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MTS 441: Ordinary Differential Equations (3 Units) 

PRQT MTS 342 

Some Course Content  

Existence and Uniqueness theorems, dependence of solutions on initial data and parameter. 

Properties of solutions. Sturm comparison theorem. Linear system; Floquet’s theorem, Nonlinear 

system, Stability theory.  
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1.0 Initial Value Problem  

Let ℝ = (−∞, ∞) and 𝐷 ⊂ ℝ2 be an open, connected subset of ℝ2. Let 𝑓 ∈ 𝐶 ′(𝐷, ℝ) 

and 𝑥 ′ =
𝑑𝑥

𝑑𝑡
. 

    𝑥 ′ = 𝑓(𝑡, 𝑥)       (1.1)  

is an ordinary differential equation of the first order. 

 

Definition  

A solution of (1.1) on an open interval 𝐼 = (𝑎, 𝑏) is a real-valued continuously 

differentiable function 𝜙(𝑡) such that 

(i) (𝑡, 𝜙(𝑡)) ∈ 𝐷 for all  𝑡 ∈ 𝐼 and 

(ii) 𝜙′ 𝑡 = 𝑓(𝑡, 𝜙 𝑡 ) for all 𝑡 ∈ 𝐼. 

 

Suppose in addition to (1.1) we have a condition 𝑥 𝜏 = 𝜉 i.e. 

          𝑥 ′ = 𝑓(𝑡, 𝑥)        

𝑥 𝜏 = 𝜉 

then (1.2) is called an initial value problem. Thus, a function 𝜙 is a solution of (1.2) if 𝜙 is a 

solution of (1.1) on 𝐼 which contains 𝜏 and 𝜙 𝜏 = 𝜉.  

(1.2) can be represented equivalently by an integral equation. Let 𝜙 be a solution of (1.2), 

it follows that  

𝜙′ 𝑡 = 𝑓(𝑡, 𝜙 𝑡 ) 

𝜙 𝜏 = 𝜉 

𝑑𝜙

𝑑𝑡
= 𝑓(𝑡, 𝜙) 

𝑑𝜙 = 𝑓(𝑡, 𝜙)𝑑𝑡 

(1.2) 
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 𝑑𝜙
𝑡

𝜏

=  𝑓(𝑠, 𝜙(𝑠))𝑑𝑠
𝑡

𝜏

 

𝜙 𝑠 |𝜏
𝑡 =  𝑓(𝑠, 𝜙(𝑠))𝑑𝑠

𝑡

𝜏

 

𝜙 𝑡 = 𝜙 𝜏 +  𝑓(𝑠, 𝜙(𝑠))𝑑𝑠
𝑡

𝜏

 

Hence 

    𝜙 𝑡 = 𝜉 +  𝑓(𝑠, 𝜙(𝑠))𝑑𝑠
𝑡

𝜏
     (1.3) 

required integral equation. 

Remark: (1.3)⟹ (1.2). Find out. 

 

1.2 Systems of first order ordinary differential equations  

A system of 𝑛 first-order ordinary differential equation for 𝑛 unknown functions 

𝑥1 𝑡 , … , 𝑥𝑛 𝑡  is of the form 

 𝑥 ′
1 = 𝑓1 𝑡, 𝑥1, … , 𝑥𝑛  

 𝑥 ′
2 = 𝑓2 𝑡, 𝑥1, … , 𝑥𝑛  

.      (1.4) 

.     

. 
 𝑥 ′

𝑛 = 𝑓𝑛 𝑡, 𝑥1, … , 𝑥𝑛  

or equivalently, 

      𝑥 ′
𝑖 = 𝑓𝑖 𝑡, 𝑥1, … , 𝑥𝑛        (𝑖 = 1,2, … , 𝑛) (1.5) 

where each 𝑓𝑖  is a function of 𝑛 + 1 variables 𝑡, 𝑥1, … , 𝑥𝑛 . The system (1.4) can be written in a 

vector form 

     𝑥 ′ = 𝑓(𝑡, 𝑥)      (1.6) 
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Where 

𝑥 =

 

  
 

𝑥1

𝑥2

.

.

.
𝑥𝑛 

  
 

 

𝑥 ′ =

 

 
 
 

𝑥 ′
1

𝑥 ′
2

.

.

.
𝑥 ′

𝑛 

 
 
 

 

and  

𝑓 𝑡, 𝑥 =

 

 
 
 

𝑓1(𝑡, 𝑥)

𝑓2(𝑡, 𝑥)
.
.
.

𝑓𝑛 (𝑡, 𝑥) 

 
 
 

 

By a solution of (1.6), we mean a real-valued continuously differentiable function 

(𝜙1, 𝜙2 , … , 𝜙𝑛 ) defined on 𝐼 such that (𝑡, 𝜙1 𝑡 , 𝜙2 𝑡 , … , 𝜙𝑛 𝑡 ) ∈ 𝐷 ⊂ ℝ𝑛+1 for all 𝑡 ∈ 𝐼 and 

𝜙′
𝑖

= 𝑓𝑖(𝑡, 𝜙1 𝑡 , 𝜙2 𝑡 , … , 𝜙𝑛 𝑡 ) for all 𝑡 ∈ 𝐼.   𝑖 = 1,2, … , 𝑛. 

The initial value problem associated with (1.6) is 

     𝑥 ′ = 𝑓 𝑡, 𝑥      (1.7) 

   𝑥 𝜏 = 𝜉 

Remark: Equation (1.7) can be represented thus 

    𝜙 𝑡 = 𝜉 +  𝑓(𝑠, 𝜙(𝑠))𝑑𝑠
𝑡

𝜏
     (1.8) 
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where  

 

 
 
 

𝜙1(𝑡)

𝜙2(𝑡)
.
.
.

𝜙𝑛 (𝑡) 

 
 
 

=

 

 
 
 

𝜉1

𝜉2

.

.

.
𝜉𝑛 

 
 
 

+

 

 
 
 
 
 
 
 

 𝑓1(𝑠, 𝜙(𝑠))𝑑𝑠
𝑡

𝜏

 𝑓2(𝑠, 𝜙(𝑠))𝑑𝑠
𝑡

𝜏 .
.
.

 𝑓𝑛 (𝑠, 𝜙(𝑠))𝑑𝑠
𝑡

𝜏  

 
 
 
 
 
 
 

 

Definition: If, in (1.6), 𝑓 = 𝑓(𝑥) is explicitly independent of 𝑡, then (1.6) is said to be 

autonomous, otherwise it is said to be non-autonomous. 

Any higher-order ordinary differential equation is reducible to an equivalent first-order 

system (1.6). To illustrate the procedure consider the single 𝑛𝑡ℎ- order ordinary differential 

equation for the unknown function 𝑦 𝑡 : 

   𝑦(𝑛) = ℎ(𝑡, 𝑦, 𝑦 ′ , … , 𝑦 𝑛−1 )      (1.9)  

where ℎ is a specified function of 𝑡, 𝑦, 𝑦 ′ , … , 𝑦(𝑛−1) 

Define  

   𝑥1 = 𝑦, 𝑥2 = 𝑦 ′ , … , 𝑥𝑛 = 𝑦(𝑛−1)     (1.10) 

and form the equivalent system 

𝑥 ′
1 = 𝑥2 

𝑥 ′
2 = 𝑥3 

.      (1.11) 

. 

. 
      𝑥 ′

𝑛−1 = 𝑥𝑛  

      𝑥 ′
𝑛 = ℎ(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛) 
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Comparing (1.11) and (1.6) we have that 

𝑥 =

 

  
 

𝑥1

𝑥2

.

.

.
𝑥𝑛 

  
 

 

𝑓(𝑡, 𝑥) =

 

 
 
 
 

𝑥2

𝑥3

.

.

.
𝑥𝑛

ℎ(𝑡, 𝑥1, 𝑥2, … , 𝑥𝑛) 

 
 
 
 

 

We conclude that any results obtained for the first-order system (1.6) have their 

counterparts for the 𝑛𝑡ℎ- order equation (1.9). To complete the correspondence, we note that 

corresponding to the initial condition in (1.7), the transformation (1.11) determines the 

appropriate initial conditions for (1.9), which are 

   𝑦 𝜏 = 𝑦1 , 𝑦 ′ 𝜏 = 𝑦2 , … , 𝑦(𝑛−1) 𝜏 = 𝑦𝑛    (1.12) 

Then 𝜉 in (1.7) is the vector with components 𝑦1 , 𝑦2 , … , 𝑦𝑛 . 

