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Definition

A set is a collection of objects which can be distinguished from each other.We

shall sat that a set is defined if whenever any object is given, it is possible

to decide whether or not it belongs to the set.The objects comprising the set

are generally called the elements of the set and they may be finite or infinite

in number.

Example:

1. A school constitutes a set and each student or teacher is an element of

the set.

2. The whole number 1, 2, 3, ... constitutes a set and each whole number

is an element of this set.

Capital letters are use to denote sets and small letters a, b, c, d, ... to denote

elements.The symbol needed for enclosing the elements of a set is a pair of

braces,so that when a set A is specified by listing the elements a, b, c, d and

e contained in A,we will write

A = {a, b, c, d, e}



The symbol : or | is used for ’such that’. Example

N = {n : n is a whole number} indicates that N is the set of all

elements n such that N is a whole number .That is N is the set of all whole

number.

Membership of a set :

The element that make up a set are usually called member of that set.We

use the symbol ∈ to stand for ’is a member (element) of’ while the symbol

/∈ stand for ’is not a member (element) of’ e.g

If A = {a, b, c} then a ∈ A, d /∈ A

Finite and Infinite set:

A finite set is one whose members are countable.e.g

1. Consider a set A = {n : n is a whole number, 0 < n < 20}.

2. Member of a football team.

An infinite set is one whose elements are uncountable,as they are infinitely

numerous. e.g

The set N of all whole numbers is an infinite set and we could write it thus:

N = {1, 2, 3, ...} with ..., to show it goes on forever.

The set consisting of a single object is called a singleton set.

Subsets:

A set T is called a subset of a set S if every element of T ia also an element

of S.We write T ⊆ S or S ⊇ T . Observe that this definition implies that
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every set is a subset of itself.However,if T is a subset of S and T 6= S,we say

that T is a proper subset of S and then write T ⊂ S or S ⊃ T .Thus T is a

proper subset of S if T is a subset of S and there exist at least one element

of S that is not in T .

Two sets S, T are equal if and only if S ⊆ T and T ⊆ S

Example:

Kano state,Lagos state,Oyo state is a proper subset of states in Nigeria

Empty set:

A set is said to be empty or null if it contains no elements.If a set S is

empty,we write S = φ or {}. e.g

S = {x|x ∈ R and x2 + 1 = 0} = φ since x2 + 1 = 0 has no real roots.

Empty set φ is a subset of every set.

Equality of sets:

Two sets are equal if they have the same elements e.g

{a, e, i, o, u} = {e, o, u, i, a}.
Also we introduce two new symbols namely =⇒ and ⇐⇒. e.g

x ∈ {x, y, z} =⇒ {x} ⊂ {x, y, z}.
This means that the statement on the right hand side must follow from the

statement on the left but the statement on the left does not necessarily follow

from that on the right.

=⇒ stands for implies and ⇐⇒ stands for ’implies and implied by’ or ’if and

only if’
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For any two sets A and B,

If x ∈ B =⇒ x ∈ A, then B ⊂ A.

A ⊂ B and B ⊂ A =⇒ A = B.

Universal set :

The set containing all elements under discussion in a particular problem is

called the universal set and is denoted by symbol Σ

Complement:

Given a set A,then the set which contains all the elements of the universal

set,which are not elements of A is called the complement of A and is denoted

by A′ or Ac.Thus

A′ = {x : x ∈ Σ and x /∈ A} e.g

Σ = {1, ..., 8},A = {2, 4, 6, 8}, A′ = {1, 3, 5, 7}.
Equivalent set:

If to each elements of a set A there corresponds an element of another set B

and to each element of B there corresponds an element of A,the element of

the two sets are said to be in one-to-one correspondence.The sets are then

said to be equivalent.The symbol which expresses this relationship is ∼ and

A ∼ B means that A is equivalent to B.e.g

The sets A = {a, b, c} and B = {1, 2, 3} are equivalent because we could

make the first element of A correspond to the first element of B and so on.

The sets A = {a, b, c, d} and B = {1, 2, 3, 4, 5} are not equivalent because

even through we can pair all the elements of A with some of the elements of
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B,the reverse procedure leaves one element without any pair.

Power set:

The family β of all subsets of S is called the power set of S and is denoted

by 2s.

For example

Is S = {1, 2, 3},β = {φ, S, {1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}} = 23.

Definition:

Let Ω be any set .The family or collection of sets Sω written {Sω}ω∈Ω is said

to be indexed by Ω and Ω is called an indexing set for this family.

For example

1. Let Ω = N = set of all natural number and Sn = 1 + 1
2

+ ... + 1
2n .Then

the family {Sn|n ∈ N} is indexed by Ω = N .

