1 Quadratic Equations

1.1 Roots of a quadratic equation

The general form of a quadratic equation is

$$
\begin{equation*}
a x^{2}+b x+c=0 \tag{1.1}
\end{equation*}
$$

where a, b, c are constants and $a \neq 0$.
The roots of the quadratic equation (1.1) is given by

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}=\frac{-b \pm \sqrt{D}}{2 a}
$$

where $D=b^{2}-4 a c$.

The nature of the roots of a quadratic equation is determined by the value of D.
(i) If $D>0$, the equation will have two different real roots.
(ii) If $D=0$, the equation has two equal roots.
(iii) If $D<0$, the equation has complex roots.

1.2 Sum and product of the roots

Let α and β be the roots of the quadratic equation (1.1), then it is equivalent to the equation

$$
(x-\alpha)(x-\beta)=0
$$

or

$$
\begin{equation*}
x^{2}-(\alpha+\beta) x+\alpha \beta=0 \tag{1.2}
\end{equation*}
$$

Dividing (1.1) through by a, we have

$$
\begin{equation*}
x^{2}+\frac{b}{a} x+\frac{c}{a}=0 \tag{1.3}
\end{equation*}
$$

Comparing (1.2) and (1.3), we obtain

$$
\begin{equation*}
\alpha+\beta=-\frac{b}{a}, \quad \alpha \beta=\frac{c}{a} \tag{1.4}
\end{equation*}
$$

Using (1.4), we can find the sum and the product of the roots directly from the coefficients in the quadratic equation (1.1).

Example 1. If the roots of $x^{2}-x+1=0$ are α and β, find $\alpha+\beta$ and $\alpha \beta$.
Comparing the given equation with (1.1), $a=1, b=-1, c=1$.
Hence

$$
\alpha+\beta=1
$$

and

$$
\alpha \beta=1
$$

Example 2. Construct an equation with roots $\sqrt{5}+2, \sqrt{5}-2$.
Let $\alpha=\sqrt{5}+2$ and $\beta=\sqrt{5}-2$.
Then

$$
\begin{aligned}
\alpha+\beta & =\sqrt{5}+2+\sqrt{5}-2=2 \sqrt{5} \\
\alpha \beta & =(\sqrt{5}+2)(\sqrt{5}-2)=1
\end{aligned}
$$

Using (1.2), the equation is

$$
x^{2}-2 \sqrt{5} x+1=0
$$

Example 3. If α and β are the roots of the equation $a x^{2}+b x+c=0$, obtain in terms of a, b and c the values of (i) $\frac{1}{\alpha}+\frac{1}{\beta}$ (ii) $\alpha-\beta$.

We express (i) and (ii) in terms of $\alpha+\beta$ and $\alpha \beta$.
(i) $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{\alpha+\beta}{\alpha \beta}=\frac{-\frac{b}{a}}{\frac{c}{a}}=-\frac{b}{c}$.
(ii) $\alpha-\beta= \pm \sqrt{(\alpha+\beta)^{2}-4 \alpha \beta}= \pm \sqrt{\left(-\frac{b}{c}\right)^{2}-4 \frac{c}{a}}= \pm \sqrt{\frac{b^{2}}{a^{2}}-\frac{4 c}{a}}$

Hence, $\alpha-\beta= \pm \frac{1}{a} \sqrt{b^{2}-4 a c}$.
Example 4. If α, β are the roots of the equation $3 x^{2}-x-5=0$, form the equation whose roots are $2 \alpha-\frac{1}{\beta}, 2 \beta-\frac{1}{\alpha}$.

From the given equation, $a=3, b=-1$ and $c=-5$. Thus,

$$
\alpha+\beta=\frac{1}{3}, \quad \alpha \beta=-\frac{5}{3} .
$$

Given the roots $2 \alpha-\frac{1}{\beta}$ and $2 \beta-\frac{1}{\alpha}$,

$$
\begin{aligned}
2 \alpha-\frac{1}{\beta}+2 \beta-\frac{1}{\alpha} & =2(\alpha+\beta)-\left(\frac{\alpha+\beta}{\alpha \beta}\right) \\
& =2\left(\frac{1}{3}\right)-\left(+\frac{1}{3} \times-\frac{3}{5}\right) \\
& =\frac{2}{3}+\frac{1}{5} \\
& =\frac{10+3}{15} \\
& =\frac{13}{15} \\
\left(2 \alpha-\frac{1}{\beta}\right)\left(2 \beta-\frac{1}{\alpha}\right) & =4 \alpha \beta+\frac{1}{\alpha \beta}-4 \\
& =-\frac{169}{15}
\end{aligned}
$$

Therefore the required equation is

$$
x^{2}-\frac{13}{15} x-\frac{169}{15}=0
$$

that is

$$
15 x^{2}-13 x-169=0
$$

Exercise: One root of the equation $2 x^{2}+b x+c=0$ is three times the other root. Show that $3 b^{2}=32 c$.