 

1.3 Existence and uniqueness theorem for system of first order ordinary differential 

equations   

We shall be concerned with normal systems of ordinary differential equations of the form 

    𝑥 = 𝑓(𝑡, 𝑥)      (1.13) 

where 𝑥: 𝐼 ⊂ ℝ ⟶ ℝ𝑛 ,    𝑓 = 𝐼 × ℝ𝑛 ⟶ ℝ𝑛  

and the dot denotes differentiation with respect to the independent variable 𝑡. 

The initial value problem associated with (1.13) is  

𝑥 = 𝑓 𝑡, 𝑥  

     𝑥(𝑡0) = 𝑥0     (1.14) 
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The initial value problem consists of finding a solution 𝑥(𝑡, 𝑡0 , 𝑥0) for given 𝑡0 ∈ ℝ, 𝑥0 ∈ ℝ𝑛  

which reduces to 𝑥0 at 𝑡 = 𝑡0 that is 

𝑥 𝑡0, 𝑡, 𝑥0 = 𝑥0. 

 

Theorem 1.1 

Let 𝑓: ℝ𝑛+1 ⟶ ℝ𝑛  be defined and continuous in a certain domain 𝐷 ⊂ ℝ𝑛+1 and 

suppose that for any two points  𝑡, 𝑥 ,  𝑡, 𝑦 ∈ 𝐷 

    𝑓 𝑡, 𝑥 − 𝑓(𝑡, 𝑦) ≤ 𝐿 𝑥 − 𝑦     (1.15) 

where 𝐿 > 0 is a constant (which may depend on 𝐷 and on 𝑓). 

Then for every point (𝑡0, 𝑥0) ∈ 𝐷 there exists a solution 𝑥 = 𝜙(𝑡) of (1.14) that is defined in 

some interval containing 𝑡0 and which satisfies 𝜙 𝑡0 = 𝑥0. Furthermore if there exists two 

solutions 𝑥1 = 𝜙(𝑡) and 𝑥2 = 𝜙 𝑡  both satisfying (1.14) and each solution defined on some 

interval containing 𝑡0 then the two solutions coincide whenever both are defined. 

(1.15) is called Lipschitz condition and 𝐿 the Lipschitz constant.     
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2.0 LINEAR SYSTEMS 

2.1 Uniqueness and Existence Theorems for a Linear System 

 In this chapter we study linear differential equations which are a very special but very 

important class of differential equations. That is, we study systems of differential equations of 

the form 

𝑥 ′
1 = 𝑎11 𝑡 𝑥1 + ⋯ + 𝑎1𝑛 𝑡 𝑥𝑛 + ℎ1 𝑡 

𝑥 ′
2 = 𝑎21 𝑡 𝑥1 + ⋯ + 𝑎2𝑛 𝑡 𝑥𝑛 + ℎ2 𝑡 

… … … … …… … … … … … … … … … … … …
… … … … …… … … … … … … … … … … … …
… … … … …… … … … … … … … … … … … …
𝑥 ′

𝑛 = 𝑎𝑛1 𝑡 𝑥1 + ⋯ + 𝑎𝑛𝑛  𝑡 𝑥𝑛 + ℎ𝑛 𝑡 

 

in which the right-hand sides of the equations are linear in 𝑥1, … , 𝑥𝑛 . 

 The study of such systems is very important for the following reasons: 

(i) Equations of this form often arise in problems in physics and engineering; 

(ii) From the view point of pure mathematics, the study is important because an elegant and 

complete theory is obtained; and 

(iii)As obtained in other parts of linear and nonlinear analysis, the theory for linear equations 

is the basis for much study of non-linear equations. 

The component form of (2.1.1) is 

     𝑥 ′ = 𝐴 𝑡 𝑥 + ℎ(𝑡)     (2.1.2) 

 

where 𝐴 𝑡  is an 𝑛 × 𝑛 matrix function of 𝑡 of the form 

𝐴 𝑡 =

 

 
 
 

𝑎11 𝑡 …𝑎1𝑛 𝑡 

𝑎21 𝑡 …𝑎2𝑛 𝑡 
… … … … … … .
… … … … … … .
… … … … … … .

𝑎𝑛1 𝑡 …𝑎𝑛𝑛  𝑡  

 
 
 

 

(2.1.1) 
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and ℎ(𝑡) is the vector function of 𝑡 of the form 

ℎ 𝑡 =

 

 
 
 

ℎ1(𝑡)

ℎ2(𝑡)
…
…
…

ℎ𝑛 (𝑡) 

 
 
 

 

Properties of matrix 𝐴(𝑡) are very important in the study of solutions of (2.1.1). To this end, we 

introduce some definitions used in the study of matrix 𝐴(𝑡). Some of these definitions are found 

in some basic linear algebra texts. 

 

Definition: If 𝐴 = (𝑎𝑖𝑗 ) is a constant matrix, the norm of 𝐴, denoted |𝐴|, is  

 𝐴 =  |𝑎𝑖𝑗 |

𝑛

𝑖,𝑗 =1

 

Let 𝐴 and 𝐵 be constant matrices, and𝑥 a constant vector, thus 

 𝐴 + 𝐵 ≤  𝐴 +  𝐵  

 𝐴𝐵 ≤  𝐴  𝐵  

 𝐴𝑥 ≤  𝐴  𝑥  

 

Definition: Let 𝐴 𝑡 = (𝑎𝑖𝑗 (𝑡)), then the derivative of 𝐴 𝑡 , sometimes denoted 
𝑑𝐴(𝑡)

𝑑𝑡
 is 

𝑑

𝑑𝑡
𝑎𝑖𝑗  𝑡 ,the integral of 𝐴(𝑡) over  𝑎, 𝑏 , sometimes denoted by  𝐴 𝑡 𝑑𝑡 is

𝑏

𝑎
( 𝑎𝑖𝑗  𝑡 𝑑𝑡),

𝑏

𝑎
 and 

the trace of 𝐴, sometimes denoted by 𝑡𝑟 𝐴 𝑡 , is  𝑎𝑖𝑖 𝑡 .𝑛
𝑖=1  
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Existence Theorem 2.1 for Linear Systems  

If for 𝑖, 𝑗 = 1,2, … , 𝑛, each 𝑎𝑖𝑗 (𝑡) is continuous for all real 𝑡 and if ℎ(𝑡) is continuous for all real 

𝑡, then if (𝑡0, 𝑥0) is an arbitrary point in  𝑡, 𝑥 -space, there is a unique solution 𝑥(𝑡, 𝑡0, 𝑥0) of 

(2.1.1) such that 𝑥 𝑡, 𝑡0, 𝑥0 = 𝑥0 and solution 𝑥(𝑡, 𝑡0 , 𝑥0) has for its domain the real 𝑡-axis. 

 

Remark: The theorem above shows that there is no extension problem for solutions of linear 

equations. That is, if the elements of 𝐴(𝑡) and ℎ(𝑡) are continuous for all 𝑡, then the solution has 

for its domain the entire 𝑡-axis.    

Instead of proving this theorem directly, we prove a somewhat more general theorem 

which is used less frequently but is of sufficient interest to be presented for its own sake. 

 

Existence Theorem 2.2 for Linear Systems 

 Suppose 𝐴 𝑡  and ℎ(𝑡) are Riemann integrable functions of 𝑡 on (𝑎, 𝑏), i.e. the Riemann 

integrals over any interval [𝑐, 𝑑] contained in (𝑎, 𝑏) of the elements of 𝐴 𝑡  and ℎ 𝑡  exist, and 

suppose there exists  a function 𝑘(𝑡) with domain (𝑎, 𝑏) such that 

(1) 𝑘(𝑡) is continuous and bounded on (𝑎, 𝑏) 

(2) if 𝑡 ∈  𝑎, 𝑏 , then  𝐴 𝑡  ≤ 𝑘 𝑡  and  ℎ 𝑡  ≤ 𝑘 𝑡 . 