2. (*) Let Ω = {1, 2, 3, 4, 5} and Sω=all integral multiples of ω.Thus S1 =

Z

S2 = 2Z = {...,−4,−2, 0, 2, 4, ...}
S3 = 3Z = {...,−6,−3, 0, 3, 6, ...}
Sω = {...,−2ω,−ω, 0, ω, 2ω, ...}ω ∈ Ω

3. Let Ω = the set of all English words and Sω = {x|x is a letter in ω ∈
Ω}
Suppose ω is the word ’fence’ then Sω = {e, f, n, c}
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4. let Ω = {a, b, c}
Sa = {all even integers}
Sb = {x ∈ Z| − 10 ≤ x ≤ 5}
Sc = {all integers ≥ −5}

The last example shows that indexing set may have no direct bearing on

the sets being indexed. Ω may just provide a way of distinguishing the set

concerned.

Intersection:

Suppose we have two sets S, T .The intersection of S and T is the set of

all elements common to both S and T and is denoted by S ∩ T . Thus

S∩T = {x|x ∈ S and x ∈ T}.Observe that if T ⊂ S, then S∩T = T .Also

if S ∩ T = φ,we say S and T are disjoint.

If Ω = {ω} is any indexing set for a family {Sω}ω∈Ω we define the intersection

∩ω∈ΩSω of members of this family as the set of all elements common to all

the Sω, ω ∈ Ω.Thus ∩ω∈ΩSω = {x|x ∈ Sω for each ω ∈ Ω}.
For example

Let S = {1, 3, 5, 7, 9},T = {x ∈ Z|x3−6x2+11x−6 = 0}.Then S∩T = {1, 3}.
Union:

Let S, T be two sets.We define the union of S and T ,written S ∪ T , as

the set of elements which are either in S or T .Thus S ∪ T = {x|x ∈
S or x ∈ T}.It follows that S ∪ T = T ∪ S.If Ω is an indexing set

for a family {Sω}ω∈Ω,then the union ∪ω∈ΩSω of the sets Sω is defined as
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∪ω∈ΩSω = {x|x is in at least one Sω.

For example

In example (*),∪ω∈ΩSω = Z.

Theorem: If S, T are two sets,then

1. S ∩ (T ∩ V ) = (S ∩ T ) ∩ V

2. (S ∪ T ) ∪ V = S ∪ (T ∪ V )

3. S ∩ (T ∪ V ) = (S ∩ T ) ∪ (S ∩ V )

4. S ∪ (T ∩ V ) = (S ∪ T ) ∩ (S ∪ V )

Proof: (1)-(2) (exercise)

3. Let x ∈ L.H.S,then x ∈ S and x ∈ T ∪ V . This implies that x ∈ S and

x ∈ (T or V ).

i.e x ∈ (S and T ) or x ∈ (S and V ).

i.e x ∈ S ∩ T or x ∈ S ∩ V ,

i.e x ∈ S ∩ T ∪ x ∈ S ∩ V

Hence x ∈ R.H.S.

Therefore S ∩ (T ∪ V ) ⊆ (S ∩ T ) ∪ (S ∩ V ).

Let x ∈ R.H.S,then x ∈ S ∩ T or x ∈ S ∩ V .

i.e x ∈ (S and T ) or x ∈ (S and V )

=⇒ that x ∈ S and x ∈ T or V

i.e x ∈ S ∩ (T ∪ V )

Hence (S ∩ T ) ∪ (S ∩ V ) ⊆ S ∩ (T ∪ V )
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Therefore (S ∩ (T∪) = (S ∩ T )n ∪ (S ∩ V )

Definition:

A family {Sω}ω∈Ω of subset Sω of a set S is said to form a partition if

1. S = ∪ω∈ΩSω and

2. For any Sω, Sω′ ,either Sω = Sω′ or Sω ∩ Sω′ = φ

i.e ω 6= ω′ =⇒ Sω ∩ Sω′ = φ

Definition:

Let S, T be two sets,we define S − T ,the difference of S and T (sometimes

read ’S minus T ) as the set of elements which are in S but not in T .

For example

Let S = {1, 2, 3, 4, 7, 10}
T = {2, 7, 5, 8, 11}
S − T = {1, 3, 10}
Theorem:

1. A−B ⊂ A

2. (A−B) ∩B = φ

Proof:

1. Let x ∈ (A − B). By definition x ∈ A and x /∈ B. In any case x ∈ A,so

(A−B) ⊂ A

2. Let x ∈ (A−B) ∩B

Then x ∈ A−B and x ∈ B (1)

Now x ∈ A − B implies that x ∈ A and x /∈ B. This contradicts (1).Hence
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there does not exist any element in (A−B) ∩B.

Therefore (A−B) ∩B = φ.

