewReadln. We end the unit just like a
normal program with the end keyword.

unit MyUnit;
 interface
 function NewReadln(Max: Integer): String;
 implementation
 function NewReadln(Max: Integer): String;
var
 s: String;
 c: Char;
begin
 s := '';
 repeat
 c := ReadKey;
 if (c = #8){#8 = BACKSPACE} and (s <> '') then
 begin
 Write(#8+' '+#8);
 delete(s,length(s),1);
 end;
 if (c <> #8) and (c <> #13){#13 = ENTER} and (length(s) < Max) then
 begin

121

 Write(c);
 s := s + c;
 end;
 until c = #13;
 NewReadln := s;
end;
 end.

Once you have saved the unit you must compile it. Now we must make the program that uses the
unit that we have just made. This time we will type MyUnit in the uses section and then use the
NewReadln function.

program MyProgram;
 uses
 MyUnit;
 var
 s: String;
 begin
 s := NewReadln(10);
end.

122

UNIT 14

SETS

Sets exist in every day life. They are a way of classifying common types into groups. In Pascal,
we think of sets as containing a range of limited values, from an initial value through to an
ending value.

Consider the following set of integer values,

 1, 2, 3, 4, 5, 6, 7, 8, 9, 10

This is a set of numbers (integers) whose set value ranges from 1 to 10. To define this as a set
type in Pascal, we would use the following syntax.

 program SetsOne(output);

 type numberset = set of 1..10;

 var mynumbers : numberset;

 begin
 end.

The statement

 type numberset = set of 1..10;

declares a new type called numberset, which represents a set of integer values ranging from 1 as
the lowest value, to 10 as the highest value. The value 1..10 means the numbers 1 to 10 inclusive.
We call this the base set, that is, the set of values from which the set is taken.

The base set is a range of limited values. For example, we can have a set of char, but not a set of
integers, because the set of integers has too many possible values, whereas the set of characters
is very limited in possible values.

The statement

 var mynumbers : numberset;

makes a working variable in our program called mynumbers, which is a set and can hold any
value from the range defined in numberset.

123

SET OPERATIONS
The typical operations associated with sets are,

 assign values to a set
 determine if a value is in one or more sets
 set addition (UNION)
 set subtraction (DIFFERENCE)
 set commonality (INTERSECTION)

Assigning Values to a set: UNION
Set union is essentially the addition of sets, which also includes the initialisation or assigning of
values to a set.

Consider the following statement which assigns values to a set

 program SetsTWO(output);

 type numberset = set of 1..10;

 var mynumbers : numberset;

 begin
 mynumbers := [];
 mynumbers := [2..6]
 end.

The statement

 mynumbers := [];

assigns an empty set to mynumbers. The statement

 mynumbers := [2..6];

assigns a subset of values (integer 2 to 6 inclusive) from the range given for the set type
numberset. Please note that assigning values outside the range of the set type from which
mynumbers is derived will generate an error, thus the statement

 mynumbers := [6..32];

is illegal, because mynumbers is derived from the base type numberset, which is a set of integer
values ranging from 1 to 10. Any values outside this range are considered illegal.

Determining if a value is in a set
Lets expand the above program example to demonstrate how we check to see if a value resides in

124

a set. Consider the following program, which reads an integer from the keyboard and checks to
see if its in the set.

 program SetsTHREE(input, output);

 type numberset = set of 1..10;

 var mynumbers : numberset;
 value : integer;

 begin
 mynumbers := [2..6];
 value := 1;
 while(value <> 0) do
 begin
 writeln('Please enter an integer value, (0 to exit)');
 readln(value);
 if value <> 0 then
 begin
 if value IN mynumbers then
 writeln('Its in the set')
 else
 writeln('Its not in the set')
 end
 end
 end.

More on set UNION, combining sets
Lets now look at combining some sets together. Consider the following program, which creates
two sets, then joins the sets together to create another.

 program SetsUNION(input, output);

 type numberset = set of 1..40;

 var mynumbers, othernumbers, unionnumbers : numberset;
 value : integer;

 begin
 mynumbers := [2..6];
 othernumbers := [4..10];
 unionnumbers := mynumbers + othernumbers + [14..20];
 value := 1;
 while(value <> 0) do

125

 begin
 writeln('Please enter an integer value, (0 to exit)');
 readln(value);
 if value <> 0 then
 begin
 if value IN unionnumbers then
 writeln('Its in the set')
 else
 writeln('Its not in the set')
 end
 end
 end.