 Let 𝑡0 ∈ (𝑎, 𝑏) and suppose 𝑥0 is a fixed vector. Then equation (1.1) has a unique 

solution 𝑥 𝑡  on (𝑎, 𝑏) such that 𝑥 𝑡0 = 𝑥0 in the following sense: if 𝑡 ∈  𝑎, 𝑏 , then 

𝑥 𝑡 = 𝑥0 +  𝐴 𝑠 𝑥 𝑠 𝑑𝑠 +
𝑡

𝑡0
 ℎ 𝑠 𝑑𝑠

𝑡

𝑡0
      (2.1.3)  
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𝐏𝐫𝐨𝐨𝐟   

For 𝑡 ∈ (𝑎, 𝑏), we define 

𝑥0 𝑡 = 𝑥0 

.

.

.
 

𝑥𝑛+1 𝑡 = 𝑥0 +  𝐴 𝑠 𝑥𝑛 𝑠 𝑑𝑠 +  ℎ 𝑠 𝑑𝑠
𝑡

𝑡0

𝑡

𝑡0
   𝑛 = 0,1,2, …   

 If 𝑥𝑛 (𝑡) is continuous on  𝑎, 𝑏 , then 𝐴 𝑠 𝑥𝑛 (𝑠) is integrable over any interval [𝑐 , 𝑑] 

contained in (𝑎, 𝑏) and hence 𝑥𝑛+1(𝑡) is defined and continuous on (𝑎, 𝑏).  To show that the 

𝑥𝑛 (𝑡) converge uniformly, we proceed as follows. First if 𝑡 ∈  𝑎, 𝑏 , 

|𝑥1 𝑡 − 𝑥0(𝑡)| ≤    𝐴 𝑠  𝑥 𝑠  + ℎ 𝑠   𝑑𝑠
𝑡

𝑡0

 

≤ (1 + |𝑥0|)  𝑘 𝑠 𝑑𝑠
𝑡

𝑡0

 

Let  𝑘 𝑠 𝑑𝑠
𝑡

𝑡0
 and assume that for 𝑡 ∈ (𝑎, 𝑏)  

|𝑥𝑛 𝑡 − 𝑥𝑛−1(𝑡)| ≤ (1 +  𝑥0 )
(𝑘(𝑡))𝑛

𝑛!
 

Then  

 𝑥𝑛+1 𝑡 − 𝑥𝑛 𝑡  ≤   𝐴 𝑠 𝑥𝑛 𝑠 − 𝐴 𝑠 𝑥𝑛−1 𝑠  𝑑𝑠
𝑡

𝑡0

 

≤ (1 +  𝑥0 )  𝑘(𝑠)
(𝑘(𝑠))𝑛

𝑛!
𝑑𝑠

𝑡

𝑡0

 

Since 

𝑑

𝑑𝑡
𝐾 𝑡 = 𝑘(𝑡) and 𝐾 𝑡0 = 0, then 

 𝑥𝑛+1 𝑡 − 𝑥𝑛 𝑡  ≤ (1 +  𝑥0 )
(𝑘(𝑡))𝑛+1

(𝑛 + 1)!
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Thus, the sequence {𝑥𝑛(𝑡)} converges uniformly on any closed interval [𝑐, 𝑑] in (𝑎, 𝑏) to a 

continuous function 𝑥 𝑡 . To complete the proof of the existence of the solution, it is sufficient to 

show that 

lim
𝑛→∞

 𝐴 𝑠 𝑥𝑛 𝑠 𝑑𝑠 =  𝐴 𝑠 𝑥 𝑠 𝑑𝑠
𝑡

𝑡0

𝑡

𝑡0

 

Since 𝑥(𝑡) is continuous,  𝐴 𝑠 𝑥 𝑠 𝑑𝑠
𝑡

𝑡0
 exists and 

  𝐴 𝑠  𝑥𝑛 𝑠 − 𝑥 𝑠  𝑑𝑠
𝑡

𝑡0

 ≤   𝐴 𝑠  |𝑥𝑛 𝑠 − 𝑥 𝑠 |𝑑𝑠 ≤
𝑡

𝑡0

𝜀𝑀 

Where 𝑀 is a bound for 𝑘(𝑡) on  𝑎, 𝑏 . 

 The proof that 𝑥(𝑡) is a unique solution in any closed interval [𝑐, 𝑑] in (𝑎, 𝑏) is given 

below. 

 Suppose there exists solutions 𝑥(𝑡) and 𝑦(𝑡) of (2.1.3) on an interval  𝑡0 − 𝑟, 𝑡0 + 𝑟 , 

where 𝑟 is a positive number, such that 𝑥(𝑡0) = 𝑦(𝑡0) = 𝑥0. By induction, we obtain an estimate 

on |𝑥 𝑡 − 𝑦 𝑡 | for 𝑡 ∈ [𝑡0,  𝑡0 + 𝑟 − 𝛿] where 0 < 𝛿 < 𝑟. A similar estimate can be obtained 

for 𝑡 ∈  𝑡0 − 𝑟 + 𝛿, 𝑡0 . Since 𝑥 𝑡 , 𝑦(𝑡) are continuous on [𝑡0, 𝑡0 + 𝑟 − 𝛿] for fixed 𝛿 there 

exists 𝐵 > 0 such that, if 𝑡 ∈ [𝑡0, 𝑡0 + 𝑟 − 𝛿, then |𝑥 𝑡 − 𝑦 𝑡 | ≤   B. But 

 𝑥 𝑡 − 𝑦 𝑡  ≤  −   𝐴 𝑠 𝑥 𝑠 − 𝐴 𝑠 𝑦 𝑠  𝑑𝑠
𝑡

𝑡0

 

≤ 𝑘  |𝑥 𝑠 − 𝑦 𝑠 |𝑑𝑠
𝑡

𝑡0
     (2.1.4) 

Therefore 

 𝑥 𝑡 − 𝑦 𝑡  ≤ 𝑘𝐵(𝑡 − 𝑡0) 

 Assume that  𝑥 𝑡 − 𝑦 𝑡  ≤  
𝑘𝑚

𝑚!
𝐵(𝑡 − 𝑡0)𝑚 , for 𝑚 a positive integer. Then by (2.1.4), 

 𝑥 𝑡 − 𝑦 𝑡  ≤  
𝑘𝑚 +1

 𝑚+1 !
𝐵 𝑡 − 𝑡0 

𝑚+1 , which is the  𝑚 + 2 𝑡ℎ term in the (convergent) series for 
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𝐵𝑒𝑘(𝑡−𝑡0 ). Therefore  𝑥 𝑡 − 𝑦 𝑡  < 𝜀; hence 𝑥 𝑡 = 𝑦(𝑡) for 𝑡 ∈  𝑡0, 𝑡0 + 𝑟 − 𝛿 . Since 𝛿 is 

arbitrarily small, 𝑥 𝑡 = 𝑦(𝑡) for  𝑡 ∈  𝑡0, 𝑡0 + 𝑟 . 

 The proof of Existence Theorem 2.1 for Linear Systems is obtained from Existence 

Theorem 2.2 for Linear Systems thus. If the elements of 𝐴(𝑡) and ℎ(𝑡) are continuous then since 

the solution 𝑥(𝑡) is continuous, equation (2.1.3) may be differentiated with respect to 𝑡 and we 

obtain: 

𝑑𝑥 (𝑡)

𝑑𝑥
= 𝐴 𝑡 𝑥 𝑡 + ℎ 𝑡 .   

 

2.2 Homogenous Linear Systems 

 First-order system of differential equations of the form 

𝑥′1 = 𝑎11(𝑡)𝑥1 + ⋯ + 𝑎1𝑛 (𝑡)𝑥𝑛

𝑥 ′
2 = 𝑎21 𝑡 𝑥1 + ⋯ + 𝑎2𝑛 𝑡 𝑥𝑛

… … …… … … … … … … … … … … …
… … …… … … … … … … … … … … …
… … …… … … … … … … … … … … …
𝑥′𝑛 = 𝑎𝑛1(𝑡)𝑥1 + ⋯ + 𝑎𝑛𝑛 (𝑡)𝑥𝑛

 

in which the right hand sides of the equations are linear in 𝑥1, … , 𝑥𝑛 , is called homogenous. In 

compact form, this is written as 

    𝑥 ′ = 𝐴 𝑡 𝑥       (2.2.2) 

where 𝐴(𝑡) is an 𝑛 × 𝑛 matrix function of 𝑡, continuous for 𝑡 ∈  𝑎, 𝑏 . 

