MTS 101 LECTURE 4 : MATRICES AND MATRIX ALGEBRA

DEFINITION

A matrix is a rectabgular array of the elements of a field (i.e. on array of numbers). Thus if m, n are two positive integers ≥ 1 and F is a field $(\mathbb{R}$ or $\mathbb{C})$ then the array:

$$
=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
- & - & --- & - \\
- & - & --- & - \\
a_{m 1} & a_{m 2} & --- & a_{m n}
\end{array}\right)
$$

is called an $m \times n$ matrix in F (since it contains m rows and n columns)
Its first row is $\left(\begin{array}{llll}a_{11} & a_{12} & \ldots & a_{1 n}\end{array}\right)$ and first column is

$$
\left(\begin{array}{l}
a_{11} \\
a_{12} \\
- \\
- \\
a_{m 1}
\end{array}\right)
$$

The numbers that constitute the matrix are called its ELEMENTS.

Let a_{ij} denote the element of the matrix in the $\mathrm{i}^{\text {th }}$ row an $\mathrm{j}^{\text {th }}$ column. Then for ease of notation we can denote our $m \mathrm{x} n$ matrix by

$$
\left(\mathrm{a}_{\mathrm{ij}}\right) \quad \mathrm{i}=1,2, \ldots, \mathrm{n} \quad \mathrm{j}=1,2, \ldots \ldots, \mathrm{~m} \text { or simply by capital letter } \mathrm{A}_{m \times n}
$$

Order

The order of a matrix is the no of rows and columns e.g $\left(\mathrm{a}_{\mathrm{ij}}\right)$ is of order $m \mathrm{x} n$.
If $\mathrm{m}=\mathrm{n}$, then the matrix is called a SQUARE MATRIX of order n .

Definition 2: Row and Column Matrices

A rectangle matrix consisting of only a single row is called a ROW MATRIX e.g. (1,2,3,4). Similarly, a rectangle matrix consisting of a single column is called a COLUMN MATRIX e.g.

$$
\left(\begin{array}{l}
3 \\
5 \\
7 \\
4
\end{array}\right]
$$

Definition 3: Null Matrix

This is a matrix having each of its elements $=0$ e.g $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$

Definition 4: Diagonal Element, Diagonal Matrix

The elements a_{ij} of a matrix $\left(\mathrm{a}_{\mathrm{ij}}\right)$ are called its DIAGONAL ELEMENTS (or elements of the main diagonal)

$$
\text { e.g. }\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right], \mathbf{a}_{11}=\mathbf{1}, \mathbf{a}_{22}=\mathbf{5}, \quad \mathbf{a}_{33}=\mathbf{9}
$$

A square matrix in which all the elements other than the diagonal elements are zero is called a DIAGONAL MATRIX.

$$
\operatorname{Viz}=\left(\begin{array}{cccccc}
\mathrm{d}_{1} & 0 & 0 & 0 & \cdots & 0 \\
0 & \mathrm{~d}_{2} & 0 & 0 & \cdots & 0 \\
0 & 0 & \mathrm{~d}_{3} & 0 & --- & 0 \\
- & - & --- & - & --- & 0 \\
0 & 0 & 0 & 0 & --- & d_{n}
\end{array}\right) \text { e.g. }\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 5 & 0 & 0 \\
0 & 0 & 9 & 0 \\
0 & 0 & 0 & 6
\end{array}\right)
$$

Such a matrix is denoted $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ or $\left(d_{i}, d_{i k}\right)$ for $\mathrm{I}, \mathrm{k}=1,2, \ldots \mathrm{n}$ where $\mathrm{d}_{\mathrm{ii}}=1, \mathrm{~d}_{\mathrm{ik}}=0(\mathrm{i} \neq \mathrm{k})$

NB: Its diagonal elements may also be zero
e.g. i. $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
ii. $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
iii. $\left[\begin{array}{ll}0 & 0 \\ 0 & 2\end{array}\right]$
are diagonal matrices.

Definition 5: Scalar and Scalar Matrix

A diagonal matrix where diagonal elements are all equal is called a SCALAR MATRIX.

$$
\text { e.g. }\left[\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right] \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Definition 6: Identity Matrix (or Unit Matrix)

A diagonal matrix whose elements are each equal to 1 is called and IDENTITY MATRIX. It is denoted $\operatorname{In}\left(\right.$ or $\left.\mathrm{I}_{\mathrm{nxn}}\right)$.

$$
\text { e.g. }\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Definition 7: Symmetry

A square matrix where elements are arranged symmetrically about the main diagonal is called a SYMMETRIC MATRIX.
e.g. $\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right]$

On the other hand, if for a square matrix, there is no symmetric about the main diagonal but for every element $a_{i j}$ on one side of the main diagonal, there is a corresponding $-a_{i j}$ on the other side, then the matrix is a SKEW-SYMMETRIC MATRIX.