Theorem:

1. Σ′ = φ, φ′ = Σ

2. (S ′)′ = S

3. (S ∪ T )′ = S ′ ∩ T ′

4. (S ∩ T )′ = S ′ ∪ T ′

(3) and (4) are known as De Morgan’s law.

Proof.

3. Let x ∈ (S ∪T )′ then x /∈ (S ∪T ). i.e x /∈ (S or T ).Then clearly x ∈ S ′

and x ∈ T ′ which means that x ∈ S ′ ∩ T ′ i.e (S ∪ T )′ ⊆ S ′ ∩ T ′. Similarly let

x ∈ S ′ ∩ T ′,then x ∈ S ′ and x ∈ T ′. i.e x /∈ S and x /∈ T . Hence x cannot be

in S ∪ T ,since it is neither in S nor in T . i.e x ∈ (S ∪ T )′.

Therefore S ′ ∩ T ′ ⊆ (S ∪ T )′.

Therefore (S ∪ T )′ = S ′ ∩ T ′.

Definition: Let S, T be two sets.The symmetric difference of S and T is

defined as (S ∪ T )− (S ∩ T ) and written as S 4 T .

Definition: Let {Sω}ω∈Ω be a family of sets indexed by Ω. The disjoint

union or set sum of Sω is define as ∪ω∈Ω{Sω × {ω}} and written as ∨ω∈ΩSω.

If sets Sω are disjoint then ∨ω∈ΩSω and ∪ω∈ΩSω have the same number of

elements.

For example.
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1. Let Ω = {1, 2}, S1 = {a, b}, S2 = {c, d}
Then S1 ∨ S2 = {(a, 1), (b, 1), (c, 2), (d, 2)}
2. Let Ω = {a, b, c}
Sa = {1, 2, 3, 6, 8, 10}, Sb = {2, 4, 6, 7, 9}, Sc = {4, 11, 6, 1, 3, 18}
Then Sa∨Sb∨Sc = (Sa×{a})∪(Sb×{b})∪(Sc×{c}). Note that Sa∪Sb∪Sc

has 11 elements but Sa ∨ Sb ∨ Sc has 17 elements.

Definition: The cartesian product ( or product set) of S and T written as

S × T is the set of all ordered pair (a, b) such that a ∈ S and b ∈ T .

If S or T is a null set,then so is S × T .If S has s elements and T has t

elements,S × T has st elements. If either S or T is infinite and the other is

non-empty,then S × T is infinite.

For example

Let S = {c, d}, T = {4, 7, 9} then S×T = {(c, 4), (c, 7), (c, 9), (d, 4), (d, 7), (d, 9)}.
Hence S × T has 6 elements.

Definition: The cartesian product S1×...×Sn of n sets S1, ...Sn as the set of

all n-tuples (α1, ..., αn) where αi ∈ Si, i = 1, 2, ..., n with the understanding

that (α1, ..., αn) = (α′1, ..., α
′
n) if and only if αi = α′i.

For example

The Euclidean 3-space =R×R×R = {(a, b, c)|a, b, c ∈ R}.
Definition: An open sentence in a single variable x is an expression of the

form p(x) such that when x is replaced by a specific value like a,then p(aP

is either true or false.
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An open sentence in two variables x, y is an expression of the form p(x, y)

such that whenever x, y are given specific values a, b say,then p(a, b) is either

true or false.

For example

1. x divides y is an open sentence in x and y p(2, 4) is rue but p(3, 5) is false.

2. x− y = 4 is an open sentence in two variables p(12, 8) is true but p(9, 6)

is false.

Definition: Let S and T be two sets. A propositional function defined on

S × T is an open sentence p(x, y) where x takes in S and y in T .

Definition: Let S, T be two sets.A relation ∼ from S to T is given by a

triple (S, T, p(x, y)) where p(x, y) is a propositional function on S × T .

If p(a, b) is true,write a ∼ b (to be read a is in relation to b). Otherwise write

a ∼ b. If ∼ is a relation from S to T ,we may write it as ∼: S −→ T and

b =∼ (a) where a ∈ S, b ∈ T and p(a, b) is true. If ∼= (S, S, p(x, y)) we say

that ∼ is a relation on S.

Definition: Let ∼ be a relation from a set S to a set T .The domain D of ∼
is the subset of S consisting of first co-ordinate elements of ∼∗. i.e

D = {a|(a, b) ∈∼∗}.
The range F of ∼ is the subset of T consisting of second co-ordinate elements

of ∼∗ i.e

F = {b|(a, b) ∈∼∗}.
For example
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S = {1, 3, 4, 7, 8},T = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Let ∼= (S, T, p(x, y)) where p(x, y) means y = 2x.

