UNIVERSITY OF AGRICULTURE, ABEOKUTA,DEPARTMENT OF MATHEMATICS
 MTS 101-20011/2012 First Semester Lecture note; COURSE TITLE:Algebra TOPIC:COMPLEX ANALYSIS

Complex Numbers

In order to solve equations such as

$$
x^{2}+1=0
$$

or

$$
x^{2}+2 x+8=0
$$

which have no root within the system of real numbers, the number system was extended further to the larger system of complex numbers.

By definition, a complex number is any number x that can be expressed in the form $x=a+i b$ where a and b are real and $i^{2}=-1$.The symbol \mathcal{C} is used to denote the system of complex numbers. a is referred to as the real part and b the imaginary part of $a+i b$. Note that the complex numbers include all real numbers. The real numbers can be regarded as complex numbers for which b is zero.

In \mathcal{C}, the solution of the equation

$$
x^{2}+1=0
$$

is then $x= \pm \sqrt{-1}$ i.e $x= \pm i$

Algebra of complex Numbers

Let $x=a+i b$ and $y=c+i d$ be two complex numbers:
Equality of complex numbers: x and y are equal if their real and imaginary parts are equal i.e $a=c$ and $b=d$

Addition and subtraction of two complex numbers:

The sum of x and y is defined as a complex number $z=x+y=a+i b+c+i d=$
$a+c+i(b+d)$
Also,
$w=x-y=a+i b-(c+i d)=a-c+i(b-d)$
Multiplication:
$x \times y=(a+i b) \times(c+i d)=a c+i^{2} b d+i b c+i a d$
$=a c-d b+i(b c+a d)$
Division:

$$
\begin{aligned}
& \frac{x}{y}=\frac{a+i b}{c+i d}=\frac{(a+i b)(c-i d)}{c+i d)(c-i d)} \\
&=\frac{(a c+b d)+(b c-a d) i}{c^{2}+d^{2}} \\
&=\frac{a c+b d}{c^{2}+d^{2}}+\frac{b c-a d}{c^{2}+d^{2}} i
\end{aligned}
$$

Conjugate complex number:

$\bar{x}=a-i b$ is called the conjugate of x.
we have

$$
\begin{gathered}
x+\bar{x}=2 a \\
x-\bar{x}=2 i b \\
x \bar{x}=a^{2}+b^{2}
\end{gathered}
$$

Example: Express in the form $a+i b$

1. $(2+4 i)+(5-2 i)=7+2 i$
2. $(1-8 i)-(7+2 i)=(1-7)+(-8-2) i=-6-10 i$
3. $\frac{2+3 i}{3+2 i}=\frac{2+3 i}{3+2 i} \times \frac{3-2 i}{3-2 i}$

$$
\begin{gathered}
=\frac{6+6}{9+4}+\frac{9-4}{9+4} i \\
\frac{12}{13}+\frac{5}{13} i
\end{gathered}
$$

4. $(1+3 i)^{-1}=\frac{1}{1+3 i}=\frac{1}{1+3 i} \times \frac{1-3 i}{1-3 i}=\frac{1}{10}-\frac{3}{10} i$
5. $\left(\frac{5(1+i)}{1+3 i}\right)^{2}=\left(\frac{5+5 i}{1+3 i}\right)\left(\frac{5+5 i}{1+3 i}\right)=3-4 i$
6. $\frac{2+3 i}{i(4-5 i}+\frac{2}{i}=\frac{2 i-3+2(4 i+5)}{-4+5 i}$

$$
=\frac{22}{41}-\frac{75}{41} i
$$

Note:

$$
i^{4}=i \times i^{2}=-i
$$

$$
\begin{gathered}
i^{4}=1 \\
i^{5}=i, i^{6}=-1, i^{7}=-i
\end{gathered}
$$

and so on.