The statement

 var mynumbers, othernumbers, unionnumbers : numberset;

declares three sets of type numberset.

The statement

 mynumbers := [2..6];

assigns a subset of values (integer 2 to 6 inclusive) from the range given for the set type
numberset.

The statement

 othernumbers := [4..10];

assigns a subset of values (integer 4 to 10 inclusive) from the range given for the set type
numberset.

The statement

 unionnumbers := mynumbers + othernumbers + [14..20];

assigns the set of values in mynumbers, othernumbers and the set of values of 14 to 20 to
unionnumbers.

If a specific value occurs in more than one set (as is the case of 4, 5, and 6, which are in
mynumbers and othernumbers), then the other duplicate value is ignored (ie, only one instance of
the value is copied to the new set.

This means that unionnumbers contains the values

126

Set Subtraction, DIFFERENCE
In this operation, the new set will contain the values of the first set that are NOT also in the
second set.

 program SetsDIFFERENCE(input, output);

 type numberset = set of 1..40;

 var mynumbers, othernumbers, unionnumbers : numberset;
 value : integer;

 begin
 mynumbers := [2..6];
 othernumbers := [4..10];
 unionnumbers := mynumbers - othernumbers;
 value := 1;
 while(value <> 0) do
 begin
 writeln('Please enter an integer value, (0 to exit)');
 readln(value);
 if value <> 0 then
 begin
 if value IN unionnumbers then
 writeln('Its in the set')
 else
 writeln('Its not in the set')
 end
 end
 end.

unionnumbers contains the values

127

Set Commonality, INTERSECTION
In this operation, the new set will contain the values which are common (appear as members) of
the specified sets.

 program SetsINTERSECTION(input, output);

 type numberset = set of 1..40;

 var mynumbers, othernumbers, unionnumbers : numberset;
 value : integer;

 begin
 mynumbers := [2..6];
 othernumbers := [4..10];
 unionnumbers := mynumbers * othernumbers * [5..7];
 value := 1;
 while(value <> 0) do
 begin
 writeln('Please enter an integer value, (0 to exit)');
 readln(value);
 if value <> 0 then
 begin
 if value IN unionnumbers then
 writeln('Its in the set')
 else
 writeln('Its not in the set')
 end
 end
 end.

unionnumbers contains the values

128

129

UNIT 15

POINTERS

What is a pointer?
A pointer is a type of variable that stores a memory address, which it point to. There are 2 types
of pointers which are typed and untyped. A typed pointer points to a variable such as an integer.
An untyped pointer can point to any type of variable.

Declaring and using typed pointers
When you declare a typed pointer you must put a ^ in front of the variable type which you want
it to point to. Here is an example of how to declare a pointer to an integer:

program Pointers;
 var
 p: ^integer;
 begin
end.

The @ sign can be used in front of a variable to get its memory address. This memory address
can then be stored in a pointer because pointers store memory addresses. Here is an example of
how to store the memory address of an integer in a pointer to an integer:

program Pointers;
 var
 i: integer;
 p: ^integer;
 begin
 p := @i;
end.

If you want to change the value stored at the memory address pointed at by a pointer you must
first dereference the pointer variable using a ^ after the pointer name. Here is an example of how
to change the value of an integer from 1 to 2 using a pointer:

program Pointers;
 var
 i: integer;
 p: ^integer;

begin
 i := 1;
 p := @i;
 p^ := 2;
 writeln(i);
end.

130

You can allocate new memory to a typed pointer by using the new command. The new command
has one parameter which is a pointer. The new command gets the memory that is the size of the
variable type of the pointer and then sets the pointer to point to the memory address of it. When
you are finished using the pointer you must use the dispose command to free the memory that
was allocated to the pointer. Here is an example:

program Pointers;
 var
 p: ^integer;
 begin
 new(p);
 p^ := 3;
 writeln(p^);
 dispose(p);
end.