Furthermore, the diagonal elements are all zero

$$
\text { e.g. }\left(\begin{array}{cccc}
0 & 1 & 2 & 3 \\
-1 & 0 & -1 / 2 & 2 \\
-2 & 1 / 2 & 0 & 1 \\
-3 & 2 & -1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
0 & h & g \\
-h & 0 & f \\
-g & -f & 0
\end{array}\right]
$$

Definition 8: Triangular matrix

A square matrix whose elements a_{ij} are all zero whenever $\mathrm{i}<\mathrm{j}$ is called a LOWER TRIANGULAR MATRIX.

A square matrix whose elements $\mathrm{a}_{\mathrm{ij}}=0$ whenever $\mathrm{i}>\mathrm{j}$ is called an UPPER TRIANGULAR MATRIX.

Hence, a diagonal matrix is both upper and lower matrix.

$$
\begin{gathered}
\text { e.g. }\left[\begin{array}{ll}
1 & 0 \\
2 & 0
\end{array}\right],\left[\begin{array}{lll}
1 & 0 & 0 \\
2 & 4 & 0 \\
3 & 3 & 2
\end{array}\right], \rightarrow \quad \text { Lower Triangular Matrix } \\
\\
{\left[\begin{array}{llc}
3 & 4 & 2 \\
0 & 1 & 1 / 2 \\
0 & 0 & 3 / 4
\end{array}\right], \quad\left[\begin{array}{cc}
0 & 1 / 2 \\
0 & 3
\end{array}\right], \rightarrow \quad \text { Upper Triangular Matrix }}
\end{gathered}
$$

MATRIX ALGEBRA

Equality of Matrices

A and B are equal if
i. they are of the same order
ii. their corresponding elements are the same

Addition of Matrices

If A and B are of the same order, the their sum is a matrix C of the same order whose elements are the sums of the corresponding elements of A and B .

$$
\begin{aligned}
& \Rightarrow C=A+B \\
& A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right], \quad B=\left[\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{array}\right] \\
& C_{i k}=a_{\text {ik }}+b_{\text {ik }} \quad i=1,2, \ldots \ldots \ldots . m, k=1,2, \ldots \ldots \ldots \ldots . n
\end{aligned}
$$

* Only matrices of the same order can be added.

Properties of Matrix Addition

i. Matrix addition is commutative $\Rightarrow \mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$
ii. \quad Matrix addition is Associative $\Rightarrow \quad(A+B)+C=A+(B+C)$
iii. If 0 is a null matrix of the same order as A , the $\mathrm{A}+0=0+\mathrm{A}=\mathrm{A}$
iv. To each A there exists a matrix B of the same order s.t $A+B=0=B+A$
(i) \rightarrow (iv) \Longrightarrow Matrix addition is Abelian

Exercise 1.

Find the sum of these matrices and establish their Commutativity
i. $\left[\begin{array}{cc}1 & 2 \\ -3 & 3\end{array}\right]$ and $\left[\begin{array}{cc}4 & -3 \\ 7 & 5\end{array}\right] \quad$ ii. $\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right]$

Exercise 2:

Establish the associativity of the following matrices
i. $\left[\begin{array}{lll}1 & 3 & 5 \\ 7 & 9 & 1 \\ 3 & 5 & 7\end{array}\right], \quad\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 4 & 5 \\ 7 & 0 & 6\end{array}\right]$ and $\left[\begin{array}{lll}2 & 1 & 4 \\ 3 & 0 & 6 \\ 2 & 5 & 4\end{array}\right]$
ii. $\quad\left[\begin{array}{lll}0 & 1 & 2 \\ 2 & 3 & 4\end{array}\right], \quad\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 4 & 5\end{array}\right]$ and $\left[\begin{array}{lll}2 & 3 & 4 \\ 4 & 5 & 6\end{array}\right]$

Exercise 3:

Establish the order of each matrix 1,2 and 4 and find the a_{11}, a_{12}, etc what are the diagonal elements.

Exercise 4:

Which of the following matrices are (i) Triangular Matrices, (ii) Unit Matrices (iii) null matrices and Scalar matrices.
i. $\quad\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
ii. $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$
iii. $\left[\begin{array}{lll}1 & 0 & 0 \\ 5 & 1 & 0 \\ 6 & 2 & 0\end{array}\right]$
iv. $\quad\left[\begin{array}{lll}0 & 0 & 2 \\ 0 & 0 & 1 \\ 1 & 2 & 0\end{array}\right]$
v. $\quad\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$
vi. $\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]$
vii. $\left[\begin{array}{ll}5 & 0 \\ 0 & 5\end{array}\right] \quad$ viii. $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 5\end{array}\right]$
ix. $\quad\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$

Exercise 5:

i. If $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$ Find a Matrix B such that $\mathrm{A}+\mathrm{B}=0$
ii. If $\mathrm{A}=\left[\begin{array}{lll}2 & 5 & 8 \\ 3 & 4 & 6\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{lll}-2 & -5 & -8 \\ -3 & -4 & -6\end{array}\right]$ Find $\mathrm{A}+\mathrm{B}$