Example:

Find the solutions of the equation $4 x^{2}+5 x+2=0$ in the form $\alpha+i \beta$.
Solution:
$x=\frac{-5 \pm \sqrt{-7}}{8}$

$$
=-\frac{5}{8}+i \frac{\sqrt{7}}{8}
$$

or

$$
-\frac{5}{8}-i \frac{\sqrt{7}}{8}
$$

Example:

Factorize $a^{2}+3 b^{2}$ as a product of two complex numbers.
Solution:
$a^{2}+3 b^{2}=a^{2}+(b \sqrt{3})^{2}$
$=(a+i b \sqrt{3})(a-i b \sqrt{3})$

The Argand Diagram

A complex number of the form $z=x+i y$ is specified by the two real numbers x and y.The complex number z may then be made to correspond to a point P with ordered pair of values (x, y) as the co-ordinates of the point P on the
plane.
r is known as modulus of the complex number z and is written as $|z|$ or $\bmod z$ $r=|z|=|x+i y|=\sqrt{x^{2}+y^{2}}$
$z \bar{z}=(x+i y)(x-i y)=x^{2}+y^{2}=|z|^{2}$
The diagram which represents complex numbers is known as Argand diagram or Argand plane or complex plane.

The angle α between the line $O P$ from the origin to the number and the x-axis is called the argument or amplitudes of the number z.

From the diagram,

$$
\begin{gathered}
x=r \cos \alpha, y=r \sin \alpha \\
x^{2}+y^{2}=r^{2}, \frac{y}{x}=\tan \alpha \\
\alpha=\arg z=\tan ^{-1} \frac{y}{x}
\end{gathered}
$$

Since on the circle, $\alpha+2 \Pi$ for any integer n,represent the same angle, it follows that the argument of a complex number is not unique such that $-\Pi<\operatorname{Arg}(z) \leq \Pi$.

The complex number z can therefore be written as $z=x+i y=r \cos \alpha+$ irsin $\alpha=r(\cos \alpha+i \sin \alpha),-\Pi<\alpha<\Pi$.
which is called the modulus-argument form or polar form or trigom=nometric form of the complex number z.

Let $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $Z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$ be two complex numbers. Then,

$$
\begin{align*}
& z_{1} z_{2}=r_{1} r_{2}\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
& \quad=r_{1} r_{2}\left[\left(\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right)+i\left(\sin \theta_{1} \cos \theta_{2}+\cos \theta_{1} \sin \theta_{2}\right)\right] \\
& \quad=r_{1} r_{2}\left[\cos \left(\theta_{1}+\theta_{2}\right)+i \sin \left(\theta_{1}+\theta_{2}\right)\right] \tag{*}
\end{align*}
$$

Therefore

$$
\left|z_{1} z_{2}\right|=r_{1} r_{2}=\left|z_{1}\right|\left|z_{2}\right|
$$

and

$$
\arg \left(z_{1} z_{2}\right)=\theta_{1} \theta_{2}=\arg z_{1}+\arg z_{2}
$$

Thus when complex numbers are multiplied,their moduli are multiplied and their arguments are added.Also,

$$
\begin{gathered}
\frac{z_{1}}{z_{2}}=\frac{r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right.}{r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)} \\
\frac{r_{1}}{r_{2}}\left[\cos \left(\theta_{1}-\theta_{2}\right)+i \sin \left(\theta_{1}-\theta_{2}\right)\right] \\
\left|\frac{z_{1}}{z_{2}}\right|=\frac{r_{1}}{r_{2}}=\frac{\left|z_{1}\right|}{\left|z_{2}\right|} \\
\arg \left(\frac{z_{1}}{z_{2}}\right)=\theta_{1}-\theta_{2}=\arg z_{1}-\arg z_{2}
\end{gathered}
$$

Example: Find the moduli and the arguments of the following complex numbers.