Then ∼ ∗ = {(1, 2), (3, 6), (4, 8)}.
D = {1, 3, 4}, F = {2, 6, 8}.
Definition: A relation ∼ on a set S is said to be reflexive if a ∼ a for all

a ∈ S i.e (a, a) ∈∼∗ for all a ∈ S.

(**) For example

Let S = N ,the set of all natural numbers.For a, b ∈ N ,let a ∼ b means a

divides b.Then a divides a for all a ∈ N and so ∼ is reflexive.

Definition: A relation ∼ on a set S is said to be symmetric if a ∼ b implies

that b ∼ a for all a, b ∈ S. i.e (a, b) ∈∼∗ implies that (b, a) ∈∼∗ for all

a, b ∈ S.

For example

In the example (**) above,∼ is not symmetric,since a divides b does not nec-

essarily imply that b divides a.

e.g 2|6 but 6 does not divide 2.

Definition: A relation ∼ on a set S is said to be transitive if a ∼ b and

b ∼ c imply that a sin c. i.e (a, b) ∈∼∗, (b, c) ∈∼∗ imply that (a, c) ∈∼∗.
e.g In the example (**) above,∼ is transitive,since a divides b and b divides

c imply that a divides c.

Definition: A relation ∼ on a set S is called an equivalence relation if ∼ is

reflexive,symmetric and transitive.
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For eaxample

Let S = Z. Define a ∼ b by 5 divides (a − b). Then ∼ is an equivalence

relation.

Proof.

5 divides (a− b) implies that (a− b) = 5k for some k ∈ Z i.e a = 5k + b.

So a ∼ a since a = 5k + a for some k = 0 ∈ Z i.e ∼ is reflexive.

Now a ∼ b implies that a = 5k + b. i.e b = a + 5k′ where k′ = −k also in

Z.Hence a ∼ b implies b ∼ a ie.∼ is symmetric.

Now a ∼ b,b ∼ c all imply that a = 5k1 + b, b = 5k2 + c respectively for some

k1, k−2 ∈ Z i.e b = a−5k−1 and a−5k−1 = 5k2 + c i.e a = 5(k1 +k2)+ c.

Now k1 + k2 = k ∈ Z.Hence a = 5k + c for k ∈ Z.

Thus a ∼ b, b ∼ c imply a ∼ c. Hence ∼ is transitive.

Therefore ∼ is an equivalence relation.

Definition: Let ∼ be an equivalence relation on a set S. foe a ∈ S, we

define equivalence class of a as the set of all elements b in S such that a ∼ b

and denote this set by [a].The set of all equivalence classes in S is called the

quotient set of ∼ and written s/ ∼.

For example

In the example (**) above,

[0] = {b ∈ Z|b = 5k for all k ∈ Z} = {...,−10,−5, 0, 5, ...}
[1] = {b ∈ Z|b = 1 + 5k for all k ∈ Z} = {...,−9,−4, 1, 6, 11, ...}
.
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.

.

[4] = {b ∈ Z|b = 4 + 5k, for all k ∈ Z} = {...,−6,−1, 4, 9, 14, ...}
of course [5] = [0]

The equivalence classes above are called residue classes modulo 5.In gen-

eral case where 5 is replaced by an arbitrary positive integer m,then the

equivalence classes are called residue classes modulo m and are given by

[0], [1], ..., [m− 1].

Theorem: If ∼ is an equivalence relation on a set S,then the set of equiv-

alence classes of ∼ gives a partition of S.Conversely,given any partition of

S,there exists an equivalence relation ∼ on S such that the set of equivalence

classes of r is the given partition.

Natural Numbers

Let N be a non-empty set.Assume the following axioms on N .

1. There exists an injective map α : N −→ N ;the image α(a) of a ∈ N is

denote a∗ and is called the successor of a.

2. The successors form a proper subset of N .

3. (Axioms of induction ): Let S be any subset of N which contains a non-

successor and such that a ∈ S =⇒ a∗ ∈ S. Then S = N .
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The first principle of Mathematical Induction

Let Tn be a statement concerning natural members n.Assuming that T1 is

true and that the truth of Tr implies the truth of Tr∗ ,then Tn is true for every

n ∈ N .

Proof

Suppose S is the subset of elements r ∈ N for which Tr is true.Then 1 ∈ S

and t ∈ S =⇒ t∗ ∈ S.So by the induction axioms S = N .Hence the result.

Definition:

(a). Define ′+′ : N ×N −→ N such that for m,n ∈ N,mn satisfies

1. m + 1 = m∗

2. m + n∗ = (m + n)∗ (b). ′.′ : N × N −→ N such that for m, n ∈ N,m, n

satisfies

1. m.1 = n

2. m.n∗ = m.n + m

Theorem: The following laws are satisfied by the (+) and (.) defined on N .

