## MTS 411 ADVANCED ALGEBRA I

This note is aimed at familiarising the students with the contents of the course Advanced Algebra I. This note should not be taken as a full lecture note for the course. However important definitions are stated and several results are stated without proofs. Detailed notes shall be given during lecture periods.

## 1. Rings and Ideals

Definition (1.1) A ring A is a nonempty set with two binary operations + and . such that:
(i) $(\mathrm{A},+)$ is an abelian group.
(ii) (A,.) is a semigroup.
(iii) . is distributive over + that is

$$
a(b+c)=a b+a c, \quad \forall a, b, c \in A .
$$

If $a b=b a \forall a, b \in A$, we say that A is commutative.
If there exits $1 \in A$ such that $1 . a=a \cdot 1=a \forall a \in A$, we say that A is a ring with unity.
Except otherwise stated in this note, all rings will be commutative rings with unity.
Example (1.2) $\mathcal{Z}, \mathcal{Q}, \mathcal{R}, \mathcal{C}$ are commutative rings with unity.
Example (1.3) Let A and B be rings. Then $A \times B$ is also a ring.
Example (1.4) Let $(A,+)$ be an abelian group and let $\operatorname{End}(\mathrm{A})$ be the set of endomorphisms of the group A into itself. Then $(\operatorname{End}(\mathrm{A}),+,$.$) is a ring where +$ and . are defined by

$$
\begin{aligned}
(\phi+\psi)(x) & =\phi(x)+\psi(x) \\
(\phi \psi)(x) & =\phi(\psi(x)), \quad \forall \phi, \psi \in \operatorname{End}(A), x \in A
\end{aligned}
$$

Example (1.5) Let $2^{A}$ be the power set of a nonempty set R. If $X, Y \in 2^{A}$, define

$$
\begin{aligned}
X+Y & =(X \cup Y)-(X \cap Y) \\
X . Y & =X \cap Y .
\end{aligned}
$$

Then $\left(2^{A},+,.\right)$ is a commutative ring with unity and has the following properties:
(i) $X^{2}=X$, and
(ii) $2 X=0, \forall X \in 2^{A}$.

This ring is generally called a Boolean ring.
Definition (1.6) Let A and B be rings with 1. A mapping $\phi: R \rightarrow S$ is called a ring homomorphism if
(i) $\phi(x+y)=\phi(x)+\phi(y)$,
(ii) $\phi(x y)=\phi(x) \phi(y) \forall x, y \in A$.
$\phi(A)$, the image of A under $\phi$ is defined by $\phi(A)=\{b \in B: \phi(a)=b$ for some $a \in A\}$. $\operatorname{Ker} \phi$, the kernel of $\phi$ is defined by $\operatorname{Ker} \phi=\left\{a \in A: \phi(r)=0_{B}\right\}$. We assume always that $\phi\left(1_{A}\right)=1_{B} \in B$. Definition (1.7) Let A be a ring. I is called an ideal of A if I is an additive subgroup of A that is $a, b \in I$ implies that $a-b \in I$ and $A I \subseteq I$ that is if $a \in I$ and $r \in A$, then $r a \in I$. More generally, an ideal of a ring A is a subset $I \subset A$ such that $0 \in I$, and $a f+b g \in I \forall a, b \in A$ and $f, g \in I$. For the ideal generated by elements $a, b \in A$, we write $(\mathrm{a}, \mathrm{b})$ or Aa+Ab. Similarly we write $(X)+a A+J$ for the ideal generated by the set X , an element a and an ideal J .
It should be noted that $0=\{0\}=(0)$ is an ideal of A, and if $1 \in I$, then $I=(1)=A$.
If I is an ideal of A , define $A / I=\{a+I: a \in A\}$. If $a+I, b+I \in A / I$, then $(a+I)+(b+I)=$ $a+b+I,(a+I)(b+I)=a b+I$. With this definition, A/I is a commutative ring with unity since A is commutative with unity.
Proposition (1.8) Let $\phi: A \rightarrow B$ be a ring homomorphism. Then
(i) $\phi(A)$ is a subring of B .
(ii) $\operatorname{Ker} \phi$ is an ideal of A .
(iii) If $I \subset A$ is an ideal, then there exists a ring $A / I$ and a surjective homomorphism $\psi: A \rightarrow A / I$ such that $\operatorname{Ker} \psi=I$; the pair $\mathrm{A} / \mathrm{I}$ and $\psi$ is uniquely defined up to isomorphism. $\psi$ is called the quotient or canonical or natural homomorphism.
(iv) In the notation of (iii), the mapping