 Equivalently, first-order system (2.1.2) is said to be homogenous whenever ℎ(𝑡) is 

identically zero. 

 The homogenous system (2.2.2) has two important properties: 

(i) The identically zero function, 𝑥 𝑡 = 0 for all 𝑡 ∈  𝑎, 𝑏  is a solution of (2.2.2), and is 

the unique solution such that 𝑥 𝑡0 = 0 for any 𝑡 ∈  𝑎, 𝑏 ; 

(2.2.1) 



14 
 

(ii) If 𝑥1(𝑡) and 𝑥2(𝑡) are solutions of (2.2.2), then so is the linear combination of 𝑥1 𝑡  

and 𝑥2(𝑡) i.e. 𝑥 𝑡 = 𝑎1𝑥1 𝑡 + 𝑎2𝑥2(𝑡) for any two scalar constants 𝑎1 and 𝑎2. 

 

Thus, the set of all solutions of (2.2.2) (equivalently (2.2.1)) on an interval [𝑎, 𝑏] form a 

vector space. The following definitions will assist us determine the dimension of this space. 

Definition: A set of 𝑛 functions 𝑥1 𝑡 , … , 𝑥𝑛(𝑡) are linearly dependent on [𝑎, 𝑏] if there exist 

scalar constants 𝑎1, … , 𝑎𝑛 , not all zero, such that  

     𝑎𝑖𝑥𝑖 = 0𝑛
𝑖=1   for 𝑡 ∈  𝑎, 𝑏  .  

Otherwise they are linearly dependent. 

For example, with 𝑛 = 2 the vectors 

 
1

  𝑡2  ,  
𝑡
1
  

are linearly independent vector functions of 𝑡 for 𝑡 in any interval [𝑎, 𝑏], but at 𝑡 = 1 both reduce 

to 

 
1
1
  

and, hence are linearly dependent 2-vectors for this particular value of 𝑡.  

 

Theorem 2.3 

The set of an all solutions of (2.2.2) on an interval [𝑎, 𝑏] form an n-dimensional vector space. 

Proof 

It was earlier shown that the set of all solutions form a vector space. Next we show that 

there exist 𝑛 linearly independent solutions. Let 𝑑1 , … , 𝑑𝑛  be 𝑛 linearly independent 𝑛-vectors 

and, using theorem 2.1, let 𝑥𝑟(𝑡) be the unique solution of (2.2.2) such that 
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   𝑥𝑟 𝑡0 = 𝑑𝑟     𝑟 = 1,2, … , 𝑛 , 

where 𝑡0 ∈ 𝐼. Then 𝑥1 𝑡 ,… , 𝑥𝑛 (𝑡) are linearly independent on  𝑎, 𝑏 . For suppose that the 

contrary holds and there exist constants 𝑎1, … , 𝑎𝑛  such that 

𝑎1𝑥1 𝑡 + ⋯ + 𝑎𝑛𝑥𝑛 𝑡 = 0   for all 𝑡 ∈  𝑎, 𝑏  . 

Then, putting 𝑡 = 𝑡0 , it follows that 

𝑎1𝑑1 + ⋯ + 𝑎𝑛𝑑𝑛 = 0 

But, since 𝑑1 , … , 𝑑𝑛  are linearly independent 𝑛-vectors, it follows that 𝑎1 = 0, … , 𝑎𝑛 = 0. This 

establishes that the dimension of the vector space is at least 𝑛. 

To show that the dimension is exactly 𝑛, we next demonstrate that any solution 𝑥(𝑡) of 

(2.2.2) can be written as a linear combination of 𝑥1 𝑡 , … , 𝑥𝑛 𝑡 . 

Indeed, given 𝑥 𝑡 , let 𝑥0 = 𝑥 𝑡0 , where 𝑡0 ∈  𝑎, 𝑏 . Then, since 𝑑1, … , 𝑑𝑛  are linearly 

independent 𝑛 –vectors, there exists a unique set of constants 𝑎1, … , 𝑎𝑛  such that 

𝑥0 = 𝑎1𝑑1 + ⋯ + 𝑎𝑛𝑑𝑛 . 

Now consider 

𝑎1𝑥1 𝑡 + ⋯ + 𝑎𝑛𝑥𝑛 𝑡  

By construction, this is a solution of (2.2.2) and satisfies the initial condition 𝑥 𝑡0 = 𝑥0. But 

theorem 2.1 states that there is a unique solution to the initial-value problem and, hence, it must 

be identically equal to 𝑥 𝑡 . We have show that 

𝑥 𝑡 = 𝑎1𝑥1 𝑡 + ⋯ + 𝑎𝑛𝑥𝑛 𝑡  

for all 𝑡 ∈  𝑎, 𝑏 . Consequently, theorem 2.1 allows us to transfer linear independence of the 

initial conditions at 𝑡0 to the solution for all 𝑡0 ∈  𝑎, 𝑏 .  

Theorem 2.3 shows that the general solution of (2.2.2) is 

   𝑥 𝑡 = 𝑎1𝑥1 𝑡 + ⋯ + 𝑎𝑛𝑥𝑛 𝑡     (2.2.3)  
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where 𝑥1 𝑡 ,… . , 𝑥𝑛 𝑡  are 𝑛 linearly independent solutions and 𝑎1, … , 𝑎𝑛  are 𝑛 arbitrary 

constants. 

 

Definition: Let 𝑥1 𝑡 , … . , 𝑥𝑛 𝑡  be 𝑛 solutions of (2.2.2) on an interval  𝑎, 𝑏 , and put 

    𝑋 𝑡 = (𝑥1 𝑡 ,… . , 𝑥𝑛 𝑡 )     (2.2.4) 

where 𝑋(𝑡) is an 𝑛 × 𝑛 matrix solution of 

    𝑋′ = 𝐴𝑋       (2.2.5) 

𝑋 is called a fundamental matrix if 𝑥1 𝑡 ,… . , 𝑥𝑛 𝑡  are linearly independent. If, in addition, 

𝑋 𝑡0 = 𝐸, the unit matrix, then 𝑋(𝑡) is the principal fundamental matrix. Further 

    𝑊 𝑡 = det 𝑋(𝑡)      (2.2.6) 

is called the Wronskian. 

The property (2.2.5) is immediate from the definition (2.2.4) and (2.2.2). Further, if 𝑋(𝑡) 

is a fundamental matrix solution of (2.2.5), then so is 𝑋 𝑡 𝐶 for any non-singular constant matrix 

𝐶. 

Indeed, let 

𝑌 𝑡 = 𝑋 𝑡 𝐶 

Then 𝑌(𝑡) is non-singular, and 

𝑌′ = 𝑋′𝐶 = 𝐴𝑋𝐶 = 𝐴𝑌 

Note that the column of 𝑌 are linear combinations of the columns of 𝑋. Also the general solution 

(2.2.3) can be written in the form 

𝑥 𝑡 = 𝑋 𝑡 𝑐 

where 𝑐 is an arbitrary 𝑛-vector, with components 𝑐1, … , 𝑐𝑛  
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2.3 Solution of Autonomous System s with Constant Coefficients  

To find the general solution of the system of differential equations  

     𝑋′ = 𝑀𝑋      (2.3.1) 

where 𝑋′ =
𝑑𝑥

𝑑𝑡
, 𝑀 =  

𝑎 𝑏
𝑐 𝑑

  and 𝑋 =  
𝑥
𝑦 , 

assume a solution of the form 

    𝑋(𝑡) =  
𝐴
𝐵

 𝑒𝑟𝑡       (2.3.2) 

Substitute (2.3.2) into (2.3.1) and rearrange the result to obtain 

    
𝑎 − 𝑟 𝑏

𝑐 𝑑 − 𝑟
  

𝐴
𝐵

 =  
0
0
       (2.3.3) 

Solve the characteristic equation 

 𝑎 − 𝑟 𝑏
𝑐 𝑑 − 𝑟

 = 0 

for 𝑟, obtaining the roots (eigenvalues) 𝑟1 and 𝑟2. 

Next, we search for a fundamental matrix for this system of equations. This depends on the 

nature of the eigenvalues: whether they are distinct – either real or complex – or repeated. 