For all m,n, q ∈ N ,we have

1. m + n = n + m; mn = nm (Commutative law)

2. m + (n + q) = (m + n) + q; m(nq) = (mn)q (associative law)

3. m + q = n + q =⇒ m = n; mq = nq =⇒ m = n (cancelation law)

4. m.(n + p) = m.n + m.p (distributive law)

Thus (N, +), (N, .) are commutative semi groups.

proof.

15



2. Let m,n be fixed natural numbers and Tq the assertion that m+(n+q) =

(m + n) + q for all q ∈ N .Now T1 is true by the definition above,since

m + (n + 1) = m + n∗ = (m + n)∗ = (m + n) + 1

We now assume that Tr is true and show that Tr∗ holds i.e

m + (n + r)∗ = (m + n) + r∗.Now by the definition above (a-(2))

m + (n + r∗) = m + (n + r)∗ = (m + (n + r))∗ and also

(m+n)+ r∗ = ((m+n)+ r)∗ so that the truth of Tr implies the truth of Tr∗

So, Tr is true for all n ∈ N .

Example:

17 divides (3× 52n+1 + 23n+1) for any n ∈ N .

proof

let Tn be the statement that 17 divides 3×52n+1 +23n=1. Obviously T1 holds

since

3× 53 + 24 = 52 × 17− 2× 17 = 23× 17

Now assume Tr holds .We prove that Tr+1 holds

3× 52(r+1)+1 + 23(r+1)+1

= 52(3× 52r+1 + 23r+1)− 22r+1(52 − 8)

= 52(3× 52r+1 + 23r+1)− 22r+1)× 17

Since Tr holds,17/(3× 52r=1 + 23r+1) and so Tr+1 holds.

Second principle of Mathematical induction

Let Tr be a statement about a natural number r,if for each r,the truth of Tq
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for all q < r implies the truth of Tr,then Tn is true for all n.

proof

Let S be the set of natural numbers,such that Ts is not true.If S 6= φ,then by

the well-ordering principle (every non-empty subset of N has a first or least

element is known as well-ordering principle of N) for N ,S has a least element

r,say Tr is not true but Ts is true for all s < r,contradicting our induction

hypothesis. So S = φ. So Tn is true for all n ∈ N .

Integers

Definition: Consider the set N×N ,the cartesian product of N by itself.

Define a relation on N ×N by (a, b) ∼ (c, d) if and only if a + d = b + c

Definition: The set I of equivalence classes [a, b] of relation ∼ defined above

is called the set of integers.

Positive integers

N can be identified with a subset of I as follows:

Define a mapping φ : (N, +) −→ (I, +) by n −→ [n∗, 1].

φ is well=defined since a = b =⇒ a + 1 = b + 1 i.e [a∗, 1] = [b∗, 1].

φ is injective since [a∗, 1] = [b∗, 1] =⇒ a = b. So φ is an injective homomor-

phism N −→ I. The elements in the image of N under φ are called positive

integers.
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The Zero integers

For any a, b ∈ N ,[a, a] = [b, b] and [a, b] = [c, b] if and only if c = a.Also

for any a, c, d ∈ N, [a, a] + [c, d] = [c, d] + [a, a] = [c, d].hence [a, a] for any

n ∈ N ,the zero integer denoted by 0 i.e [a, a] for any a ∈ N is the identity

element of (I, +).

Negative integers

Let I be the set of all [a, b] ∈ I such that a < b. Now for a, b ∈ N, [a, b] +

[b, a] = [a + b, b + a] = [r, r] = 0 for any r ∈ N . Thus [b, a] is the additive

inverse of [a, b].We denote this element by −[a, b].

Definition: Let n ∈ I. The absolute values of a written |a| is defined by

|a| = {a if a≥0
a if a<0

Thus |a| = 0 if and only if a = 0 and |a| ∈ T= if a 6= 0.The following laws

holds, for a, b ∈ I.

1. −|a| ≤ a ≤ |a| any a ∈ I

2. |ab| = |a||b|
3. |a| − |b| ≤ |a + b| ≤ |a|+ |b|
4. |a| − |b| ≤ |a− b| ≤ |a|+ |b|.

Divisibility and Primes
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Definition: Let b be an integer.An integral divisor or factor of b is an integer

a such that b = ac for some integer c. b is also said to be divisible by a or an

integral multiple of a. We write a|b if a divides b.If a|b and 0 < a < b,then a

is called a proper divisor of b.