$$
\psi^{-1}:[\text { ideals of } \mathrm{A} / \mathrm{I}] \rightarrow \text { [ideals of A containing I] }
$$

is a 1-1 correspondence.
Recall that if A is a ring, then $a \in A$ is a zero divisor if $a \neq 0$ but $\exists b \in A$ such that $b \neq 0$ and $a b=0$. A ring with no zero divisor is called an integral domain.
If $a \in A$ and $\exists n \in \mathcal{Z}$ such that $a^{n}=0$, then we say that a is nilpotent. An element $a \in A$ is invertible or a unit of A if it has an inverse in A that is $\exists b \in A$ such that $a b=1$. An element $a \in A$ is idempotent if $a^{2}=a$.
Exercise (1.9) (a) If a and b are nilpotent elements in A , show that:
(i) 1-a is invertible in A
(ii) $\alpha a+\beta b$ is nilpotent $\forall \alpha, \beta \in A$, so that the set of nilpotent elements of A is an ideal.
(b) If $a \in A$ is idempotent, show that:
(i) $b=1-a$ is idempotent
(ii) $a+b=1$
(iii) $a b=0$. In this case we say that a and b are complementary orthogonal idempotent.

By writing $x=x a+x(1-a)$ for any $x \in A$, we see that A is a direct sum of rings $A=A_{1} \oplus A_{2}$ where $A_{1}=A a$ and $A_{2}=A(1-a)$.
Proposition (1.10) Every nilpotent element is a zero divisor.
Exercise (1.11) Let A be a commutative ring with 1 and let X be the set of all units of A . Show that X is an abelian group.

Definition (1.12) Let I be an ideal of A. I is said to be generated by $x \in A$ if $(x)=I=\{x a$ : $a \in A\}$.
Recall that a field is an integral domain A in which every nonzero element is a unit. Every field is an integral domain but the converse is false.

Theorem (1.13) Let A be a nonzero ring. Then the following are equivalent:
(i) A is a field.
(ii) (0) and (1) are the only ideals of A.
(iii) Every homomorphism $f: A \rightarrow B$ where B is a nonzero ring is injective.

Exercise (1.14) Let I and J be ideals of a ring A. Then
(i) $I+J=\{i+j: i \in I, j \in J\}$,
(ii) $I \cap J$,
(iii) $I J=\left\{\sum_{k}^{n} i_{k} j_{k}: i_{k} \in I, j_{k} \in J\right\}$,
(iv) $(I: J)=\{a \in A: a J \subseteq I\}$
are ideals of A .
Definition (1.15) I+J is called the ideal generated by I and $\mathrm{J},(\mathrm{I}: \mathrm{J})$ is called the ideal quotient of I and J and IJ is called the product of I and J. Generally, if $I_{p}$ is any family of ideals of A, then $\cap I_{p}$ is also an ideal of A .
Example (1.16) Let $A=\mathcal{Z}, I=\langle a\rangle, J=\langle b\rangle$. Compute:
(i) $I \cap J$
(ii) $I+J$
(iii) $I J$.

Solution:(i) $\quad I \cap J=<[a, b]>$.
(ii) $I+J=<(a, b)>$.
(iii) $I J=\langle a b\rangle$.

Example (1.17) Let $A=\mathcal{Z}$. Compute (I:J) given that
(i) $I=<5>, J=<20>$
(ii) $I=<60>, J=<70>$
(iii) $I=<42>, J=<132>$.