Declaring and using untyped pointers
When you declare an untyped pointer you must use the variable type called pointer.

program Pointers;
 var
 p: pointer;
 begin
end.

When you allocate memory to an untyped pointer you must use the getmem command instead of
the new command and you must use freemem instead of dispose. getmem and freemem each have
a second parameter which is the size in bytes of the amount of memory which must be allocated
to the pointer. You can either use a number for the size or you can use the sizeof function to get
the size of a specific variable type.

program Pointers;
var
 p: pointer;
begin
 getmem(p,sizeof(integer));
 freemem(p,sizeof(integer));
end.

POINTERS

Pointers enable us to effectively represent complex data structures, to change values as
arguments to functions, to work with memory which has been dynamically allocated, and to store
data in complex ways.

131

A pointer provides an indirect means of accessing the value of a particular data item. Lets see
how pointers actually work with a simple example,

 program pointers1(output);
 type int_pointer = ^integer;

 var iptr : int_pointer;
 begin
 new(iptr);
 iptr^ := 10;
 writeln('the value is ', iptr^);
 dispose(iptr)
 end.

The line

 type int_pointer = ^integer;

declares a new type of variable called int_pointer, which is a pointer (denoted by ^) to an
integer.

The line

 var iptr : int_pointer;

declares a working variable called iptr of type int_pointer. The variable iptr will not contain
numeric values, but will contain the address in memory of a dynamically created variable (by
using new). Currently, there is no storage space allocated with iptr, which means you cannot use
it till you associate some storage space to it. Pictorially, it looks like,

The line

 new(iptr);

creates a new dynamic variable (ie, its created when the program actually runs on the computer).
The pointer variable iptr points to the location/address in memory of the storage space used to
hold an integer value. Pictorially, it looks like,

132

The line

 iptr^ := 10;

means go to the storage space allocated/associated with iptr, and write in that storage space the
integer value 10. Pictorially, it looks like,

The line

 dispose(iptr)

means deallocate (free up) the storage space allocated/associated with iptr, and return it to the
computer system. This means that iptr cannot be used again unless it is associated with another
new() statement first. Pictorially, it looks like,

Pointers which do not reference any memory location should be assigned the value nil. Consider
the following program, which expands on the previous program.

 program pointers2(output);
 type int_pointer = ^integer;

 var iptr : int_pointer;
 begin
 new(iptr);
 iptr^ := 10;
 writeln('the value is ', iptr^);
 dispose(iptr);

133

 iptr := nil;
 if iptr = nil
 then writeln('iptr does not reference any variable')
 else
 writeln('The value of the reference for iptr is ', iptr^)
 end.

The line

 iptr := nil;

assigns the value nil to the pointer variable iptr. This means that the pointer is valid and stil
exists, but it does not point to any memory location or dynamic variable.

The line

 if iptr = nil

tests iptr to see if its a nil pointer, ie, that it is not pointing to a valid reference. This test is very
useful and will come in use later on when we want to construct more complex data types like
linked lists.

Pointers of the same type may be equated and assigned to each other. Consider the following
program

 program pointers3(output);
 type int_pointer = ^integer;

 var iptr1, iptr2 : int_pointer;
 begin
 new(iptr1);
 new(iptr2);
 iptr1^ := 10;
 iptr2^ := 25;
 writeln('the value of iptr1 is ', iptr1^);
 writeln('the value of iptr2 is ', iptr2^);
 dispose(iptr1);
 iptr1 := iptr2;
 iptr1^ := 3;
 writeln('the value of iptr1 is ', iptr1^);
 writeln('the value of iptr2 is ', iptr2^);
 dispose(iptr2);

134

 end.