Examples

4|12,

−5|25

1| all (integer)

Theorem: If

1. a|b,then a|bc for any integer c

2. If a|c then a|bx + cy for any integers x, y.

3. If a|b and b|a,then a = ±b

4. If a|b and a > 0, b > 0 then a ≤ b.

proof

2. a|b, a|c =⇒ b = ar and c = as for some r, s ∈ Z, bx + cy = arx + asy =

a(rx + ry)

So a|(bx + cy)

Definition: An integer p such that |p| > 1 is called a prime or a prime

number if the only divisor of p are ±1 and ±p.

p > 1 is a prime if there is no divisor d of p such that 1 < d < p.An integer

a which is not a prime is said to be composite.

Example
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1. 5, 7, 13 are primes

2. 24 = 8× 3 is composite.

Theorem: (Division Algorithm)

For any integers a, b, b > 0 there exist unique integers q, r such that a =

bq + r, 0 ≤ r ≤ b

Proof.

Consider the set S = {a − bx|x ∈ Z and a − bx ≥ 0}. S 6= φ since for

instance either a− b|a| or a + b|a| ∈ S. By definition of S,either 0 ∈ S, in

which case 0 is the least element of S or all elements in S are in N in which

case S has to contain a least element by well-ordering principle for N .In any

case,S must contain a least element r ≥ 0. Now,by definition of S, r = a−bq

for some q ∈ Z and so,a = bq + r,Since r ≥ 0,we only have to show r < b.

Suppose r ≥ b,then r−b = a = a−bq−b = a−b(q+1) ≥ 0.However,a−bq−b <

a − bq,contrary our choice of q such that r is the least element in S. So

0 ≤ r < b.

We now show that q, r are unique.Suppose a = bq + r = bq′ + r′ where

0 ≤ r < b and 0 ≤ r′ < b.Then b(q′ − q) = r − r′. So b|(r − r′). But

|r − r′| < |b|. So r − r′ = 0 i.e r = r′.Hence q = q′ also.

Definition: In the expression a = bq = r, q is called the quotient and r the

remainder.

Definition: Let a, b be two integers.A common divisor of a and b is an in-

teger d such that d|a and d|b.Suppose that every common divisor of a and b
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also divides d,then d is called the greatest common divisor or highest com-

mon factor of a and b written (g.c.d) or (h.c.f) respectively.

We also write d = (a, b). observe that if d, d′ are two gcd’s of a, b,then

d′ = ±d.Therefore a g.c.d of two integers is a non-negative integer .

If (a, b) = 1,we say that a and b are relatively prime.

Examples:

1. (18, 42) = 6

2. (15, 7) = 1.so that 15 and 7 are relatively prime.

Theorem: If a, b be two non-zero integers,then d = (a, b) exists.Moreover

d = ua + vb for some integers u, v.In general if d = (a1, ..., an) is the h.c.f of

n non-zero integers {ai},then d =
∑n

i=1 xia− i for some integers xi ∈ Z.

proof.

Let S = {xa+yb|x, y ∈ Z}. Then S contains a set T of positive integers and

by well-ordering principles T has a least element d = ua + vb,say for some

belongs to Z. Now a = qd + r for some integers q, r where 0 ≤ r < d. So

r = a− qd = (1− qu)a + (−qv)b, so that r ∈ S.Hence r = 0 and so a|a.

Similarly it can be shown that d|b.Now suppose any other integer c,say ,di-

vides both a and d. Then c|ua and c|vb,so that c|(ua + vb) i.e c|d. Therefore

d = ua + vb is the h.c.f of a and b.

Example

1. Find d = (1824, 760)

Solution
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1824 = 760× 2 + 304

760 = 304× 2 + 152

304 = 152× 2

Thus d = (1824, 760) = 152

2. Find integers u, v such that d = ua + vb in the example above.

Solution

152 = 760− 304× 2

= 769− (1824− 760× 2)2

= 760× 5− 1824× 2

= 5b− 2a

where a = 1824, b = 760

So u = −2, v = 5

Theorem (**)

1. (ca, cb) = c(a, b) for any positive integer c

2. If t|a, t|b and t > 0,then (a
t
, b

t
) = 1

t
(a, b)

If d = (a, b) then (a
d
, b

d
) = 1

3. (b, a) = (a,−b) = (a, b + at) for any t ∈ Z.

Theorem (***)

If a, b, c are integers and c|ab, (b, c) = 1, then c|a.

Corollary:

Let p be a prime and {a−1, ..., an} a set of n integers.If p divides a1a2...an,then

p divides at least one of the ai.
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Theorem: Unique factorization theorem or fundamental theorem of Arith-

metic:

Every positive integer n > 1 can be expressed as a positive prime uniquely,except

for the order of prime factors.

proof

We use the second principle of induction.Let Tn be the statement that a given

integer n > 1 can be expressed as a product of positive primes.