Solution: (i) By definition,

$$
(I: J)=(<5>:<20>)=\{a \in A: a<20>\subseteq<5>\}
$$

and thus we have $20 p a=5 q$ so that $20 m=5 q$ and therefore we have $m=q / 4$. Since m is an integer, we must have $q=0, \pm 4, \pm 8, \pm 12, \pm 16 \cdots$ and so, $m=0, \pm 1, \pm 2, \pm 3, \pm 4 \cdots$. Hence $(<5>:<20>)=\mathcal{Z}=<1>$. Similarly, we obtain $(<60>:<70>)=<6>$ and $(<42>:<$ $132>)=<7>$ (iii) $\quad I=<42>, J=<132>$.

Definition (1.18) (i) An ideal M in a ring A is called maximal if $M \neq A$ and M is such that if I is an ideal of A with $M \subseteq I \subseteq A$ then $I=M$ or $I=R$.
(ii) An ideal P in a ring A is called a prime ideal if I and J are ideals in A such that $I J \subseteq P$, then $I \subseteq P$ or $J \subseteq P$.

Example (1.19) In any integeral domain, (0) is a prime ideal. A commutative ring A is an integral domain iff (0) is a prime ideal of A . For each prime integer p , the ideal $(\mathrm{p})$ in $\mathcal{Z}$ is a prime ideal.

Theorem (1.20) (i) P is a prime ideal iff $\mathrm{A} / \mathrm{P}$ is an integral domain.
(ii) M is a maximal ideal iff $\mathrm{A} / \mathrm{M}$ is a field.

Corrolary (1.21) A maximal ideal is a prime ideal.
Proof: Suppose that M is maximal. Then A/M is a field so that A/M is an integral domain and hence M is prime. In general, the converse is false.

Theorem (1.22) Let $\phi: A \rightarrow B$ be a ring homomorphism.
(i) If P is a prime ideal in B , then $\phi^{-1}(P)$ is a prime ideal in A .
(ii) If M is a maximal ideal in B , it is not true that $\phi^{-1}(M)$ is maximal in A . To see this, consider the inclusion map $\psi: \mathcal{Z} \rightarrow \mathcal{Q}$. it is clear that ( 0 ) is maximal in $\mathcal{Q}$ because $\mathcal{Q}$ is a field but then $\phi^{-1}((0))=(0)$ and $(0)$ is not maximal in $\mathcal{Z}$ since $\mathcal{Z}$ is not a field.

Theorem (1.23) Every nonempty commutative ring A with 1 has at least one maximal ideal.
Corrolary (1.24)(i) Let I be an ideal of A. Then I is contained in a maximal ideal of A.
(ii) Every nonunit of A is contained in a maximal ideal.

Definition (1.25) A ring A is called a local ring if it has exactly one maximal ideal. Every field is a local ring.
Theorem (1.26) (i) Let A be a ring and let $M \neq(1)$ be an ideal of A such that every $x \in A-M$ is a unit in $A$. Then $A$ is a local ring and $M$ is its maximal ideal.
(ii) Let A be a ring and M a maximal ideal of A such that every element of $1+\mathrm{M}$ is a unit in A . Then A is a local ring.

Definition (1.27)(i) A ring with finite number of maximal ideals is called a semi-local ring.
(ii) A principal ideal domain (PID) is an integral domain in which every ideal is principal.

Theorem(1.28) If A is a PID then every prime ideal is maximal.
Proposition (1.29) Let N be the set of all nilpotent elements in a ring A . Then:
(i) N is an ideal of A ,
(ii) $\mathrm{A} / \mathrm{N}$ has no nilpotent element different from 0 .

Definition (1.30) The ideal N of Theorem (1.29) is called the nilradical of A denoted by nilrad A. A is said to be a reduced ring if $\operatorname{nilrad} A=0$.