Multiplication by Scalar

Let $A=\left(a_{i j}\right) i=1,2,3, \ldots . m$ be a matrix, $\quad j=1,2,3, \ldots n$
And Let α be a scalar (i.e. any number), then $\alpha \mathrm{A}=\mathrm{C}=\left(\mathrm{C}_{\mathrm{ij}}\right)$

Where $\alpha a_{i j}=C_{i j} \quad i=1,2, \ldots . m, \quad j=1,2, \ldots . . n$

Example

If $\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3}\end{array}\right]=\left[\begin{array}{lll}4 a_{1} & 4 a_{2} & 4 a_{3} \\ 4 b_{1} & 4 b_{2} & 4 b_{3}\end{array}\right]$

Properties

If A, B are matrices and α, β are scalars, then
i. $\quad \alpha(\mathrm{A}+\beta)=\alpha \mathrm{A}+\alpha \beta$
ii. $\quad(\alpha+\beta) \mathrm{A}=\alpha \mathrm{A}+\beta \mathrm{B}$
iii. $\quad(\alpha \beta) \mathrm{A}=\alpha(\beta \mathrm{A}) \quad$ Examples to be given in class

DIFFERENCE OF TWO MATRICES

If two matrices A and B are of the same order, then the difference $A-B=A+(-B)=A+(-1) B$

Exercise 6:

i. For Exercice (2) above, find $(\mathrm{A}-\mathrm{B})+\mathrm{C}$
ii. $\quad \mathrm{A}-\mathrm{B}-\mathrm{C}$
iii. $\quad 2 \mathrm{~A}+3 \mathrm{~B}$
iv. $\mathrm{A}+2 \mathrm{~B}+1 / 2 \mathrm{C}$

Exercise 7:

If $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 2 & 3 & 4 \\ 3 & 1 & 2\end{array}\right]$ and $B=$
i. Find a matrix C such that $\mathrm{A}+\mathrm{C}$ is a diagonal matrix.
ii. Find a matrix D such that $A+B=2 D$.
iii. Find a Matrix E such that $(A+B)+E$ is zero matrix.

MULTIPLICATION OF MATRICES

The product AB of two matrices exist if the number of columns of $\mathrm{A}=$ the number of rows of B .
e.g. $\quad\left[\begin{array}{ll}a & b \\ c & d\end{array}\right] x\left[\begin{array}{lll}p & q & r \\ x & y & z\end{array}\right]=\left[\begin{array}{lll}a p+b x & a q+b y & a r+b z \\ c p+d x & c q+d y & c r+d z\end{array}\right]$

Since $A_{2 \times 2}$ and $B_{2 \times 3}$ i.e, no. of column of $A=$ no. of rows of B, then $A B$ exist.
Let $\mathrm{A}=\left[\begin{array}{ccc}\mathrm{a}_{11} & \ldots & \mathrm{a}_{1 \mathrm{n}} \\ \mathrm{a}_{\mathrm{m} 1} & \ldots & \mathrm{a}_{\mathrm{mn}}\end{array}\right]$ of order $m \times n$ and $\mathrm{B}=\left[\begin{array}{ccc}\mathrm{b}_{11} & \ldots & \mathrm{~b}_{\mathrm{iq}} \\ \vdots & & \vdots \\ \mathrm{b}_{\mathrm{n} 1} & \ldots & \mathrm{~b}_{\mathrm{nq}}\end{array}\right]$ of order $n \times q$

Then $A B$ is the matrix

$$
\mathrm{C}=\left[\begin{array}{cc}
\mathrm{C}_{\mathrm{ii}} & \mathrm{C}_{\mathrm{iq}} \\
\mathrm{C}_{\mathrm{mi}} & \mathrm{C}_{\mathrm{mq}}
\end{array}\right] \text { of order } m \times q
$$

in which the element C_{ij} is the sum of products (term by term) of elements of $\mathrm{i}^{\text {th }}$ row of A and the $\mathrm{j}^{\text {th }}$ column of B. Thus for the matrices $\mathrm{A}=\left(\mathrm{a}_{\mathrm{ik}}\right), \mathrm{B}=\left(\mathrm{b}_{\mathrm{k}}\right)$, the product $A B$ is matrix $\mathrm{C}=\left(\mathrm{C}_{\mathrm{ij}}\right)$

$$
\text { where } \mathrm{C}_{\mathrm{ij}}=\sum_{k=1}^{n} a_{i k} b_{k j}
$$

* Multiplication is possible if no. of column of the first matrix = no. of rows of the second matrix.

Example:

If $A=\left[\begin{array}{ccc}2 & 5 & 3 \\ 0 & 2 & 1 \\ -1 & 0 & 4\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & 2 & 1 \\ 3 & -5 & 0 \\ 0 & 2 & 6\end{array}\right]$ Find (i). $A B, \quad$ (ii) $B A$ (iii) A^{2} (iv) $5 B^{2}$

