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SURDS

Definition 1: Any number which can be expressed as a quotient — of two integers (n=0), is called a
- n

rational number. Any real number which is not rational is called irrational. Irrational numbers which are
in the form of roots are called surds. For example, V2 ,/3,+/5, 7 and 3v2 are irrational numbers
while /16 ,3+/8 and 5+/32 can be expressed in rational form.

Definition 2: A general surd is an irrational number of the form alb , where a is a rational number
and %/b is an irrational number , while 3/ is called a radical.

RULES FOR MANIPULATING SURDS
(i) avb +cv/b = (a+c)v/b . This is the addition law of surds with the same radicals.

(i) aJd —cyd = (a- c)\/a . This is the subtraction law of surds with the same radicals.
(iii) vab =+a/b.
(iv) (avb).(cv/d)=acybd .

a_+a
V) ﬁ_ﬁ
(vi (afb)+(c\ﬁ)zgg
(vii) (a)? =a=+/a®
(viii) (va)" —F

(ix) Ja™ = T
(x) —a"

¢—

Simplification of surds

Example; Simplify the following (i) +/75 (i) +/80 (iii) +/18 (iv) /60

Solution: Using rule 3

(i) V75= V25x3 =+/254/3=53
(ii) /80 = V16 x5=+16+/5=4./5
(iii) V18= +9x2 =942 =32
(iv) V60 = V/4x15 =+/44/15 = 2415

Addition and subtraction of surds

Example; Simplify the following (i) +/50 — /18 ++/32 (i) +/80 + /20 —+/45 (iii) /28 + /63

Solution: Using rule 1 and 2
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(i) V50 —+/18 ++/32
=\25%2 —/9x 2 + 16 x 2
=52 -3J2 + 442

=642

(ii) /80 ++/20 - /45
=\/16><5+\/4><5—\/9><5
=445 +25-35

-3\5

(iii)) v/28 + /63

=JAxT +9x7

=27 +3J7

=57

Rationalization of surds

A surd of the form g cannot be simplified, but 2 can be written in a more convenient form. Then,

NE
2 2 3 243

2 .
we multiply the numerator and denominator of — by V3. Suchthat === xX2 =Y Thjs
J3 3 V3 V3 3

process is called rationalization.

Useful hints on rationalization of surds
(i) Vaa=a

(i) (WVa++b)a-+b)=a-b

(i) (xv/a + yvb)(xva - yvb)=x*a—y’b
(iv) (x+ yvb)(x— yvb) =x* - y’b

(v) the conjugate of a++/b is a—+b

Example; (i) Rationalizeib (i) if \3=1.732, find the value of 2 correct to 3 significant
n

V3
figure (iii) Express M in the form m+/3 + n/2 where m and n are rational numbers
243+3V2
. 2 . .
(iv) Express ————— inthe form a-+b+/c, where a and b are rational numbers
(3v5-4)?
Solution:
n-1
i 2 aVb"™ ab"  alb™’

n\/B_Q/Bn[bn—l _b% bE b
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(i) \/_ —%x%: 2;/5 = 2 X13;732 =1.16 correct to 3 sig.figure.

8-3/6 8-36 2f 32 16432442 -6418 + 9412

2J3+3Y3 23 +3V2 243-3v2 12-18
16\/_ 242 618\/_ 2 +184/3 34[ 642\/_ % 34742

(iii)

2 2 2 2(61+244/5)

vy (VB4 45-245+16 61-245 (61— 244/5)(61+ 24+/5)
122 48 g 122, 48 .
841" 841 841" 841’

Equations involving surds
Example; (i) Solve the equation ,/(3x +1) —/(x +4) =1

(ii) simplify /5 + 2.6 (iii) Evaluate +/9 — 42

Solution:

() JBXx+1) —[(x +4) =1=/(3x +1) =1+ /(x + 4) (1)

squaring both sides of (1), we have

3X+1=[1+ /(X +4)]* =3 +1=1+2,/(x +4) + x +4

53X +1=X+5+2x+4 = 2x - 4=2/(x + 4) )
=>X—-2=4/(x+4)

squaring both sides of (2) again yields
(x-2)?=x+4=x"-5x=0=>x=0 or x=5

if  x=0,=,/(3x +1) —/(x +4) =—1(not solution)

if  x=5=@x+1) —(x+4) =1

= x=5 is the solution

(ii) Let /54246 =/x +4y (1)
Squaring both sides of (1), we obtain

5+26 =X+ y+ ZM

=5=X+Y, 6 =Xy

By inspection, x=3, y=2
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:>\/5+2\/€=\/§+\/§
(i)  Let vV9-4=v2=\x—4y