Definition (1.31) The Jacobson radical of A is the intersection of all the maximal ideals of A.
Proposition (1.32) The nilradical of A is the intersection of all the prime ideals.
Proposition (1.33) $x \in J$ iff 1-xy is a unit in A for all y in A .
Definition (1.34) Let J be any ideal of A.
(i) The ideal quotient $(0, \mathrm{~J})$ is called the annihilator of J and it is denoted by $\operatorname{Ann}(\mathrm{J})$. It is the set of all x in A such that $x J=0$.
(ii) The radical of J denoted by $\mathrm{r}(\mathrm{J})$ is the set

$$
r(J)=\left\{x \in A: x^{n} \in J \text { for some } n>0 .\right.
$$

## SPECIMEN QUESTIONS

1. (a) Let e and I be an element and a subset in a ring A respectively. When do we say that:
i. e is idempotent?
ii. I is a prime ideal ?
iii. I is a maximal ideal ?
iv. A is an integral domain?
v. A is a division ring ?
vi. A is a Boolean ring ?
(b) If A has more than one element and if $a x=b$ has a solution $\forall(a \neq 0) \in A$ and $\forall b \in A$, show that A is a division ring.
(c) Let A be a commutative ring with unity and let M and P be any two ideals of A . Show that:
i. P is prime iff $\mathrm{A} / \mathrm{P}$ is an integral domain,
ii. $M$ is maximal iff $A / M$ is a field,
iii. A maximal ideal of A is prime ideal in A . Give an example to show that the converse is false,
iv. If A is a Boolean ring, then each prime ideal $P \neq A$ is maximal.
2. (a) Let A be a commutative ring and let M and P be any two ideals of A . Define the following:
i. $\mathrm{M}+\mathrm{P}$, when is M and P coprime or comaximal?
ii. $M \cap P$,
iii. MP,
iv. (M:P), the ideal quotient of $M$ and $P$,
v. $\operatorname{Ann}(\mathrm{M})$, the annihilator of M ,
vi. $\mathrm{r}(\mathrm{M})$, the radical of M ,
vii. $\mathrm{J}(\mathrm{M})$, the Jacobson radical of M ,
viii. $N(M)$, the nilradical of $M$.
(b) Show that:
i. MP is an ideal of A ,
ii. $(\mathrm{M}: \mathrm{P})$ is an ideal of A ,
iii. $r(M)$ is an ideal of $A$,
iv. $a \in J(M)$ iff (1-ab) is a unit in $\mathrm{A} \forall b \in A$,
v. $(M: P) P \subseteq M$,
vi. $r(r(M))=r(M)$,
vii. $r(M)$ is the intersection of all prime ideals containing $M$,
viii. M and P are coprime iff $\mathrm{r}(\mathrm{M})$ and $\mathrm{r}(\mathrm{P})$ are coprime.
(c) Let $A=\mathcal{Z}$ and let $M=(42)$ and $P=(132)$. Compute the following:
i. $\mathrm{M}+\mathrm{P}$,
ii. $M \cap P$,
iii. MP,
iv. (M:P).

## 2. Modules

Definition (2.1) Let A be a commutative ring. An A-module is an abelian group (M,+) on which A acts linearly. It is a pair $(M, \mu)$ where ( $\mathrm{M},+$ ) is an abelian group and $\mu: A \times M \rightarrow M$ such that if we write ax for $\mu(a, x)$ with $a \in A, x \in M$, the following axioms are satisfied:
(i) $a(x+y)=a x+a y$,
(ii) $(a+b) x=a x+b x$,
(iii) $(a b) x=a(b x)$,
(iv) $1 x=x$, for all $a, b \in A, x, y \in M$.

Equivalently, $(\mathrm{M},+)$ is an abelian group together with a ring homomorphism $A \rightarrow E(M)$, where $E(M)$ is the ring of endomorphisms of the abelian group $M$.
The notion of a module is a common generalization of several concepts for example, vector spaces. If A is a field, then an A-module M is an A -vector space or a vector space M over the field A .
Example (2.2) (i) An Ideal I of A is an A-module. In particular A itself is an A-module.
(ii) If A is a field K , then A -module is K -vector space.
(iii) If $A=\mathcal{Z}$, then $\mathcal{Z}$-module is an abelian group.
(iv) If $A=K[x]$, where K is a field, an A -module is a K -vector space with a linear transformation.
(v) If G is a finite group, $A=K(G)$ is a group algebraof G over the field K , thus A is not commutative unless G is. Then A-module is the K-representation of G.
(vi) If V is a vector space over a field F , then V is an F -module.