(i) For real, distinct eigenvalues 𝑟1 and 𝑟2, substitute one of the eigenvalues – say, 𝑟1- 

into (2.3.3) and solve the resulting algebraic equations for the associated eigenvector. 

Repeat this process for the other eigenvalue 𝑟2. The columns in a fundamental matrix 

are formed by these eigenvectors times 𝑒𝑟𝑡 , for the appropriate value of 𝑟. 

(ii) For a repeated eigenvalue 𝑟, substitute 

  𝑋 𝑡 =  
𝑥(𝑡)
𝑦(𝑡)

 =  
𝐴1

𝐵1
 𝑒𝑟𝑡 +  

𝐴2

𝐵2
 𝑡𝑒𝑟𝑡     (2.3.4) 

into (2.3.3) and solve the resulting algebraic equations for 𝐴1, 𝐵1, 𝐴2 and 𝐵2. The 

result of this operation will contain two arbitrary constants. The columns of a 
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fundamental matrix in this case are composed of the vector functions that multiply the 

two arbitrary constants. 

(iii)  For complex eigenvalues 𝑟1 and 𝑟2, substitute one of them – say, 𝑟1 = 𝛼 + 𝑖𝛽 – into 

(2.3.3) and solve the resulting algebraic equations. This gives a complex eigenvector, 

which when multiplied by 𝑒(𝛼+𝑖𝛽 )𝑡  will result in a complex valued solution. Form a 

fundamental matrix by having its columns as the real and imaginary parts of this 

solution. 

For each of these cases mentioned above, the general solution of the system of differential 

equations is 

𝑋 𝑡 = 𝑈𝐶, 

Where 𝑈 is a fundamental matrix and 𝐶 is a vector of arbitrary constants, 𝐶 =  
𝑐1

𝑐2
 . 

If in addition to (2.3.1) is the initial value 𝑥 0 = 𝑥0, 𝑦 0 = 𝑦0 - evaluate the arbitrary 

constants by solving the system 

𝑈 0 𝐶 =  
𝑥0

𝑦0
  

for 𝑐1 and 𝑐2 . 

Example: Solve the system of equations 

𝑥 ′ = 2𝑥 + 5𝑦 

𝑦 ′ = 𝑥 + 6𝑦 

Solution: We can rewrite the system of equations above in matrix form 

     
𝑥
𝑦 

′

=  
2 5
1 6

  
𝑥
𝑦      (2.3.5) 

It follows that in this case 

𝑋 =  
𝑥
𝑦 , and 𝑀 =  

2 5
1 6
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We assume a nontrivial solution 

    𝑋 𝑡 =  
𝑥
𝑦 =  

𝐴
𝐵

 𝑒𝑟𝑡     (2.3.6) 

where 𝐴, 𝐵 are arbitrary constants. The derivative of 𝑋(𝑡) with respect to 𝑡, that is,  

   𝑋′  𝑡 =
𝑑𝑥

𝑑𝑡
=

𝑑

𝑑𝑡
 
𝐴
𝐵

 𝑒𝑟𝑡 =  
𝑟𝐴
𝑟𝐵

 𝑒𝑟𝑡     (2.3.7) 

If we substitute (2.3.6) and (2.3.7) into (2.3.5), we obtain 

 
𝑟𝐴
𝑟𝐵

 𝑒𝑟𝑡 =  
2 5
1 6

  
𝐴
𝐵

 𝑒𝑟𝑡  

 Because the common factor 𝑒𝑟𝑡  is never zero, we may divide by it and rearrange the preceding 

equation to obtain 

 
2 5
1 6

  
𝐴
𝐵

 −  
𝑟𝐴
𝑟𝐵

 =  
2 − 𝑟 5

1 6 − 𝑟
  

𝐴
𝐵

 =  
0
0
  

This system of algebraic equations will have a nontrivial solution only if the determinant of the 

coefficients is zero, so 

 2 − 𝑟 5
1 6 − 𝑟

 = 0 

This gives the quadratic equation 

 2 − 𝑟  6 − 𝑟 − 5 = 𝑟2 − 8𝑟 + 7 = 0 

Or  

 𝑟 − 1  𝑟 − 7 = 0 

The values 𝑟 = 1 and 𝑟 = 7 are the only values of 𝑟 that give nontrivial solutions of the system 

of equations in (2.3.8). If we substitute 𝑟 = 1 in (2.3.8) we obtain 

 
1 5
1 5

  
𝐴
𝐵

 =  
0
0
 , 

So our only condition is that 𝐵 = −
1

5
𝐴. 
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This gives the vector 

 
𝐴

−
1

5
𝐴
 , 

where 𝐴 is an arbitrary constant, and the solution 

 
𝐴

−
1

5
𝐴
 𝑒𝑡 = 𝐴  

   1

−
1

5

 𝑒𝑡 = 𝐴  
   𝑒𝑡

−
1

5
𝑒𝑡  

If we use 𝑟 = 7 in (2.3.8) we obtain 

 
−5 5
1 −1

  
𝐴
𝐵

 =  
0
0
 , 

So our only condition is that 𝐵 = 𝐴. This gives the vector 

 
𝐴
𝐴
 , 

Where 𝐴 is an arbitrary constant, and the solution 

 
𝐴
𝐴
 𝑒7𝑡 = 𝐴  

1
1
 𝑒7𝑡 = 𝐴  𝑒

7𝑡

𝑒7𝑡  

In these two solutions we have two different arbitrary constants, each denoted by the symbol 𝐴. 

If we designate these arbitrary constants 𝐶1 and 𝐶2, we can express our explicit solution of 

(2.3.5) as  

 
𝑥(𝑡)
𝑦(𝑡)

 = 𝐶1  
   1

−
1

5

 𝑒𝑡 + 𝐶2  
1
1
 𝑒7𝑡  

Using the fact that 

𝐶1  
𝐴1

𝐴2
 + 𝐶2  

𝐵1

𝐵2
 =  

𝐴1 𝐵1

𝐴2 𝐵2
  

𝐶1

𝐶2
  

we may also write this solution in matrix form as 

 
𝑥(𝑡)
𝑦(𝑡)

 =  
𝑒𝑡 𝑒7𝑡

−
1

5
𝑒𝑡 𝑒7𝑡  

𝐶1

𝐶2
  

Or  

𝑋 𝑡 = 𝑈𝐶 
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where  

𝑋 𝑡 =  
𝑥(𝑡)
𝑦(𝑡)

 , 𝑈 =  
𝑒𝑡 𝑒7𝑡

−
1

5
𝑒𝑡 𝑒7𝑡 , and 𝐶 =  

𝐶1

𝐶2
  

 

Remark 

1. The two solutions of the characteristic equation, in this case 𝑟 = 1 and 𝑟 = 7 are called 

eigenvalues. The two vectors of constants associated with these eigenvalues, in this case 

𝐴  
   1

−
1

5

  and 𝐴  
1
1
 , 

are called eigenvectors. 

The example we just treated has real distinct eigenvalues. 

 

Example: Real, Repeated Eigenvalue 

Consider the system of differential equations 

    
𝑑

𝑑𝑡
 
𝑥
𝑦 =  

  2   9
−1 −4

  
𝑥
𝑦      (2.3.9) 

where we seek a solution of the form 

𝑋 𝑡 =  
𝑥(𝑡)
𝑦(𝑡)

 =  
𝐴
𝐵

 𝑒𝑟𝑡  

Substituting this expression into (2.3.9) yields 

 
𝑟𝐴
𝑟𝐵

 𝑒𝑟𝑡 =  
  2   9
−1 −4

  
𝐴
𝐵

 𝑒𝑟𝑡  

and the associated set of algebraic equations  

     
  2 − 𝑟   9

−1 −4 − 𝑟
  

𝐴
𝐵

 =  
0
0
              (2.3.10) 

From the determinant of the preceding 2 × 2 matrix we can obtain the characteristic equation as 
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 2 − 𝑟  −4 − 𝑟 + 9 = 𝑟2 + 2𝑟 + 1 = (𝑟 + 1)2 = 0 

giving the repeated eigenvalue of 𝑟 = 1. 