The lines

 new(iptr1);
 new(iptr2);

creates two integer pointers named iptr1 and iptr2. They are not associated with any dynamic
variables yet, so pictorially, it looks like,

The lines

 iptr1^ := 10;
 iptr2^ := 25;

assigns dynamic variables to each of the integer variables. Pictorially, it now looks like,

The lines

 dispose(iptr1);
 iptr1 := iptr2;

remove the association of iptr1 from the dynamic variable whose value was 10, and the next line
makes iptr1 point to the same dynamic variable that iptr2 points to. Pictorially, it looks like,

135

The line

 iptr1^ := 3;

assigns the integer value 3 to the dynamic variable associated with iptr1. In effect, this also

changes iptr2^. Pictorially, it now looks like,

The programs output is

 the value of iptr1 is 10
 the value of iptr2 is 25
 the value of iptr1 is 3
 the value of iptr2 is 3

SUMMARY OF POINTERS

 A pointer can point to a location of any data type, including records. Its basic syntax is,
 type Pointertype = ^datatype;
 var NameofPointerVariable : Pointertype;
 The procedure new allocates storage space for the pointer to use
 The procedure dispose deallocates the storage space associated with a pointer
 A pointer can be assigned storage space using new, or assigning it the value from a

pointer of the same type (eg, iptr1 := iptr2;)
 A pointer can be assigned the value nil, to indicate that it is not pointing to any storage

space
 The value at the storage space associated with a pointer may be read or altered using the

syntax

136

 NameofPointerVariable^
 A pointer may reference a type which has not yet been created (this will be covered next)

POINTERS: Referencing data types that do not yet exist

The most common use of pointers is to reference structured types like records. Often, the record
definition will contain a reference to the pointer,

 type rptr = ^recdata;
 recdata = record
 number : integer;
 code : string;
 nextrecord : rptr
 end;

 var currentrecord : rptr;

In this example, the definition for the field nextrecord of recdata includes a reference to the
pointer of type iptr. As you can see, rptr is defined as a pointer of type recdata, which is defined
on the next lines. This is allowed in Pascal, for pointer types.

Using a definition of recdata, this will allow us to create a list of records, as illustrated by the
following picture.

In this case, a list is simply of number of records (all of the same type), linked together by the
use of pointers.

Lets construct the actual list as shown below, as an example.

137

 program PointerRecordExample(output);

 type rptr = ^recdata;
 recdata = record
 number : integer;
 code : string;
 nextrecord : rptr
 end;

 var startrecord : rptr;

 begin
 new(startrecord);
 if startrecord = nil then
 begin
 writeln('1: unable to allocate storage space');
 exit
 end;
 startrecord^.number := 10;
 startrecord^.code := 'This is the first record';
 new(startrecord^.nextrecord);
 if startrecord^.nextrecord = nil then
 begin
 writeln('2: unable to allocate storage space');
 exit
 end;
 startrecord^.nextrecord^.number := 20;
 startrecord^.nextrecord^.code := 'This is the second record';
 new(startrecord^.nextrecord^.nextrecord);
 if startrecord^.nextrecord^.nextrecord = nil then
 begin
 writeln('3: unable to allocate storage space');
 exit
 end;
 startrecord^.nextrecord^.nextrecord^.number := 30;
 startrecord^.nextrecord^.nextrecord^.code := 'This is the third record';
 startrecord^.nextrecord^.nextrecord^.nextrecord := nil;
 writeln(startrecord^.number);
 writeln(startrecord^.code);
 writeln(startrecord^.nextrecord^.number);
 writeln(startrecord^.nextrecord^.code);
 writeln(startrecord^.nextrecord^.nextrecord^.number);
 writeln(startrecord^.nextrecord^.nextrecord^.code);
 dispose(startrecord^.nextrecord^.nextrecord);
 dispose(startrecord^.nextrecord);
 dispose(startrecord)

138

 end.

The lines of code

 new(startrecord);
 if startrecord = nil then
 begin
 writeln('1: unable to allocate storage space');
 exit
 end;
 startrecord^.number := 10;
 startrecord^.code := 'This is the first record';
create the beginning of the list, which pictorially looks like,

The lines of code

 new(startrecord^.nextrecord);
 if startrecord^.nextrecord = nil then
 begin
 writeln('2: unable to allocate storage space');
 exit
 end;
 startrecord^.nextrecord^.number := 20;
 startrecord^.nextrecord^.code := 'This is the second record';
link in the next record, which now looks like,

139

The lines of code

 new(startrecord^.nextrecord^.nextrecord);
 if startrecord^.nextrecord^.nextrecord = nil then
 begin
 writeln('3: unable to allocate storage space');
 exit
 end;
 startrecord^.nextrecord^.nextrecord^.number := 30;
 startrecord^.nextrecord^.nextrecord^.code := 'This is the third record';
 startrecord^.nextrecord^.nextrecord^.nextrecord := nil;
link in the third and final record, also setting the last nextrecord field to nil. Pictorially,
the list now looks like,

The remaining lines of code print out the fields of each record.