The conjugate of (1) is
V9442 =+/x + \/V
Squaring both sides of (1), we have:

9-4y2=-2,/xy

=>X+y=9

Multiplying (1) and (2), we obtain

VIX9-162=x-y=7

From (3) and (4)

=>X+y=9
X-y=7
52X =16
x=8y=1

EXERCISES

1) ()V405  (i)V98 (i) v27=-+12 (iv) (V7-45 ) (v)

(vii) % (vii) % (viii)

242 +3

242 -1

(2)  If a=2+4/3, Find the value of a-t
a

3 Given a

1,1
2-3" 2443’

find a? + b?

1)

(2)

©)

(4)

4) Find the positive square roots of the following :

() 19+6+2 (i) 43+1247
(5) If x =%( 1-+5 ) express 4x® —3xin its simplest form.

1

(Vi)

3

V3-1

2
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INDICES

Definition 1: The product of a number with itself called the second power of the number, while the
number, while its triple product is called third power of the number and its m factors product is called

mth power of the number e.g. axa=a?, axaxa=a®, axax..xm=a"

Definition 2: The number which expresses the power is called the index or the exponent of the power
of a number e.g

The index of a% =2
The index of a® =3
The index of a™ =m

RULES OR LAWS OF INDICES

Given two positive integers m,nsuch that m<n.

m+n

(1) a"xa"=a
Since a"xa" =( axax..xm )x( axax..xn )

_ AM+n

[ axax.x(m+n ) ]=a

()

= axaxax...(m—n)
— am—n

LOGARITHMIC EQUATIONS

Example 1: Solve the equations

(|) 3X2:9X+4
=3x*=(3 )"
3X2 =32( X+4)
= x? :2( X+4 )
=x?=2n-8=0
x-4)(x+2)=0
X—40rx=2

Example 2: Solve the equations

(") 33x+1 — 5x+l
Taking the log; of both sides
— |0910( 23x+1 )|091o 5x+1

= 3x +1Log,,2=x+1Log,,5
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= ( 3Log,, - Log,,5 )x = Log5- Log,,2

= ( 3Log,,8 - Log,,5 )x = Log5 - Log,,2
= ( Log,,8 - Log,,5 )x =Log5- Log,,2

Log,, >
. L0g,5-Log,2 Juy Lo 2
- = 910
I—09108 —Log;,5 Log §
0 g
= 0.3979 195
0.2041

©) @")"=a™
@™)" =a"xa"x...xn
(axax...xm)x(axax...xm)...n times.
axax..xmn=a™

-a

@ (a
(a

1 1 1
a—+—+—+.a4a
n n n

S| S|

1 1
Ja=xa=x...n
n n
- 1
Similarly, a—= nva
n
(a ) =ar

n

a%zn«/a_’“z( nma" =( nva )"
(5) a’=1, If m=n

3 -5

Examples: Evaluate (i) (81)* (ii) (16)*

Solution

(i) BY* =@1= 4\/531441= (3%)* =3% =27
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L1 1 1

i) (16)4 = -
(1) (16) NEEY
(2%) =
4
Exercises
X—a
(1) Showthat v/x —vJa=——"—
Jx ++/a

(2) Evaluate (Godman).
LOGARITHMS

Definition: The logarithm of atve no N to the base ais defined as the power of a which is equal to
N , such that if

a*=N
x=Log,N
Since a' =as’ =1
= Log,a=1 and Log,1=0
LAWS OF LOGARITHMS

(1) log,(AB)=Log,A+ Log,B
2 Iogagz Log,A—-Log,B

(3) log,(A®)=BLog,A

Example: Evaluate:

() Log,9

(i) Log,63

(iii) 3°9= Log,9=2

(iv) 4°=64,= Log,64=3

Example: Use the table to evaluate:

(i) Log 16— 00ni6 12041 , o>,
Log,3 04771
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Since from the transformation rule
LogyN = Log,,bLog,N

If y=Log,N,N=b"’

= Log,N =Log(b’)=y=Db’
Log,N =Log,bLog, N

Ifwe put N =ain (*)
= Log,a=Log,bLog,a=1

= Log, b= *%

I Log,b )
Another form of (*)is Log,N _ Log, N
Log,a

Example: Show that:

2

Log, (x* —x*) =2+ Loga(l—x—z)
a

Solution:

2
Log, (a® —x?) = Log,[ a° +(1—;—2) ]

2

=Log,a’ + Loga(l—x—z) ]
a

2

=2+ Log,(1-2) ]
a
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SET THEORY
Definition: A set is a collection of objects or things that is well defined.
Here are some examples of sets:

A collection of students in form one
Letters of the alphabet

The numbers 2, 3,5,7,and 11

A collection of all positive numbers
The content of a lady’s purse

arwnhE

The concept of set is very important because set is now used as the official mathematical language. A
good knowledge of the concept of set is, therefore, necessary if mathematics is to be meaningful to its
users.