To find the eigenvector associated with the eigenvalue 𝑟 = −1, we substitute 𝑟 = −1 

into (2.3.10) and obtain 

 
  3   9
−1 −3

  
𝐴
𝐵

 =  
0
0
  

This requires that 𝐴 = −3𝐵, so we have the eigenvector 

 
−3𝐵
  𝐵

  

Thus, one solution of (2.3.9) is  

 
−3𝐵
  𝐵

 𝑒−𝑡  

The other solution is given by 

 
−3𝐵
  𝐵

 𝑡𝑒−𝑡  

Then the explicit solution of (2.3.9) is taken as 

 𝑋 𝑡 =  
𝑥(𝑡)
𝑦(𝑡)

 =  
−3𝐴1

  𝐵1
 𝑒−𝑡 +  

−3𝐴2

  𝐵2
 𝑡𝑒−𝑡    (2.3.11) 

Substituting this expression into (2.3.9) gives 

 
3𝐴1 − 3𝐴2

 𝐵2 − 𝐵1
 𝑒−𝑡 +  

3𝐴2

−𝐵2
 𝑡𝑒−𝑡 =  

−6𝐴1 + 9𝐵1

 3𝐴1 − 4𝐵1
 𝑒−𝑡 +  

−6𝐴2 + 9𝐵2

 3𝐴2 − 4𝐵2
 𝑡𝑒−𝑡  

Equating coefficients of 𝑒−𝑡  and 𝑡𝑒−𝑡  gives the system of algebraic equations 

3𝐴1 − 3𝐴2 = −6𝐴1 + 9𝐵1 

𝐵2 − 𝐵1 = 3𝐴1 − 4𝐵1 

3𝐴2 = −6𝐴2 + 9𝐵2 

−𝐵2 = 3𝐴2 − 4𝐵2 
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This system of equations has the solution 

𝐴1 = 𝐵1 +
1

3
𝐵2 

𝐴2 = 𝐵2 

where 𝐵1 and 𝐵2 may be chosen arbitrarily, so we denote them by 𝐶1 and 𝐶2 . This means that the 

solution (2.3.11) may be written in the form 

𝑋 𝑡 =  
𝑥(𝑡)
𝑦(𝑡)

 =  
−(3𝐶1 + 𝐶2)

  𝐶1
 𝑒−𝑡 +  

−3𝐶2

  𝐶2
 𝑡𝑒−𝑡 , 

Or  

𝑋 𝑡 =  
𝑥(𝑡)
𝑦(𝑡)

 =  
−3𝑒−𝑡 −(1 + 3𝑡)𝑒−𝑡

𝑒−𝑡 𝑡𝑒−𝑡
  

𝐶1

𝐶2
  

Here a fundamental matrix is 

𝑈 =  
𝑒−𝑡 −(1 + 3𝑡)𝑒−𝑡

𝑒−𝑡 𝑡𝑒−𝑡
  

Example: Complex Eigenvalues 

Consider the system of differential equations 

   
𝑑

𝑑𝑡
 
𝑥
𝑦 =  

2 −1
1 2

  
𝑥
𝑦       (2.3.12) 

In a manner similar to the previous example we seek a solution of the form 

𝑋 𝑡 =  
𝑥(𝑡)
𝑦(𝑡)

 =  
𝐴
𝐵

 𝑒𝑟𝑡  

and determine the characteristic equation from the determinant of the 2 × 2 matrix in the 

equation 

     
2 − 𝑟 −1

1 2 − 𝑟
  

𝐴
𝐵

 =  
0
0
     (2.3.13) 

as  

 2 − 𝑟  2 − 𝑟 + 1 = 𝑟2 − 4𝑟 + 5 = 0 
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The eigenvalues are 𝑟 = 2 ± 𝑖. 

If we substitute 𝑟 = 2 ± 𝑖 into (2.3.13) we obtain 

 
−𝑖 −1
1 −𝑖

  
𝐴
𝐵

 =  
0
0
 , 

so 𝐴 and 𝐵 must be related by 𝐴 = 𝐵𝑖. This gives an eigenvector as 

𝐵  
𝑖
1
  

and a solution of (2.3.12) as  

𝐵  
𝑖
1
 𝑒 2+𝑖 𝑡 = 𝐵  

𝑖
1
 𝑒2𝑡𝑒𝑖𝑡  

           = 𝐵  
𝑖
1
 𝑒2𝑡𝑒𝑖𝑡(cos 𝑡 + 𝑖 sin 𝑡) 

If we decompose this vector into its real and imaginary parts we obtain  

  𝐵  
𝑖
1
 𝑒 2+𝑖 𝑡 = 𝐵  −𝑒2𝑡 sin 𝑡

𝑒2𝑡 cos 𝑡
 + 𝑖𝐵  𝑒2𝑡 cos 𝑡

𝑒2𝑡 sin 𝑡
    (2.3.14) 

as our solution. However, because our original differential equation (2.3.12) has only real 

coefficients and our solution contains both a real part and an imaginary part, each of these parts, 

namely, 

 −𝑒2𝑡 sin 𝑡
𝑒2𝑡 cos 𝑡

  and  𝑒2𝑡 cos 𝑡
𝑒2𝑡 sin 𝑡

  

must separately satisfy (2.3.12). Thus, our fundamental matrix is 

𝑈 =  −𝑒2𝑡 sin 𝑡 𝑒2𝑡 cos 𝑡
𝑒2𝑡 cos 𝑡 𝑒2𝑡 sin 𝑡

  

Hence, our solution is  

𝑋 𝑡 =  
𝑥(𝑡)
𝑦(𝑡)

 =  −𝑒2𝑡 sin 𝑡 𝑒2𝑡 cos 𝑡
𝑒2𝑡 cos 𝑡 𝑒2𝑡 sin 𝑡

  
𝐶1

𝐶2
  

  

 



25 
 

3.0 Sturm Theory 

3.1 Self-Adjoint Equations of the Second Order 

In this section we shall consider some basic properties of some second-order self-adjoint 

ordinary differential equations. We begin by introducing the adjoint of a second-order 

homogenous linear differential equation. 

 

Definition 3.1 

Consider the second-order homogenous differential equation  

   𝑝 𝑥 
𝑑2𝑦

𝑑𝑥2 + 𝑞 𝑥 
𝑑𝑦

𝑑𝑥
+ 𝑟 𝑥 𝑦 = 0     (3.1) 

where 𝑝 is twice continuously differentiable, 𝑞 is once continuously differentiable, 𝑟 is 

continuous, and 𝑝 𝑥 ≠ 0 on 𝐼 =  𝑎, 𝑏 . The adjoint equation to (3.1) is  

𝑑2

𝑑𝑥2
 𝑝 𝑥 𝑦 −

𝑑

𝑑𝑥
(𝑞 𝑥 𝑦) + 𝑟 𝑥 𝑦 = 0, 

that is, after taking the indicated derivatives, 

  𝑝 𝑥 
𝑑2𝑦

𝑑𝑥2 + [2𝑝′ 𝑥 − 𝑞 𝑥 ]
𝑑𝑦

𝑑𝑥
+ [𝑝′′  𝑥 − 𝑞′ 𝑥 + 𝑟 𝑥 ]𝑦 = 0  (3.2) 

where the primes denote differentiation with respect to 𝑡. 

 

Example 3.1. Consider 

𝑥2
𝑑2𝑦

𝑑𝑥2
+ 3𝑥

𝑑𝑦

𝑑𝑥
+ 3𝑦 = 0 

Here 𝑝 𝑥 = 𝑥2, 𝑞 𝑥 = 3𝑥 and 𝑟 𝑥 = 3. By (3.2), the adjoint equation to this equation is 

𝑥2
𝑑2𝑦

𝑑𝑥2
+  4𝑥 − 3𝑥 

𝑑𝑦

𝑑𝑥
+ [2 − 3 + 3]𝑦 = 0 

Or simply 
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𝑥2
𝑑2𝑦

𝑑𝑥2
+ 𝑥

𝑑𝑦

𝑑𝑥
+ 2𝑦 = 0. 

Remark: The adjoint equation of (3.1) is always the original equation (3.1) itself. 

We can now consider the special case in which the adjoint equation (3.2) of (3.1) is also 

(3.1) itself. 