1. $7 i-2$

Solution:

$$
\begin{aligned}
& |7 i-2|=\sqrt{7^{2}+2^{2}}=\sqrt{53}=7.28 \\
& \arg (7 i-2)=\tan ^{-1}\left(\frac{7}{-2}\right)=105.9^{\circ}
\end{aligned}
$$

2. $(7 i-2)(3+4 i)$

Solution:
$|(7 i-2)(3+4 i)|=|13 i-34|$
$=\sqrt{34^{2}+13^{2}}=\sqrt{1325}=36.40$
$\arg \left((7 i-2)(3+4 i)=\arg (13 i-34)=\tan ^{-1}\left(\frac{-13}{34}\right)=159.1^{\circ}\right.$
3. $\frac{7 i-2}{3+4 i}$

Answer: $1.456,52.8^{\circ}$
4. $\left(\frac{7 i-2}{3+4 i}\right)^{2}$

Answer: 2, 12, 105. 6°
Example: Describe the locus of a complex number z which satisfies $|z-2|=$ $3|z+2 i|$.

Solution:
Put $z=x+i y$. Then
$|z-2|^{2}=9|z+2 i|^{2}$
$|(x-2)+i y|^{2}=9|x+i(y+2)|^{2}$
$(x-2)^{2}+y^{2}=9\left[x^{2}+(y+2)^{2}\right]$
$8 x^{2}+8 y^{2}+4 x+36 y+32=0$
$x^{2}+y^{2}+\frac{1}{2} x+\frac{9}{2} y+4=0$
$\left(x+\frac{1}{4}\right)^{2}+\left(y+\frac{9}{4}\right)^{2}=4+\left(\frac{1}{4}^{2}\right)+\left(\frac{9}{4}\right)^{2}=\frac{18}{16}$
Locus is a circle, with center $\left(-\frac{1}{4},-\frac{9}{4}\right)$ and radius $\frac{3}{4} \sqrt{2}$

De Moivre's Theorem

In general, if there are n complex numbers $z_{1}, z_{2}, \ldots, z_{n}$ with moduli $r_{1}, r_{2}, \ldots r_{n}$ and arguments $\theta_{1}, \theta_{2}, \ldots, \theta_{n}$ respectively, repeated application of equation $(*)$ yields

$$
z_{1} \cdot z_{2} \ldots z_{n}=r_{1} \ldots r_{n}\left[\cos \left(\theta_{1}+\theta_{2}+\ldots+\theta_{n}\right)+i \sin \left(\theta_{1}+\theta_{2}+\ldots+\theta_{n}\right)\right]
$$

In particular if

$$
\begin{aligned}
& z_{1}=z_{2}=\ldots=z_{n}=z \\
& r_{1}=r_{2}=\ldots=r_{n}=r
\end{aligned}
$$

and

$$
\left.\theta_{1}=\theta_{2}=\ldots=\theta_{n}=\theta \quad \text { say }\right)
$$

then we have

$$
z^{n}=r^{n}(\cos n \theta+i \sin n \theta)
$$

i.e

$$
\begin{gathered}
z^{n}=[r(\cos \theta+i \sin \theta)]^{n} \\
=r^{n}(\cos n \theta+i \sin n \theta) \\
\left|z^{n}\right|=|z|^{n}, \arg \left(z^{n}\right)=n \arg (z)
\end{gathered}
$$

In particular, if $r=1$ we get Demoivre's theorem

$$
(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin \theta
$$

for any positive integer n.
This result is also valid when n is any negative integer.Suppose n is a negative integer, say $-m$ where m is a positive integer.Then

$$
\begin{gathered}
(\cos \theta+i \sin \theta)^{-m}=\left(\frac{1}{\cos \theta+i \sin \theta}\right)^{m}=\frac{1}{(\cos \theta+i \sin \theta)^{m}} \\
(\cos m \theta+i \sin m \theta)^{-1}=\cos m \theta-i \sin m \theta \\
=\cos (-m) \theta+i \sin (-m) \theta
\end{gathered}
$$

which shows that Demoivre's theorem is valid when n is any negative integer. Example: Express $\cos 3 \theta$ and $\sin 3 \theta$ in terms of powers of $\cos \theta$ and $\sin \theta$ respectively.