Definition (2.3) Let M and N be A-modules. A mapping $f: M \rightarrow N$ is an A-module homomorphism or is A-linear if

$$
\begin{aligned}
f(x+y) & =f(x)+f(y), \\
f(a x) & =a f(x), \quad \forall x, y \in M, \quad a \in A .
\end{aligned}
$$

If A is a field, an A-module homomorphism is the same as a linear transformation of vector spaces.

It can easily be shown that the composition of A-module homomorphisms is again an A-module homomorphism.
The set of all A-homomorphisms from $M$ to $N$ can be made an A-module by defining ( $f+g$ ) and (af) by

$$
(f+g)(x)=f(x)+g(x),
$$

$$
(a f)(x)=a f(x), \quad \forall x \in M .
$$

With this definition, it can easily be checked that the axioms for an A-module is satisfied. This A-module is denoted by $\operatorname{Hom}(\mathrm{M}, \mathrm{N})$.

Definition (2.4) A submodule N of an A-module M is a subgroup of M which is closed under multiplication by elements of A . The abelian group $\mathrm{M} / \mathrm{N}$ then inherits an A-module structure from M , defined by $a(x+N)=a x+N$. The A-module $\mathrm{M} / \mathrm{N}$ is the quotient of M by N . The natural map $\phi: M \rightarrow M / N$ is an A-homomorphism.

If $f: M \rightarrow N$ is an A-homomorphism, the kernel of of f is the set

$$
\operatorname{Ker} f=\{x \in M: f(x)=0\}
$$

and is a submodule of M . The image of f is the set

$$
\operatorname{Imf}=f(M)
$$

and is a submodule of $N$. The cokernel of $f$ is

$$
\text { coker } f=N / \operatorname{Imf}
$$

which is a quotient module of N .
Definition (2.5) Let M be an A-module and let $\left\{M_{i}\right\}$ be a family of A submodules of M. Their sum $\sum M_{i}$ is the set of all finite sums $x_{i}$ where $\left\{x_{i} \in M_{i}\right\}$ for all i and almost all the $x_{i}$ are zero. $\sum M_{i}$ is the smallest submodule of M which contains all the $M_{i}$.
The intersection $\cap M_{i}$ is again a submodule of M . Thus the submodules of M form a complete lattice with respect to inclusion.

Proposition (2.6) (i) If $\mathrm{L}, \mathrm{M}$ and N are A-modules such that $N \subseteq M \subseteq L$, then

$$
[L / N] /[M / N] \cong L / M
$$

(ii) If P and Q are submodules of M , then

$$
[P+Q] / P \cong Q /[P \cap Q] .
$$

Definition (2.7) Let M be an A-module and let I be an ideal of A. The product IM is the set of all finite sums $\sum a_{i} x_{i}$ with $a_{i} \in I, x_{i} \in M$ and it is a submodule of M .

If N and P are A -submodules of $\mathrm{M},(\mathrm{N}: \mathrm{P})$ is defined to be the set of all $a \in A$ such that $a P \subseteq N$. It is a an ideal of A. In particular, $(0: \mathrm{M})$ is the set of all $a \in A$ such that $a M=0$. This is also
an ideal called the annihilator of M and is denoted by $\operatorname{Ann}(\mathrm{M})$. If $I \subseteq \operatorname{Ann}(M)$, we may regard M as an $\mathrm{A} / \mathrm{I}$-module as follows:

If $\bar{x} \in A / I$ is represented by $x \in A$, define $\bar{x} m$ to be xm with $m \in M$ : this is independent of the choice of the representation x of $\bar{x}$, since $I M=0$.

Definition (2.8) An A-module M is faithful if $\operatorname{Ann}(M)=0$. If $\operatorname{Ann}(M)=I$, then M is faithful an an A/I-module.
Proposition (2.9) (i) If M and N are A-modules, then

$$
\operatorname{Ann}(M+N)=\operatorname{Ann}(M) \cap \operatorname{Ann}(N)
$$

(ii) If N and P are A -submodules of M , then

$$
(N: P)=\operatorname{Ann}((N+P) / N) .
$$

Definition (2.10) If $S$ is a subset of an A-module $M$, then ( S ) will denote the intersection of all the submodules of M that contains S . This is called the submodule of M generated by S , while the elements of $S$ are called generators of ( S ).