The previous program can be rewritten to make it easier to read, understand and maintain. To do
this, we will use a dedicated pointer to maintain and initialise the list, rather than get into the
long notation that we used in the previous program, e.g.,

 startrecord^.nextrecord^.nextrecord^.number := 30;

The modified program now looks like,

 program PointerRecordExample2(output);

 type rptr = ^recdata;
 recdata = record
 number : integer;
 code : string;
 nextrecord : rptr
 end;

 var startrecord, listrecord : rptr;

140

 begin
 new(listrecord);
 if listrecord = nil then
 begin
 writeln('1: unable to allocate storage space');
 exit
 end;
 startrecord := listrecord;
 listrecord^.number := 10;
 listrecord^.code := 'This is the first record';
 new(listrecord^.nextrecord);
 if listrecord^.nextrecord = nil then
 begin
 writeln('2: unable to allocate storage space');
 exit
 end;
 listrecord := listrecord^.nextrecord;
 listrecord^.number := 20;
 listrecord^.code := 'This is the second record';
 new(listrecord^.nextrecord);

 if listrecord^.nextrecord = nil then
 begin
 writeln('3: unable to allocate storage space');
 exit
 end;
 listrecord := listrecord^.nextrecord;
 listrecord^.number := 30;
 listrecord^.code := 'This is the third record';
 listrecord^.nextrecord := nil;

 while startrecord <> nil do
 begin
 listrecord := startrecord;
 writeln(startrecord^.number);
 writeln(startrecord^.code);

 startrecord := startrecord^.nextrecord;
 dispose(listrecord)
 end
 end.

In this example, the pointer listrecord is used to create and initialise the list. After creation of the
first record, it is saved in the pointer startrecord.

The lines of code

 new(listrecord);
 if listrecord = nil then

141

 begin
 writeln('1: unable to allocate storage space');
 exit
 end;
 startrecord := listrecord;
 listrecord^.number := 10;
 listrecord^.code := 'This is the first record';

creates the first record and initialises it, then remembers where it is by saving it into startrecord.
Pictorially, it looks like,

The lines of code

 new(listrecord^.nextrecord);
 if listrecord^.nextrecord = nil then

 begin
 writeln('2: unable to allocate storage space');
 exit
 end;
 listrecord := listrecord^.nextrecord;
 listrecord^.number := 20;
 listrecord^.code := 'This is the second record';

add a new record to the first by linking it into listrecord^.nextrecord, then moving listrecord to
the new record. Pictorially, it looks like,

The lines of code

 new(listrecord^.nextrecord);

142

 if listrecord^.nextrecord = nil then
 begin
 writeln('3: unable to allocate storage space');
 exit
 end;
 listrecord := listrecord^.nextrecord;
 listrecord^.number := 30;
 listrecord^.code := 'This is the third record';
 listrecord^.nextrecord := nil;

add the last record to the previous by linking it into listrecord^.nextrecord, then moving
listrecord to the new record. Pictorially, it looks like,

Note how much easier the code looks than the previous example.

Lets modify the previous program which introduced a separate pointer for tranversing the links
of records. This time, rather than statically creating three records, we will allow the use to enter
the details as the list is created.