 

Definition 3.2 

The second-order homogenous linear differential equation 

𝑝 𝑥 
𝑑2𝑦

𝑑𝑥2
+ 𝑞 𝑥 

𝑑𝑦

𝑑𝑥
+ 𝑟 𝑥 𝑦 = 0 

is called self adjoint if it is identical with its adjoint equation (3.2). 

 

Theorem 3.1 

Consider the second-order linear differential equation (3.1). It is called self adjoint if  

𝑑

𝑑𝑥
 𝑝 𝑥  = 𝑞 𝑥                                 on 𝑎 ≤ 𝑡 ≤ 𝑏. 

 

Corollary 3.1 

Let (3.1) be self adjoint, then 

𝑑

𝑑𝑥
 𝑝 𝑥 

𝑑𝑦

𝑑𝑥
 + 𝑟 𝑥 𝑦 = 0. 

 

Example 3.2.  Consider the linear differential equation 

𝑥3
𝑑2𝑦

𝑑𝑥2
+ 3𝑥2

𝑑𝑦

𝑑𝑥
+ 𝑦 = 0. 
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The equation is self adjoint since 𝑝 𝑥 = 𝑥3, 𝑞 𝑥 = 3𝑥2 and 𝑟 𝑥 = 1. Thus this equation is 

written as 

𝑑

𝑑𝑥
(𝑥3

𝑑𝑦

𝑑𝑥
) + 𝑦 = 0 

 

Theorem 3.2 

Given the linear differential equation 

𝑝 𝑥 
𝑑2𝑦

𝑑𝑥2
+ 𝑞 𝑥 

𝑑𝑦

𝑑𝑥
+ 𝑟 𝑥 𝑦 = 0, 

where 𝑝, 𝑞 and 𝑟 are continuous, 𝑝 𝑥 ≠ 0 on 𝐼, then the equation can be transformed into the 

equivalent self-adjoint form 

𝑑

𝑑𝑥
 𝑃 𝑥 

𝑑𝑦

𝑑𝑥
 + 𝑄 𝑥 𝑦 = 0, 

where 𝑃 𝑥 = 𝑒
 

𝑞 𝑥 

𝑝(𝑥)
𝑑𝑥

, 𝑄 𝑥 =
𝑟(𝑥)

𝑝(𝑥)
𝑒

 
𝑞 𝑥 

𝑝(𝑥)
𝑑𝑥

 

by multiplication throughout by the factor 
1

𝑝(𝑥)
𝑒

 
𝑞 𝑥 

𝑝(𝑥)
𝑑𝑥

.  

 

Example 3.3 

Consider the equation 

𝑥2
𝑑2𝑦

𝑑𝑥2
+ 𝑥

𝑑𝑦

𝑑𝑥
+ 𝑦 = 0. 

Here 𝑝 𝑥 = 𝑥2, 𝑞 𝑥 = 𝑥, 𝑟 𝑥 = 1. Since 𝑝′ 𝑥 = 2𝑥 ≠ 1 = 𝑞′ 𝑥 , the equation above is not 

self-adjoint. The factor for this equation is  

1

𝑝(𝑥)
𝑒

 
𝑞 𝑥 
𝑝(𝑥)

𝑑𝑥
=

1

𝑥2
𝑒

 
𝑥
𝑥2𝑑𝑥

=
𝑥

𝑥2
=

1

𝑥
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Multiplying the equation by  
1

𝑥
 on an interval 𝐼 = [𝑎, 𝑏] which does not include 𝑥 = 0, we obtain 

𝑥
𝑑2𝑦

𝑑𝑥2
+

𝑑𝑦

𝑑𝑥
+

1

𝑥
𝑦 = 0. 

Since 
𝑑

𝑑𝑥
 𝑥 = 1, 

this equation is self-adjoint and may be written in the form 

𝑑

𝑑𝑥
(𝑥

𝑑𝑦

𝑑𝑥
) +

1

𝑥
𝑦 = 0. 

 

3.2 Some Basic Results of Sturm Theory 

Consider the self-adjoint second-order equation in the form 

   
𝑑

𝑑𝑥
 𝑃 𝑥 

𝑑𝑦

𝑑𝑥
 + 𝑄 𝑥 𝑦 = 0      (3.3) 

where 𝑃 has continuous derivative, 𝑄 is continuous and 𝑃 𝑥 > 0 on 𝐼 =  𝑎, 𝑏 . 

 

Theorem 3.3 

Let 𝜙 ∈ 𝐶 ′ (𝐼) be a solution of  

𝑑

𝑑𝑥
 𝑃 𝑥 

𝑑𝑦

𝑑𝑥
 + 𝑄 𝑥 𝑦 = 0 

and that 𝜙 has an infinite number of zeros on  𝑎, 𝑏 , then 𝜙 𝑥 = 0 for all 𝑥 ∈  𝑎, 𝑏 . 

 

Theorem 3.4 (Abel’s Formula) 

Let 𝜙 and 𝜃 be any two solutions of  

𝑑

𝑑𝑥
 𝑃 𝑥 

𝑑𝑦

𝑑𝑥
 + 𝑄 𝑥 𝑦 = 0 

on 𝐼, then for all 𝑥 ∈ 𝐼, 

𝑃 𝑥 [𝜙 𝑥  𝜃′ 𝑥 − 𝜙′ 𝑥  𝜃 𝑥 = 𝑘 

where 𝑘 is a constant. 
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Theorem 3.5 

Let 𝜙 and 𝜃 be two solutions of  

𝑑

𝑑𝑥
 𝑃 𝑥 

𝑑𝑦

𝑑𝑥
 + 𝑄 𝑥 𝑦 = 0 

such that 𝜙 and 𝜃 have common zero on 𝐼, then 𝜙 and 𝜃 are linearly dependent on 𝐼. If in 

addition 𝜙 𝑥0 = 0, where 𝑥0 is such that 𝑎 ≤ 𝑥0 ≤ 𝑏, 𝑡ℎ𝑒𝑛 𝜃 𝑥0 = 0. 

 

Example 

The equation 
𝑑2𝑦

𝑑𝑥2 + 𝑦 = 0 is of the type (3.3), where 𝑃 𝑥 = 𝑄 𝑥 = 1 on 𝐼. The linearly 

dependent solutions 𝐴1 sin 𝑥  and 𝐴2 sin 𝑥 have the common zeros 𝑥 = 𝑛𝜋 (𝑛 = 0,1,2, … ) and 

no other zeros. 

 

3.3  The Separation and Comparison Theorems  

Theorem 3.5: Let 𝜙 and 𝜃 be real linearly independent solutions of 

𝑑

𝑑𝑥
 𝑃 𝑥 

𝑑𝑦

𝑑𝑥
 + 𝑄 𝑥 𝑦 = 0 

on 𝐼. Between any two consecutive zeros of 𝜙 there is precisely one zero of 𝜃. 

 

Example  

Consider the self-adjoint equation 

𝑑2𝑦

𝑑𝑥2
+ 𝑦 = 0. 

The functions 𝜙 𝑥 = sin 𝑥  and 𝜃 𝑥 = cos 𝑥 are linearly independent solutions of the self-

adjoint equation. Between any two consecutive zeros of one of these two linearly independent 

solutions there is indeed precisely one zero of the other solution. 
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Theorem 3.6 (Sturm’s Fundamental Comparison Theorem) 

Let 𝜙1 , 𝜙2 be real solutions of 

𝑑

𝑑𝑥
 𝑃 𝑥 

𝑑𝑦

𝑑𝑥
 + 𝑄1 𝑥 𝑦 = 0 

and  

𝑑

𝑑𝑥
 𝑃 𝑥 

𝑑𝑦

𝑑𝑥
 + 𝑄2 𝑥 𝑦 = 0 

respectively on 𝐼. Let 𝑃 have a continuous derivative and be such that 𝑃 𝑥 > 0, and let 𝑄1 and 

𝑄2 be continuous and such that 𝑄2 𝑥 > 𝑄1 𝑥 . Then if 𝑥1 and 𝑥2 are successive zeros of 

𝜙1on 𝐼, then 𝜙2 has at least one zero at some point of the open interval 𝑥1 < x < 𝑥2 .  