Thus ( S ) is a submodule of M that contains S and it is contained in every submodule of M that contains S , that is $(\mathrm{S})$ is the smallest submodule of M containing S . If $S=\left\{x_{1}, \cdots x_{n}\right\}$ we write $\left(x_{1}, \cdots x_{n}\right)$ for the submodule generated by S .
Lemma (2.11) Let M be an A-module and let $S \subseteq M$.
(i) If $S=\emptyset$ then $(S)=\{0\}$.
(ii) If $S \neq \emptyset$ then

$$
(S)=\left\{\sum_{i=1}^{n} a_{i} s_{i}: n \in \mathcal{N}, a_{i} \in A, s_{i} \in S\right\}
$$

Definition (2.12) An A-module M is said to be finitely generated if $M=(S)$ for some finite subset S of M .

M is said to be cyclic if $M=(m)$ for some element $m \in M$. If M is finitely generated, then let $\mu(M)$ denote the minimal number of generators of M . If M is not finitely generated, then we define $\mu(M)=\infty . \mu(M)$ is called the rank of M.

Remark (2.13) (i) By (2.11)(i), we have $\mu(\{0\})=0$ and $M \neq\{0\}$ is cyclic iff $\mu(M)=1$.
(ii) The concept of cyclic A-module generalizes the concept of cyclic group. Thus an abelian group G is cyclic iff it is a cyclic $\mathcal{Z}$-module.
(iii) If A is a PID, then any A -submodule M of A is an ideal, and so $\mu(M)=1$.

If M is a finitely generated A -module and N is any submodule, then $\mathrm{M} / \mathrm{N}$ is clearly finitely generated, and in fact, $\mu(M / N) \leq \mu(M)$ since the image in $\mathrm{M} / \mathrm{N}$ of any generating set of M is
a generating set of $\mathrm{M} / \mathrm{N}$.
Proposition (2.14) Suppose that M is an A-module and N is a submodule. If N and $\mathrm{M} / \mathrm{N}$ are finitely generated then

$$
\mu(M) \leq \mu(N)+\mu(M / N)
$$

Definition (2.15) If $\left\{N_{\alpha}\right\}$ is a family of A-modules of M, then the submodule generated by $N_{\alpha}$ is $\left(\cup_{\alpha} N_{\alpha}\right)$. This is just the set of all sums $n_{\alpha_{1}}+n_{\alpha_{2}}+\cdots+N_{\alpha_{k}}$ where $n_{\alpha_{i}} \in N_{\alpha_{i}}$ that is $\sum_{\alpha \in \lambda} N_{\alpha}$. If $\lambda$ is a finite set then $\lambda=\{1,2, \ldots, m\}$ and we write $\sum_{\alpha=1}^{m} N_{\alpha}$ for the submodule generated by $N_{1}, N_{2}, \cdots, N_{m}$.

Proposition (2.16) Let A be a ring and let $M=(m)$ be a cyclic A-module. Then

$$
M \cong A / A n n(m)
$$

Corrolary (2.17) If F is a field and M is a nonzero cyclic F -module, then $M \cong F$.
Definition (2.18) Let M be an A-module and let $I \subseteq A$ be an ideal. Then

$$
I M=\left\{\sum_{i=1}^{n} a_{i} m_{i}: n \in \mathcal{Z}, a_{i} \in I, m_{i} \in M\right\} .
$$

The set IM is clearly a submodule of M . The product IM is a generalization of the concept of product of ideals.
Remark (2.19) If A is commutative and $I \subseteq \operatorname{Ann}(M)$, then there is a map

$$
[A / I] \times M \rightarrow M
$$

defined by $(a+I) m=a m$.
Definition (2.20) Let A be an integral domain and let M be an A-module. An element $x \in M$ is a torsion element if $\operatorname{Ann}(x) \neq\{0\}$. Thus an element $x \in M$ is torsion iff there exists an $a \neq 0 \in A$ such that $a x=0$. Let $M_{\tau}$ be the set of torsion elements of M. M is said to be torsion-free if $M_{\tau}=\{0\}$, and M is a torsion module if $M=M_{\tau}$.
Proposition (2.21) Let A be an integral domain and let M be an A-module. Then
(i) $M_{\tau}$ is a submodule of M , called the torsion submodule.
(ii) $M / M_{\tau}$ is torsion-free.