The modified program appears below.

program PointerRecordExample3(input, output);

type rptr = ^recdata;
 recdata = record
 number : integer;
 code : string;
 nextrecord : rptr
 end;

var startrecord, listrecord, insertptr : rptr;
 digitcode : integer;
 textstring : string;
 exitflag, first : boolean;

143

begin
 exitflag := false;
 first := true;
 while exitflag = false do
 begin
 writeln('Enter in a digit [-1 to end]');
 readln(digitcode);
 if digitcode = -1 then
 exitflag := true
 else
 begin
 writeln('Enter in a small text string');
 readln(textstring);
 new(insertptr);
 if insertptr = nil then
 begin
 writeln('1: unable to allocate storage space');
 exit
 end;
 if first = true then begin
 startrecord := insertptr;
 listrecord := insertptr;
 first := false
 end
 else begin
 listrecord^.nextrecord := insertptr;
 listrecord := insertptr
 end;
 insertptr^.number := digitcode;
 insertptr^.code := textstring;
 insertptr^.nextrecord := nil
 end
 end;
 while startrecord <> nil do
 begin
 listrecord := startrecord;
 writeln(startrecord^.number);
 writeln(startrecord^.code);
 startrecord := startrecord^.nextrecord;

 dispose(listrecord)
 end
end.

144

The program uses three pointers. startrecord remembers the start or head of the list, listrecord is
used to link between the previous record and the next/current one, and insertptr is used to create
a new record which is then linked into the chain.

An example of constructing a list of words and line numbers
The following program illustrates a buggy method of reading a small file and generating a list of
words and associated line numbers. It does this using a linked list.

 Its been ported from a C equivalent example in the C programming module. It fails on large
text files (generates a heap overflow error). Proper handling of error situations is minimised
so as to concentrate primarily on code execution.

 Use it at your own peril.

program findwords(input, output);

{ $M 32000, 65536 }

const TRUE = 1;
 FALSE = 0;
 BS = 8;
 TAB = 9;
 LF = 10;
 VT = 11;
 FF = 12;
 CR = 13;

{ this holds the line numbers for each word. Its double linked for
 ease of freeing memory later on }
type listptr = ^list;
 list = record
 line : integer; { line number of occurrence }
 nextline : listptr; { link to next line number }
 prevline : listptr { link to previous line number }
 end;

{ this holds the word with a link to a struct list holding line
 numbers. Double linking to simplify freeing of memory later on }
 wordptr = ^words;
 words = record
 word : string; { pointer to word }
 lines : listptr; { pointer to list of line numbers }
 nextword : wordptr; { pointer to next word in list }
 prevword : wordptr; { pointer to previous word in list}
 end;

145

var
 head, tail : wordptr; { beginning and end of list }
 fin : file of char; { input file handle }
 filename : string; { name of input file }
 thisisfirstword : integer; { to handle start of list words=0 }

{ customised exit routine to provide orderly shutdown }
procedure myexit(exitcode : integer);
var
 word_ptr, tempw : wordptr;

 line_ptr, templ : listptr;
begin

 { close input file }
 close(fin);

 { free any allocated memory }
 writeln('Deallocating memory:');
 word_ptr := head;
 while word_ptr <> nil do
 begin
 tempw := word_ptr; { remember where we are }
 line_ptr := word_ptr^.lines; { go through line storage list }
 while line_ptr <> nil do
 begin
 templ := line_ptr; { remember where we are }
 line_ptr := line_ptr^.nextline; { point to next list }

 dispose(templ) { free current list }
 end;
 word_ptr := word_ptr^.nextword; { point to next word node }
 dispose(tempw) { free current word node }
 end;

 { return to OS }
 halt(exitcode)
end;

{ check to see if word already in list, 1=found, 0=not present }
function checkforword(word : string) : integer;
var ptr : wordptr;
begin
 ptr := head; { start at first word in list }
 while ptr <> nil do
 begin
 if ptr^.word = word then { found the word? }
 checkforword := TRUE; { yes, return found }

146

 ptr := ptr^.nextword { else cycle to next word in list }
 end;

 checkforword := FALSE { word has not been found in list }
end;

{ enter word and occurrence into list }
procedure makeword(word : string; line : integer);
var
 newword, word_ptr : wordptr;

 newline, line_ptr : listptr;
begin

 if checkforword(word) = FALSE then
 begin
 { insert word into list }
 newword := new(wordptr);
 if newword = nil then
 begin
 writeln('Error allocating word node for new word: ', word);
 myexit(1)
 end;
 { add newnode to the list, update tail pointer }
 if thisisfirstword = TRUE then
 begin
 head := newword;
 tail := nil;
 thisisfirstword := FALSE;
 head^.prevword := nil
 end;
 newword^.nextword := nil; { node is signified as last in list }
 newword^.prevword := tail; { link back to previous node in list }
 tail^.nextword := newword; { tail updated to last node in list }
 tail := newword;
 { allocate storage for the word including end of string NULL }
 tail^.word := word;