Example 

Consider the equations 

𝑑2𝑦

𝑑𝑥2
+ 𝜆2𝑦 = 0 

and  

𝑑2𝑦

𝑑𝑥2
+ 𝛼2𝑦 = 0 

where 𝜆 and 𝛼 are constants such that 0 < 𝜆 < 𝛼. The functions 𝜙1and 𝜙2 defined respectively 

by 𝜙1 = sin 𝜆𝑥  and 𝜙2 𝑥 = sin 𝛼𝑥 are real solutions of these respective equations. 

Consecutive zeros of sin 𝜆𝑥 are 

𝑛𝜋

𝜆
 and

(𝑛 + 1)𝜋

𝜆
                 𝑛 = 0, ±1, ±2, …  . 

By theorem 3.6, we are assured that sin 𝛼𝑥 has at least one zero 𝜇𝑛  such that  

𝑛𝜋

𝜆
< 𝜇𝑛 <

(𝑛 + 1)𝜋

𝜆
                  𝑛 = 0, ±1, ±2, …  . 

Specifically, 𝑡 = 0 is a zero of both sin 𝜆𝑥 and sin 𝛼𝑥. The ‘next’ zero of sin 𝜆𝑥 is 
𝜋

𝜆
, while the 

‘next’ zero of sin 𝛼𝑥 is 
𝜋

𝛼
; clearly 

𝜋

𝛼
<

𝜋

𝜆
.      
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4.0 Stability 

4.1 Preliminary Definitions 

Consider the first-order system 

  𝑥 ′ = 𝑓(𝑡, 𝑥)        (4.1) 

where 𝑓(𝑡, 𝑥) is defined and continuous for all 𝑡 ≥ 𝑡0 and 𝑥, and satisfies a Lipschitz condition 

in 𝑥 in any bounded domain. We assume that solution of (4.1) given by 𝑥 = 𝑥 𝑡: 𝑡0, 𝑥0 , exists 

and it is unique. 

In this section we seek the stability of solutions of (4.1). 

Stability is concerned with the question as to whether solutions which are in some sense 

close to 𝑥(𝑡) at some instant will remain close for all subsequent times. Unstable solutions are 

thus extremely difficult to realize either experimentally or numerically, as an arbitrary small 

disturbance will eventually large deviation from the unstable solution. As an example, in 

applications such as automatic control theory, an important question is whether small changes in 

the initial conditions (input) lead to small changes (stability) or to large changes (instability) in 

the solution (output). 

To study the stability of 𝑥 𝑡 , consider the neighboring solution 𝑦 = 𝑦 𝑡: 𝑡0, 𝑦0 , where 

𝑦 ′ = 𝑓 𝑡, 𝑦 , 𝑦 𝑡0 = 𝑦0 . 

We are concerned here with the difference 

   𝑦 𝑡 − 𝑥 𝑡 = 𝑢(𝑡)       (4.2) 

𝑢′ = 𝑦 ′ − 𝑥 ′  

= 𝑓 𝑡, 𝑦 − 𝑓 𝑡, 𝑥  

= 𝑓 𝑡, 𝑥 𝑡 + 𝑢 − 𝑓 𝑡, 𝑥(𝑡)  

If we let 𝐹 𝑡, 𝑢 = 𝑓 𝑡, 𝑥 𝑡 + 𝑢 − 𝑓 𝑡, 𝑥(𝑡) , we have that 

   𝑈′ = 𝐹(𝑡, 𝑢)        (4.3) 
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Here 𝐹 𝑡, 0 = 0 for all 𝑡 ≥ 𝑡0, and so the function 𝑈 = 0 for all 𝑡 ≥ 𝑡0 is a solution of (4.3). 

Consequently, the stability of 𝑥(𝑡) as a solution of (4.1) is reduced to the stability of the zero 

solution of (4.3). 

Definition 1: The solution 𝑢 = 0 of (4.3) is said to be stable, if for all 𝜀 > 0 and 𝑡1 ≥ 𝑡0 , there 

exists a 𝛿 𝜀, 𝑡 , such that  𝑢 𝑡1  < 𝛿 implies that  𝑧 𝑡  < 𝜀 for all 𝑡 ≥ 𝑡1. 

 

Definition 2: The solution 𝑢 = 0 of (4.3) is said to be uniformly stable, if stable and 𝛿 = 𝛿(𝜀) is 

independent of 𝑡1. 

 

Definition 3: The solution 𝑢 = 0 of (4.3) is said to be asymptotically stable, if stable and 

 𝑧 𝑡1  < 𝛿 implies that  𝑧 𝑡  ⟶ 0 𝑎𝑠 𝑡 ⟶ ∞. 

 

Remark:  

(i) Definition 1 is also sometimes called Liapunor stability.         

(ii) 𝑧 = 0 is said to be unstable if Definition 1 does not hold. 

 

Example 1 

Consider 𝑧 ′ + 𝑧 = 0, 

Where 𝑧 = 𝑧0𝑒
−(𝑡−𝑡0) is the solution. Obviously the zero solution is uniformly and 

asymptotically stable. 

Example 2 

Consider 𝑧 ′ − 𝑧 = 0 with solution 𝑧 = 𝑧0𝑒(𝑡−𝑡0 ). Here the zero solution is unstable since 

 𝑧 ⟶ ∞ as 𝑡 ⟶ ∞ for all 𝑧 ≠ 0.  
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Various methods exist for discussing the stability of linear or nonlinear system. In this 

section we shall treat one of the methods known as the Lyapunov second (direct) method. 

 

Lyapunov’s Direct Method 

This method seeks a scalar function of 𝑢, which can be regarded as a measure of the 

‘energy’ of the system (4.3), and then seeks to demonstrate that either this ‘energy’ decreases as 

𝑡 ⟶ ∞,  indicating stability, or it increases, indicating instability. 

For simplicity, consider and autonomous system 

    𝑈′ = 𝐹(𝑢)      (4.4) 

where 𝐹(𝑢) is defined and continuous for all 𝑢, satisfies a Lipschitz condition in 𝑢 in any 

bounded domain and is such that 𝐹 0 = 0. Let 𝑉(𝑢) be a scalar function of 𝑢, defined and 

continuous, with –continuous partial derivatives for  𝑢 ≤ 𝑐  𝑐 > 0 , and such that 𝑣 0 = 0. 

 

Definition 4: 𝑉(𝑢) is positive definite for |𝑢| ≤ 𝑐 if 𝑉 > 0 for all 𝑢 ≠ 0,  𝑢 ≤ 𝑐. 

 

Definition 5: 𝑉(𝑢) is negative definite for |𝑢| ≤ 𝑐 if 𝑉 < 0 for all 𝑢 ≠ 0,  𝑢 ≤ 𝑐. 

 

Definition 6: 𝑉 𝑢  is positive semi-definite for  𝑢 ≤ 𝑘 if 𝑉 ≥ 0 for all 𝑢,  𝑢 ≥ 𝑘.  

 

Definition 7: 𝑉(𝑢) is negative semi-definite for  𝑢 ≤ 𝑘 if 𝑉 < 0 for all 𝑢,  𝑢 ≥ 𝑘. 

Example 3: The function 

𝑉 = 𝑢1
2 + 𝑢2

2 + 𝑢3
2 

is positive definite. 
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Example 4: The function 

𝑉 = (𝑢1 + 𝑢2 + 𝑢3)2 

is positive semi-definite. 

 

Example 5: The function 

𝑉 = −𝑢1
2 − 𝑢2

2 − 𝑢3
2 

is negative definite. 

 

Let 𝑢(𝑡) be a solution of (4.4) and consider the function 𝑉 𝑡 = 𝑉 𝑢 𝑡  , thus the derivative of 

𝑉 along the trajectory 𝑢(𝑡) is  

𝑉 ′ =
𝑑

𝑑𝑡
𝑉 𝑢 𝑡  = (∇𝑉)𝑇𝑢′ =  ∇𝑉 𝑇𝐹(𝑢) 

where ∇𝑉 = 
𝜕𝑉

𝜕𝑢 𝑖
                      (𝑖 = 1,2, … , 𝑛) 

 

Theorem 1 

(i) Let V(u) be positive definite and 𝑉 ′  be negative semi-definite for  𝑧 ≤ 𝑘. Then the 

zero solution of (4.4) is uniformly stable.  

(ii) Let 𝑉(𝑧) be positive definite and 𝑉 ′  be negative definite for  𝑧 ≤ 𝑘. Then the zero 

solution of (4.4) is uniformly and asymptotically stable. 