Solution:
By Demoivre's theorem we have

$$
\begin{gathered}
\cos 3 \theta+i \sin 3 \theta=(\cos \theta+i \sin \theta)^{3} \\
=\cos ^{3} \theta+3 \cos ^{2} \theta(i \sin \theta)+3 \cos \theta(i \sin \theta)^{2}+(i \sin \theta)^{3} \\
=\cos ^{3} \theta-3 \sin ^{2} \theta \cos \theta+i\left(3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta\right)
\end{gathered}
$$

The real part of this expression then gives

$$
\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta
$$

But

$$
\sin ^{2} \theta=1-\cos ^{2} \theta
$$

Therefore

$$
\begin{gathered}
\cos 3 \theta=\cos ^{3} \theta-3 \cos \theta\left(1-\cos ^{2} \theta\right) \\
=\cos ^{3} \theta-3 \cos \theta+3 \cos ^{3} \theta \\
4 \cos ^{3} \theta-3 \cos \theta
\end{gathered}
$$

and the imaginary part gives

$$
\begin{aligned}
& \sin 3 \theta=3 \cos 62 \theta \sin \theta-\sin ^{3} \theta \\
& =3 \sin \theta\left(1-\sin ^{2} \theta\right)-\sin ^{3} \theta \\
& =3 \sin \theta-3 \sin ^{3} \theta-\sin ^{3} \theta \\
& =3 \sin \theta-4 \sin ^{3} \theta
\end{aligned}
$$

Example: Show that if $z=\cos \theta+i \sin \theta$ and m is a positive integer then $z^{m}+\frac{1}{z^{m}}=2 \cos m \theta$
Solution:
$z=\cos \theta+i \sin \theta$

$$
\begin{gathered}
z^{m}=(\cos \theta+i \sin \theta)^{m}=\cos m \theta+i \operatorname{sinm} \theta \quad(\text { Demoivre'stheorem })^{z^{-m}=\operatorname{cosm} \theta-i \operatorname{sinm} \theta} \\
z^{m}+z^{-m}=2 \cos m \theta
\end{gathered}
$$

Example:

$$
\begin{gathered}
\left(z+\frac{1}{z}\right)^{5}=z^{5}+5 z^{4} \cdot \frac{1}{z}+10 z^{3} \cdot \frac{1}{z^{2}}+10 z^{2} \cdot \frac{1}{z^{3}}+5 z \cdot \frac{1}{z^{4}}+\frac{1}{z^{5}} \\
=z^{5}+5 z^{3}+10 z+\frac{10}{z}+\frac{5}{z^{3}}+\frac{1}{z^{5}} \\
=\left(z+\frac{1}{z^{5}}\right)+5\left(z^{3}+\frac{1}{z^{3}}\right)+10\left(z+\frac{1}{z}\right) \\
=2 \cos 5 \theta+2 \times 5 \cos 3 \theta+2 \times 10 \cos \theta \\
=2 \cos 5 \theta+10 \cos 3 \theta+20 \cos \theta
\end{gathered}
$$

Example: Evaluate z^{8} where $z=1+i \sqrt{3}$
Solution:
Writing z in the modulus-argument form we have $r=|z|=\sqrt{4}=2$ and $\arg z=\tan ^{-1} \sqrt{3}=\frac{\Pi}{3}$

That is

$$
z=2\left(\cos \frac{\Pi}{3}+i \sin \frac{\Pi}{3}\right)
$$

Therefore

$$
z^{8}=2^{8}\left(\cos \frac{\Pi}{3}+i \sin \frac{\Pi}{3}\right)^{8}
$$

By De Moivre's Theorem this becomes

$$
\begin{aligned}
z^{8} & =2^{8}\left(\cos \frac{8 \Pi}{3}+i \sin \frac{8 \Pi}{3}\right) \\
& =256(-0.5+0.866 i) \\
& =-128+221.703 i
\end{aligned}
$$