If n is a prime p,then the theorem holds since p is itself a product with only

one factor .Otherwise n is composite and therefore has the form n = ab where

a < n, b < n,Assume that Tr is true for r < n,then a = p1, ...,u, say, and

b = q1, ..., qv So n = ab = P1, ...puq1, ..., qv.Thus Tn is true.

We now prove uniqueness. Suppose n = P1, ...pk = q1, ..., qj are two prime

factorizations of n.

Since P1|n,then P1|(q1, ..., qj) and by the corollary above,P1|qj for some j.Since

both p1, qj are primes,we have P1 = qj.So by cancelation law,we can cancel

out P1, qj from both sides to have P2, ..., pk = p1q2...qj−1qj+1...q1.

If we repeat the process successively with p2, p3, ., .., pk the L.H.S involving

the Pi will become 1 and so also with the R.H.S.Hence l = m and every Pi

is equal to some qj.

Corollary: Every integer n > 1 can be written in the form n = P x1
1 ...P xi

i

where Pi’s are distinct primes and the {ai} are positive integers ≥ 1.

Definition: Let a1, ..., an be non-zero integers.An integer b is called a com-
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mon multiple of the {ai} if ai|b for i = 1, 2, ..., n. b is called the least common

multiple (l.c.m) of the {ai} if b is a common multiple of the {ai} and given

any other common multiple c of the {ai},then b|c.We denote the l.c.m of the

set {ai}, i = 1, 2, ..., m by [a1, ..., am].

For example

l.c.m of 6 and 15 is 30.

Theorem: There are finitely many primes.

Proof.

Suppose there were k of them, say p1, ..., pk.Consider the integer 1+p1...pk =

s.Then Pi 6= s for i = 1, 2, ..., k. So if a prime q divides s, q must be distinct

from {p− i}.Now s is either a prime,in which case it is distinct from the pi,or

it is composite, in which case it has a prime factor distinct from the }p− i}.
In either case,we have a prime,different from the {pi},contradicting the fact

that there were k of them.So their number must be infinite.

Congruencies

Definition: The equivalence classes of R are called the residue classes of

R modulo n.If b ∈ [a], b is called a residue of a modulo n or b is said to be

congruent to a modulo n.

A set T = {a1, ..., an} of integers is called a complete residue system modulo

n if T contains exactly one integer each from the residue classes modulo n. i.e

given any x ∈ Z,there exists one and only one ai such that x ≡ ai(modulon).
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Let m be some fixed positive integer.Let a, b ∈ Z;then we say that a is con-

gruent to b (modulo m) if and only if a− b is divisible by m.i.e for k ∈ Z we

have a− b = km.

Example

1. {0, 1, 2, 3, ..., n− 1} is a complete residue system modn

2. For n = 7, {0, 1, 2, 3, 4, 5, 6}, {14, 15, 16, ..., 20} are complete residue sys-

tems mod7.

Theorem: Let a, b, c, d, n be integers.

1. If a ≡ b(modn) and c ≡ d(modn0,then ra + tc ≡ rb + td(modn) where r, t

are integers.

2. If a ≡ b(modn) and c ≡ d(modn),then ac ≡ bd(modn)

3. If a ≡ b(modn), c/n and c > 0,then a ≡ b(modc)

4. Let f(x) be a polynomial in Z[x],suppose that a ≡ b(modn),then f(a) ≡
f(b)(modn)

5. Suppose that n1, ..., ns are integers,then a ≡ b(modni) for each i,if and

only if a ≡ b(mod[n1, ..., ns])

Theorem: Let a, c, d, n be integers,d = (c, n).Then ca ≡ cb(modn) if and only

if a ≡ b(modn
d
).Thus if d = 1,then a ≡ b(modn).

Definition: A reduced residue modulo n is a set V = {a1, ...as} of integers

such that (ai, n) = 1 for each i, ai does not congruent to aj(modn) for i 6= j

and such that every integer y with (y, n) = 1 is congruent modulo n to some

members ai of set V .
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Note that if a ≡ b(modn),then (a, n) ≡ (b, n).

Binary operation

The rule by which we combine any two elements of a set to produce a third

element is what is we shall call a law of composition or an operation.If any

law of composition (*) is such that for all a, b ∈ S, a ∗ b defines a unique

element c ∈ S, we say that the law of composition (*) is closed and (*) is an

operation.Clearly ∩,∪,×, + are all binary operations which we are familiar

with.

Rules of binary operation

1. Closure:

Let S be a set.An operation * on S is a binary operation if for every

pair of elements a, b ∈ S.a ∗ b is in S.Then S is closed with respect to

the binary operation *.