 { allocate a line storage for the new word }
 newline := new(listptr);
 if newline = nil then
 begin
 writeln('Error allocating line memory for new word: ', word);
 myexit(3)
 end;
 newline^.line := line;
 newline^.nextline := nil;
 newline^.prevline := nil;
 tail^.lines := newline

147

 end
 else
 begin
 { word is in list, add on line number }
 newline := new(listptr);
 if newline = nil then
 begin
 writeln('Error allocating line memory for existing word: ', word);
 myexit(4)
 end;
 { cycle through list to get to the word }
 word_ptr := head;
 while word_ptr <> nil do
 begin
 if word_ptr^.word = word then
 break;
 word_ptr := word_ptr^.nextword;
 end;
 if word_ptr = nil then
 begin
 writeln('ERROR - SHOULD NOT OCCUR ');
 myexit(5)
 end;
 { cycle through the line pointers }
 line_ptr := word_ptr^.lines;
 while line_ptr^.nextline <> nil do
 line_ptr := line_ptr^.nextline;

 { add next line entry }
 line_ptr^.nextline := newline;
 newline^.line := line;
 newline^.nextline := nil;
 newline^.prevline := line_ptr { create back link to previous line number }
 end
 end;

 { read in file and scan for words }
 procedure processfile;
 var
 ch : char;
 loop, in_word, linenumber : integer;
 buffer : string;
 begin
 in_word := 0; { not currently in a word }
 linenumber := 1; { start at line number 1 }
 loop := 0; { index character pointer for buffer[] }

148

 buffer := '';

 read(fin, ch);
 while not Eof(fin) do
 begin
 case ch of
 chr(CR) : begin
 if in_word = 1 then begin
 in_word := 0;
 makeword(buffer, linenumber);
 buffer := '';
 end;
 linenumber := linenumber + 1
 end;
 ' ', chr(LF), chr(TAB), chr(VT), chr(FF), ',' , '.' :
 begin
 if in_word = 1 then begin
 in_word := 0;
 makeword(buffer, linenumber);
 buffer := '';
 end
 end;
 else
 begin
 if in_word = 0 then begin
 in_word := 1;
 buffer := buffer + ch
 end
 else begin
 buffer := buffer + ch
 end
 end;
 end; { end of switch }
 read(fin, ch)
 end { end of while }
 end;

 { print out all words found and the line numbers }
 procedure printlist;
 var
 word_ptr : wordptr;
 line_ptr : listptr;
 begin
 writeln('Word list follows:');
 word_ptr := head;
 while word_ptr <> nil do

149

 begin
 write(word_ptr^.word, ': ');
 line_ptr := word_ptr^.lines;
 while line_ptr <> nil do
 begin
 write(line_ptr^.line, ' ');
 line_ptr := line_ptr^.nextline
 end;
 writeln;
 word_ptr := word_ptr^.nextword
 end
 end;

 procedure initvars;
 begin
 head := nil;
 tail := nil;
 thisisfirstword := TRUE
 end;

 begin
 writeln('Enter filename of text file: ');
 readln(filename);
 assign(fin, filename);
 reset(fin);
 { if fin = nil then
 begin
 writeln('Unable to open ',filename,' for reading');
 myexit(1)
 end;
 }
 initvars;
 processfile;
 printlist;
 myexit(0)

 end.

150

UNIT 16

LINKED LISTS

What is a linked list
A linked list is like an array except that the amount of elements in a linked list can change unlike
an array. A linked list uses pointers to point to the next or previous element.

Single linked lists
There are 2 types of single linked lists which are called queues and stacks.

Queues
A queue is like standing in a queue at a shop. The first person that joins a queue is the first
person to be served. You must always join at the back of a queue because if you join at the front
the other people will be angry. This is called FIFO(First In First Out).