Notation

A set is usually denoted by capital letters; while the objects comprising the set are written with small
letters. These objects are called members or elements of a set.

For example set A has members a,b,c,d.

Convention

The listing of a set A as a,b,c,d, as seen above is not an acceptable mathematical specification of a set.

The correct representation of a set that is listed is to write the elements, separated by commas and
enclosed between braces or curly brackets.

e.g, set A={ a,b,c,d. |.

The statement b is an element or member of set A or b belongs to a’is written in the manner b e A. The
contrary statement that b does not belong to Ais written as: b g A.

There are two ways of specifying a set. One way is by listing the elements in the set, such as:
A={ab,cd. }.
A second way of specifying a set is by stating the rule or property which characterizes the set.

For example, B={ x/2<x<5. Jor B={ x/2<x<5. }. Notice, the stroke/or colon: can be used
interchangeably, with each as ‘such that’. The representation, B = { x/2<x<5. } is read as follows:
B is a set consider of elements x, such that 2 is less than x and x is less than 5.
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If a set is specified by listing its elements, we call it the tabular form of a set; and if it is specified by
stating its property, such as C ={ x/xis odd } then it is called the set builder form.

Finite and Infinite Sets

A finite set is one whose members are countable: for example, the set of students in Form 1. Other
examples are:

() the contents of a lady’s hand-bag;
(i) whole numbers lying between 1 and 10;
(iif) members of a football team.

The finite set is itself in exhaustive; readers can give other examples of a finite set.

An infinite set is one whose elements are uncountable, as they are infinitely numerous. Here are a few
examples of the infinite sets;

() Real numbers.

(i) Rational numbers
(iif)Positive even numbers
(iv)Complex numbers

The main distinction between a finite set and that a finite set has a definite beginning and a definite end,
while the infinite set may have a beginning and no end or vice versa or may not have both beginning and
end.

For example, we specify the set of positive even numbers, as follows:

P={246,. |or
P={x:x>2xiseven }

The set of real whole numbers which end with the number 3 is written as follows:

SUBSETS

Suppose P ={ a,b,c,d,e, f } and Q={ c,d,e. }, then we say Qis contained in P, and we use symbol
'c'to denote the statement ‘“is contained in’, or ‘is subset of’. Thus Q — P, is ready as 'Q is contained
in P'. More aptly put, Q is contained in P if there is an x, such that x e Q implies x € Q. The
statement Q is contained in P can be put in reverse order as ' P contains Q'and we write P Q.
However, this form is not very popular. If Qs not a subset of set R ={ 34,a } then we write Q z R .
It should be noted that unless every member or Q is also a member of P, then can we say Q is subset of
P.
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EQUITY OF SETS

Two setsof X and Y are equal ifand only if X <Y and Y < X . Suppose X :{ 12,3 }and
Y ={312 }and X =Y . Note that the rearrangement of the elements if a set does not alter the set.

TYPES OF SETS
Null or Empty Sets

Null means void, therefore, a null set is an empty set, or a set that has no members. The null set is
denoted by the symbol { } . Note that {0} cannot be classified as a null set, because it has an element,
zero.

Singleton

Any set which has only one member is called a singleton. e.g., ( a ) is a singleton.

The Universal Set
Set is a subset of a larger set is called the universal set or empty, the Universe of Discourse.
Thus, in any given context, the total collection of elements under discussion is called the Universal set.

The symbol U or E is often used to denote a universal set. For example, if we toss a die, once, we
expect to have either 1,2,3,4,5,or 6,as an end result. If there are no other expected results different from

this numbers, then we say, for this particular experiment, the universal set is { 12,3456 } Thus a
universal set is the total population under discussion.

Proper Subsets

If Pisasubset of Qand if there is at least one member of Q which is not a member of P, then Pisa
proper subset of Q and we write P Q.