Example (2.22) (i) If G is an abelian group, then the torsion $\mathcal{Z}$-module of G is the set of all elements of G of finite order. Thus $G=G_{\tau}$, meaning that every element of G is of finite. In particular, any finite abelian group is torsion. The converse is not true. For example if we take $G=\mathcal{Q} / \mathcal{Z}$, then $|G|=\infty$, but every element of $\mathcal{Q} / \mathcal{Z}$ has finite order since $q(p / q+\mathcal{Z})=p+\mathcal{Z}=$ $0 \in \mathcal{Q} / \mathcal{Z}$. Thus $(\mathcal{Q} / \mathcal{Z})_{\tau}=\mathcal{Q} / \mathcal{Z}$.
(ii) An abelian group is torsion-free if it has no elements of finite order other than zero. For example, let us take $G=\mathcal{Z}^{n}$ for any natural number n.
(iii) Let $V=F^{2}$ and consider the linear transformation $T: F^{2} \rightarrow F^{2}$ defined by $T(u, v)=(v, 0)$. Then $\mathrm{F}[\mathrm{X}]$ module $V_{T}$ determined by T is a torsion module. In fact $\operatorname{Ann}\left(V_{T}\right)=\left(X^{2}\right)$.

Proposition (2.23) Let A be an integral domain and let M be a finitely generated torsion A-module. Then $\operatorname{Ann}(M) \neq(0)$. In fact, if $M=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, then

$$
\operatorname{Ann}(M)=\operatorname{Ann}\left(x_{1}\right) \cap \cdots \cap \operatorname{Ann}\left(x_{n}\right) \neq(0) .
$$

Proposition (2.24) Let F be a field and let V be a vector space over F , that is an F -module. Then V is torsion-free.

Definition (2.25) Let M and N be A-modules. $M \oplus N$ the direct sum of M and N is defined by

$$
M \oplus N=\{(x, y): x \in M, y \in N\}
$$

This can be made an A-module if we define addition and scalar multiplication by

$$
\begin{aligned}
(a, b)+(c, d) & =(a+c, b+d), \\
r(a, b) & =(r a, r b) .
\end{aligned}
$$

More generally, if $\left\{M_{i}\right\}_{i \in \lambda}$ is any family of A-modules, then their direct sum $\oplus_{i \in \lambda} M_{i}$ is a set whose elements are families $\left(x_{i}\right)_{i \in \lambda}$ such that $x_{i} \in M_{i}$ for each $i \in \lambda$ and almost all $x_{i}$ are zero.

Definition (2.6) An A-module M is said to be free if it is isomorphic to an A-module of the form $\oplus_{i \in \lambda} M_{i}$ where each $M_{i} \cong A$ as an A-module.

Remark (2.27) The direct sum has an important homomorphism property, which, can be used to characterize direct sum. To see this, suppose that $f_{i}: M_{i} \rightarrow N$ are A-module homomorphisms. Then there is a map

$$
f: M_{1} \oplus \cdots \oplus M_{n}
$$

defined by

$$
f\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\sum_{i=1}^{n} f_{i}\left(x_{i}\right)
$$

It can be easily be checked that f is an A-module homomorphism.
Theorem (2.28) Let M be an A-module and let $M_{1}, M_{2}, \cdots, M_{n}$ be submodules such that
(i) $M_{1}+M_{2}+\cdots+M_{n}$, and
(ii) for $1 \leq i \leq n$,

$$
M_{i} \cap\left(M_{1}+\cdots+M_{i-1}+\cdots+M_{n}\right)=0
$$

Then $M \cong M_{1} \oplus M_{2} \oplus \cdots \oplus M_{n}$.
Proposition (2.29) M is a finitely generated A-module iff M is isomorphic to a quotient of $A^{n}$ for some integer $n>0$.