2 Cubic Equations

2.1 Introduction

The general form of a cubic equation is

$$
\begin{equation*}
a x^{3}+b x^{2}+c x+d=0 \tag{2.1}
\end{equation*}
$$

where a, b, c and d are constants, $a \neq 0$.
Equation (2.1) is also expressible as

$$
\begin{equation*}
x^{3}+\frac{b}{a} x^{2}+\frac{c}{a} x+\frac{d}{a}=0 \tag{2.2}
\end{equation*}
$$

If α, β and γ are roots of the cubic equations (2.1), (2.2), then

$$
\begin{aligned}
x^{3}+\frac{b}{a} x^{2}+\frac{c}{a} x+\frac{d}{a} & \equiv(x-\alpha)(x-\beta)(x-\gamma) \\
& =x^{3}-(\alpha+\beta+\gamma) x^{2}+(\alpha \beta+\beta \gamma+\gamma \alpha) x-\alpha \beta \gamma
\end{aligned}
$$

Thus comparing coefficients,

$$
\begin{gathered}
\alpha+\beta+\gamma=-\frac{b}{a} \\
\alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a} \\
\alpha \beta \gamma=-\frac{d}{a} .
\end{gathered}
$$

Thus the equation whose roots are α, β, γ is

$$
\begin{equation*}
x^{3}-(\alpha+\beta+\gamma) x^{2}+(\alpha \beta+\beta \gamma+\gamma \alpha) x-\alpha \beta \gamma=0 \tag{2.3}
\end{equation*}
$$

2.2 Useful identities and examples

$$
\begin{gathered}
\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha) \\
\alpha^{3}+\beta^{3}+\gamma^{3}=(\alpha+\beta+\gamma)^{3}-3(\alpha+\beta+\gamma)(\alpha \beta+\beta \gamma+\gamma \alpha)+3 \alpha \beta \gamma
\end{gathered}
$$

Example 2.1. If α, β and γ are the roots $x^{3}-7 x+1=0$, find the equation whose roots are $\alpha^{2}, \beta^{2}, \gamma^{2}$.

Solution: From the given equation

$$
\begin{gathered}
\alpha+\beta+\gamma=0 \\
\alpha \beta+\beta \gamma+\gamma \alpha=-7 \\
\alpha \beta \gamma=1
\end{gathered}
$$

Thus,

$$
\begin{aligned}
\alpha^{2}+\beta^{2}+\gamma^{2} & =(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\gamma \alpha) \\
& =0-2(-7) \\
& =14
\end{aligned}
$$

$\alpha^{2} \beta^{2}+\beta^{2} \gamma^{2}+\gamma^{2} \alpha^{2}=(\alpha \beta+\beta \gamma+\gamma \alpha)^{2}-2\left(\alpha \beta^{2} \gamma+\alpha^{2} \beta \gamma+\alpha \beta \gamma^{2}\right)$ $=(-7)^{2}-2 \alpha \beta \gamma(\alpha+\beta+\gamma)$

$$
=49-2(1)(0)
$$

$$
=49
$$

$$
\alpha^{2} \beta^{2} \gamma^{2}=(\alpha \beta \gamma)^{2}=1^{2}=1
$$

Hence, the required equation is

$$
x^{3}-14 x^{2}+49-1=0
$$

Exercise

1. If α, β and γ are the roots of $x^{3}-3 x+1=0$, find the value of $\alpha^{3}+\beta^{3}+\gamma^{3}$.
2. If α, β and γ are the roots of the equation $a x^{3}+b x^{2}+c x+d=0$, where $a \neq 0$, show that

$$
(\alpha \beta)^{2}+(\beta \gamma)^{2}+(\gamma \alpha)^{2}=\frac{\left(c^{2}-2 b d\right)}{a^{2}} .
$$

3 Simultaneous Equations

3.1 Simultaneous linear equations in two variables

The general form of simultaneous linear equations in two variables is

$$
a x+b y=c
$$

$$
d x+e y=f
$$

where x, y are variables, a, b, c, d, e, f are constants.

Various methods exist for solving these equations for x and y. These are:
(i) elimination method
(ii) substitution method
(iii) matrix method and
(iv) graphical method.

The reader is encouraged to find out.

3.2 Simultaneous equations, atleast one non-linear

The general form of simultaneous equations in which one is linear one is quadratic is
$a x+b x=c$
$d x^{2}+e x y+f y^{2}=g$
where x, y are variables, and a, b, c, d, e, f, g are arbitrary constants.
Example: Solve the simultaneous equations for x and y.

$$
\begin{align*}
x^{2}+y^{2} & =25 \tag{1}\\
x+3 y & =5 \tag{2}
\end{align*}
$$

From (2), $x=5-3 y$.
Substitute for x in (2),
$(5-3 y)^{2}+y^{2}=25$
$y^{2}-3 y=0$
$y(y-3)=0$
either $y=0$ or $y=3$.
Hence, $x=5$ when $y=0$ or $x=-4$ when $y=3$.