Item 1 --> Item 2 --> Item 3 --> (Until the last item)

Each item of a linked list is a record which has the data and a pointer to the next or previous
item. Here is an example of how to declare the record for a queue and a pointer to a queue record
as well as the variables needed:

program queue;
 type
 pQueue = ^tqueue;
 tQueue = record
 data: integer;
 next: pQueue;
 end;
 var
 head, last, cur: pQueue;

begin
end.

We will now make 3 procedures. The first procedure will add items to the list, the second will
view the list and the third will free the memory used by the queue. Before we make the
procedures lets first take a look at the main program.

begin
 head := nil; {Set head to nil because there are no items in the queue}
 add(1) {Add 1 to the queue using the add procedure};
 add(2);
 add(3);
 view; {View all items in the queue}

151

 destroy; {Free the memory used by the queue}
end.

The add procedure will take an integer as a parameter and add that integer to the end of the
queue.

procedure add(i: integer);
begin
 new(cur); {Create new queue item}
 cur^.data := i; {Set the value of the queue item to i}
 cur^.next := nil; {Set the next item in the queue to nil because it doesn't exist}
 if head = nil then {If there is no head of the queue then}
 head := cur {Current is the new head because it is the first item being added to the list}
 else
 last^.next := cur; {Set the previous last item to current because it is the new last item in the
queue}
 last := cur; {Make the current item the last item in the queue}
end;

The view procedure uses a loop to display the data from the first item to the last item of the
queue.

procedure view;
begin
 cur := head; {Set current to the beginning of the queue}
 while cur <> nil do {While there is a current item}
 begin
 writeln(cur^.data); {Display current item}
 cur := cur^.next; {Set current to the next item in the queue}
 end;
end;

The destroy procedure will free the memory that was used by the queue.

procedure destroy;
begin
 cur := head; {Set current to the beginning of the queue}
 while cur <> nil do {While there is a item in the queue}
 begin
 cur := cur^.next; {Store the next item in current}
 dispose(head); {Free memory used by head}
 head := cur; {Set the new head of the queue to the current item}
 end;
end;

152

Stacks
To understand a stack you must think about a stack of plates. You can add a plate to the top of
the stack and take one off the top but you can't add or take away a plate from the bottom without
all the plates falling. This is called LIFO(Last In First Out).

Item 1 <-- Item 2 <-- Item 3 <-- (Until the last item)

When you declare the record for a stack item you must use previous instead of next. Here is an
example.

program stack;
type
 pStack = ^tStack;
 tStack = record
 data: integer;
 prev: pStack;
 end;
 var
 last, cur: pStack;
 begin
 last := nil;
 add(3);
 add(2);
 add(1);
 view;
 destroy;
end.

You will see that the numbers are added from 3 to 1 with a stack instead of 1 to 3. This is
because things must come off the top of the stack instead of from the head of a queue.

The add procedure adds the item after the last item on the stack.

procedure add(i: integer);
begin
 new(cur); {Create new stack item}
 cur^.data := i; {Set item value to the parameter value}
 cur^.prev := last; {Set the previous item to the last item in the stack}
 last := cur; {Make the current item the new last item}
end;

The view and destroy procedures are almost the same as with a queue so they will not need to be
explained.

153

procedure view;
begin
 cur := last;
 while cur <> nil do
 begin
 writeln(cur^.data);
 cur := cur^.prev;
 end;
end;

procedure destroy;
begin
 while last <> nil do
 begin
 cur := last^.prev;
 dispose(last);
 last := cur;
 end;
end;

154

UNIT 17

COMMAND LINE ARGUMENTS
When a program is invoked, it may accept arguments from the command line such as the name
of a data file to process.

In TurboC, the two functions ParamCount and ParamStr are used to retrieve these values.

ParamCount
This function returns the number of arguments of the command line which follow the name of
the program. In this example below,

 test file1.c file2.pas

the program test is invoked with two parameters.

ParamStr
This function returns a string representing the value of the command-line parameter.

program commandline(output);

var arguments : integer;

begin
 if ParamCount = 0 then
 begin
 writeln('No parameters supplied');
 halt(1)
 end
 else begin
 writeln('There are ', ParamCount, ' parameters');
 for arguments := 1 to ParamCount do
 Writeln('Parameter ',arguments,' = ',ParamStr(arguments));
 end
end.