Proposition (2.30) Let M be a finitely generated A-module, let I be an ideal of A, and let $\phi$ be an A-module endomorphism of M such that $\phi(M) \subseteq I M$. Then $\phi$ satisfies the equation of the form

$$
\phi^{n}+a_{1} \phi^{n-1}+a_{2} \phi^{n-2}+\cdots+a_{n}=0, \quad a_{i} \in I .
$$

Corrolary (2.31) Let M be a finitely generated A -module and let I be an ideal of A such that $I M=M$. Then there exists $x \equiv 1 \bmod I$ such that $x M=0$.

Proposition (2.32) [Nakayama's Lemma] Let M be a finitely generated A-module and I an ideal of A contained in the Jacobson radical J of A. Then $I M=M$ implies that $M=0$.

Corrolary (2.33) Let M be a finitely generated A-module, N a submodule of $\mathrm{M}, I \subseteq J$ an ideal. Then

$$
M=I M+N \quad \Rightarrow \quad M=N .
$$

Definition (2.34) If M is an A-module and $M_{1} \subseteq M$ is a submodule, we say that $M_{1}$ is a direct summand of M , or is complemented in M , if there is a submodule $M_{2} \subseteq M$ such that $M_{1} \cong M_{1} \oplus M_{2}$.

## SPECIMEN QUESTIONS

1. Define the following:
(a) Module,
(b) Submodule,
(c) Faithful module,
(d) Cyclic module,
(e) Torsion module,
(f) Free module,
(g) Quotient module,
(h) A-module homomorphism,
(i) Exact sequence,
(j) Cokernel.
2. (a) If $A$ is a field $K$, show that an $A$-module $M$ is a $K$-vector space.
(b) Let M and N be A-modules and let $\operatorname{Hom}_{A}(M, N)$ be the set of all A-homomorphisms from M into N. Define $\forall f, g \in \operatorname{Hom}_{A}(M, N)$ and $\forall x \in M$ :

$$
\begin{aligned}
(f+g)(x) & =f(x)+g(x) \\
(a f)(x) & =a f(x), a \in A .
\end{aligned}
$$

Show that $\operatorname{Hom}_{A}(M, N)$ is an A-module.
(c) Let $M, M^{\prime}, N, N^{\prime}$ be A-modules and let $u: M^{\prime} \rightarrow M$ and $v: N \rightarrow N^{\prime}$ be A-module homomorphisms which induce the mappings

$$
\begin{gathered}
\bar{u}: \operatorname{Hom}_{A}(M, N) \rightarrow \operatorname{Hom}_{A}\left(M^{\prime}, N\right), \\
\bar{v}: \operatorname{Hom}_{A}(M, N) \rightarrow \operatorname{Hom}_{A}\left(M, N^{\prime}\right),
\end{gathered}
$$

respectively defined by

$$
\begin{aligned}
& \bar{u}(f)=f \circ u, \\
& \bar{v}(f)=v \circ f, \quad \forall f \in \operatorname{Hom}_{A}(M, N) .
\end{aligned}
$$

Show that $\bar{u}$ and $\bar{v}$ are A-homomorphisms.
3. (a) If M and N are A -modules, show that

$$
\operatorname{Ann}(M+N)=\operatorname{Ann}(M) \cap \operatorname{Ann}(N)
$$

(b) If N and P are A -submodules of an A -module M , show that

$$
(N: P)=\operatorname{Ann}((N+P) / N) .
$$

(c) Let $M=(m)$ be a cyclic A-module. Show that

$$
M \cong A / A n n(m)
$$

(d) Show that M is a finitely generated A-module iff M is isomorphic to a quotient of $A^{n}$ for some integer $n>0$.

## References

1. Atiyah M.F. and Macdonald I., Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass., 1969.
2. Cohn P.M., Algebra, Wiley, London, 1989.
3. Miles Reid, Undergraduate Commutative Algebra, London Mathematical Society Texts 29, Cambridge University Press, 1995.