2. Commutative property:

Let (S, ∗) be a set S together with a binary operation * on S. The bi-

nary operation * on S is said to satisfy the commutative law or property

if for every pair a, b in S,a ∗ b = b ∗ a

3. Associative property:

Let (S, ∗) be a set S together with a binary operation * on S.The bi-

nary operation * on S is said to satisfy the associative law or property
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if for every triple a, b, c ∈ S, (a ∗ b) ∗ c = a ∗ (b ∗ c)

Example:

1. (a) i (N, +), (Z, +), (R, +) is closed with respect to addition

ii Addition on N, Z, R is commutative

iii Addition on N, Z,R is associative

(b) i (N,×), (Z,×), (R,×) is closed with respect to multiplication

ii Multiplication on N is commutative

iii Multiplication on N is associative

(c) (N,−), (Z,−), (R,−)

(i) N is not closed with respect to subtraction

e.g 2, 3 ∈ N but 2− 3 = −1 /∈ N

Z is closed with respect to subtraction

R is closed with respect to subtraction

ii Subtraction on N is not commutative

e.g 2, 3 ∈ N but 1 = 3− 2 6= 2− 3 = −1

Likewise subtraction on Z,R is not commutative.

iii Subtraction on N,Z,R is not associative

(d) (Z∗,÷), Z∗ − Z {0}, (R∗,÷), R∗ = R {0}
i Z∗, R∗ is not closed with respect to division.

ii Division on Z∗, R∗ is not commutative.

e.g 2, 3 ∈ Z∗, R∗ but 2÷ 3 6= 3÷ 2

iii Division on Z∗, R∗ is not associative
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e.g 2, 3, 5 ∈ Z∗, R∗ but 2
15

= (2÷ 3)÷ 5 6= 2÷ (3÷ 5) = 10
3

Example 2:

A binary operation
⊗

on the set R of real numbers is defined as

a
⊗

b = a + b− 3ab

for every pair a, b ∈ R,show that

(a) the operation
⊗

on R is commutative

(b) the operation
⊗

on R is associative. Solution

(a) Show that a
⊗

b = b
⊗

a for every pair a, b ∈ R

L.H.S = a
⊗

b = a + b− 3ab = b + a− 3ba = b
⊗

a = R.H.S

Hence
⊗

on R is commutative.

(b) Show that (a
⊗

b)
⊗

c = a
⊗

(b
⊗

c) for every a, b, c ∈ R.

L.H.S = (a + b− 3ab)
⊗

c

= (a + b− 3ab) + c− 3(a + b− 3ab)c

= a + b + c− 3ab− 3ac− 3bc + 9abc

R.H.S = a
⊗

(b + c− 3bc)

= a + (b + c− 3bc)− 3a(b + c− 3bc)

= a + b + c− 3ab− 3ac− 3bc + 9abc

= L.H.S

Hence
⊗

on R is associative.
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4. Identity:

Let (S, ∗) be a set S together with a binary operation * on S.If there

is an element e ∈ S such that

e ∗ a = a ∗ e = a

,for all a ∈ S,then e is called an identity on set S with respect to the

binary operation *

5. Inverses:

Let (S, ∗) be a set S together with a binary operation * on S,having

an identity e.If a and b are elements in S such that

a ∗ b = b ∗ a = e

then a is called the inverse of b and b is called the inverse of a in

(S, ∗).Denote the inverse of a by a−1.Thus b = a−1 and a = b−1.

Example:

In (R,
⊗

) where a
⊗

b = a + b− 3ab for all a, b ∈ R determine:

(a) an identity if it exists,

(b) numbers which have an inverses.

Solution

(a) Solve for e,the equation a
⊗

e = a

=⇒ a + e− 3ae = a
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=⇒ (1− 3a)e = 0 =⇒ e = 0

Hence 0 is the identity in (R,
⊗

)

(b) Given a,solve for b,the equation a
⊗

b = 0

=⇒ a + b− 3ab = 0

=⇒ b(1− 3a) = −a =⇒ b(3a− 1) = a

=⇒ b = a
3a−1

,if a 6= 1
3

=⇒ a−1 = a
3a−1

,if a 6= 1
3

Hence all numbers,except 1
3
,have inverses in (R,

⊗
)

6. Distributive law:

Let (S, ∗, o) be a set S together with two binary operations * and o on

S.If for every a, b, c ∈ S,

a ∗ (boc) = (a ∗ b)o(a ∗ c)

then we say that ∗ is left distributive over o.

If (aob) ∗ c = (a ∗ c)o(b ∗ c) then we say that ∗ is a right distributive

over o.

If ∗ is both left distributive and right distributive over o,then ∗ is

distributive over o.

Example:

Consider (R.∗, ⊗
) where a ∗ b = ab and a

⊗
b = a + b + ab for all

a, b ∈ R.

(a) Is * distributive over
⊗

?

30



(b) Is
⊗

distributive over *?

Solution

(Excersise)

31