Consider the set A= {123, }. The following sets

{123 L{12 h{13 {23 }{1 {2 {3 }{ }aresubsetsof A. Theset {123 }is nota
proper subset of A ; whereas all others including { }are proper subsets of A. Thus { 123 } &
{123 },but {123 }, {123 } {123}

Power Set

The collection of all the subsets of any set S is called the power set of S. If a set has n members, where
nis finite, then the total number of subsets of Sis 2". Occasionally we denote the power set S by 2°.
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For example: Let A={a,b,c}. The subsets of Aare {a,b,c},{a,b} ,{ac},{b,c}, {a},{b},{c} and { }.
The power set of A written p(A) =2° subsets; as seen above.
Example: Find the power set 2° of the sets

(a) S=1{34)
(b) S={a{12}}

Solution:

(@ S={34 }{3}{4
(b)zF’:{{ 2§ 14 ,{ W

In this example, (b) contains only two elements aand { 1,2 }

)

Venn - Euler Diagrams

The theory of set can be better understood if we make use of the Venn-Euler diagrams. The Venn-euler
diagram is an instructive illustration which depicts relationship between sets.

Suppose X <Y and X Y , we can represent this statement in a Venn-Euler diagram as follows:
Y Y
QB
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Set Operations

In set, we use the symbols wread “unions and mread ‘“intersection’ as operations. These operations are
similar but not exactly the same as the operations in arithmetic. At the end of this chapter, a reader of
this topic should be able to identity areas of analogy between the operation in arithmetic and those of a
set.

Union of Sets

Definition

The union of sets A and B is the set of all elements which belongs to AorB or to both AandB . This is
usually writtenas Aw B, and read 'A unionB'.

In set language, we define AU B as:
AUB={x:xeAoreB }.

The shaded portions in the Venn-Euler diagram in AU B
A B A B

The Intersection of Sets

The intersection of sets AandB is the set of elements which belong to both AandB . Simply, 'A
intersection B'written A m B consists of elements which are common to both AandB.

The Venn-Euler diagram which represent A~ B is shaded portion.

In set language

AnB={ x:xeAandxeB
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Complement of Sets

The complement of a set x is the set of elements which do not belong to x, but belong to the universal
set. The complement of a set x is usually represented by x'or x*

The complement of x' or x°.

The complement of X is represented in the Venn-Euler diagram

T
N
NN

In set language, A° =x:xeU,xg A

U

The Algebra of Sets

The operations of union w are loosely analogous to those of addition and multiplication in number
algebra. By this token we can apply the laws of algebra conveniently to sets without loss of generality.

The Closure property
If X and Y are sets which are subsets of the universal set U then the following hold:
XuYcU and X nY cU.

The analogy in number algebra; using those operations of +and xare 2+3=5eR and
2x3=6 € R;where R is the real number system. If the addition or multiplication of 2 and 3 gives some

number that cannot be found in the real number system R, we say the operation of +or xis not closed.

Similarly in set theory, the operations of union and intersection are closed.
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The Commutative Law
XuY=YuU X NnY =Y n X. Parallel examples in arithmeticare2 +3=3+2and 2X3=3X2.

Thus any two sets are commutative with respect to wand M.

The Associative Law

XuYuz)=(XuY)UZand
XNniYnZ)=(XuY)nZ

Again, sets obey the associative law.

The Identity

In every day arithmetic,0 +1=1+0=1 and 3X1=1X3=3,are two correct solutions. The zero, in the
first case is called the additive identity; while 1 in the second case is called the multiplicative identity.

By a similar analogy , every set has quantities { }and U with the property that:

) xu{ j={ jux=X
(M XNnU=UnNnX=X

Thus, { }is the identify with respect to union wand U is the identity with respect to intersection .

Inverse

In the set of real number R,

a+(-a)=(-a)+a=0 and aXa' =a'Xa=1. Thisanumber x operated on its inverse gives identity.
i.e., X Inverse =identity.
Similarly in set theory, every set has an inverse with respect to the operations of wand N

(i) XuX =X'U=Uand
XuU=UuX=U

(i) X " X'=X'"X ={ }and

xn{ J={ xx={ }
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The distributive Law

XNnYuZ)=(XnY)u(XnZ)and
XulYnZ)=(XuY)n(XuZ)
The operation of union is distributive over the operation of intersection and vice versa.

The Laws of complementation

() XuX'=wand

(i) (X)=X

(i[i)(XuY)=XNY'

(iv) X nY)'= X"OY'

(i) = (iv) are called de Morgan’s Laws