Example: Factorize into linear factors $4 z^{2}+4(1+i) z+1+2 i$
Solution:

$$
4 z^{2}+4(1+i) z+1+2 i=4\left(z^{2}+(1+i) z+\frac{1}{4}(1+2 i)\right)
$$

First solve

$$
\begin{gathered}
z^{2}+(1+i) z+\frac{1}{4}(1+2 i)=0 \\
a=1, b=1+i, c=\frac{1}{4}(1+2 i) \\
z=\frac{-1-i \pm \sqrt{(1+i)^{2}-(1+2 i)}}{2} \\
\begin{array}{c}
\frac{-1-i \pm \sqrt{-1}}{2}=\frac{1}{2}(-1,-i \pm i) \\
=-\frac{1}{2}
\end{array}
\end{gathered}
$$

or

$$
\begin{gathered}
-\frac{1}{2}-i \\
\Longrightarrow \quad 4 z^{2}+\left(4(1+i) z+1+2 i=4\left(z+\frac{1}{2}\right)\left(z+\frac{1}{2}+i\right)\right.
\end{gathered}
$$

Roots of Complex Numbers

Let $z^{n}=\alpha, n$ a positive integer and α a complex number
Theorem: (Fundamental theorem of algebra)
Every polynomial of degree at least one with arbitrary numerical coefficients has at least one root which in the general sense is complex.

Consider (${ }^{* *}$), we have

$$
z^{n}=\alpha=r(\cos \theta+i \sin \theta)
$$

so that

$$
z=r_{o}\left(\cos \theta_{o}+i \sin \theta_{o}\right) \quad \text { provided } \quad \alpha \neq 0
$$

Then by De Moivre's theorem

$$
r_{o}^{n}\left(\cos n \theta_{o}+i \operatorname{sinn} \theta_{o}\right)=r(\cos \theta+i \sin \theta)
$$

That is

$$
z=\sqrt[n]{\alpha}, r_{o}^{n}=r, n \theta_{o}=\theta+2 k \Pi
$$

Thus r_{o} is the positive nth root of r and $\theta_{o}=\frac{\theta \pm 2 k \Pi}{n}$ has n values for $k=$ $0,1, \ldots, n-1$ all distinct,since increasing k by unity implies increasing the argument by $\frac{2 \Pi}{n}$.

The n distinct solutions of $\left({ }^{* *}\right)$ are given by
$(\alpha)^{\frac{1}{n}}=z=r^{\frac{1}{n}}\left(\cos \frac{\theta+2 k \Pi}{n}+i \sin \frac{\theta+2 k \Pi}{n}\right) \quad k=0,1, \ldots, n-1 \quad(* * *)$
which are n distinct values of $(\alpha)^{\frac{1}{n}}$

Roots of Unity

A particular example of $\left({ }^{* *}\right)$ is when $\alpha=1$, that is if $z^{n}=1, n$ is a positive integer. The roots of the equation are called nth roots of unity.Since
$1=\cos 0+i \sin 0$
then by $\left({ }^{* * *}\right)$, the nth roots of unity are given by

$$
1^{\frac{1}{n}}=\left(\cos \frac{2 k \Pi}{n}+i \sin \frac{2 k \Pi}{n}\right), k=0,1, \ldots, n-1
$$

Taking $k=1$, the root of unity being a complex number and denoted by w is given by

$$
w=\cos \frac{2 \Pi}{n}+i \sin \frac{2 \Pi}{n}
$$

Example: Find all the cube roots of -8
Solution:

$$
\begin{gathered}
\sqrt[3]{-8}=\sqrt[3]{8(\cos \Pi+i \sin \Pi)} \\
=\sqrt[3]{8}\left(\cos \frac{\Pi+2 k \Pi}{3}+i \sin \frac{\Pi+2 k \Pi}{3}\right.
\end{gathered}
$$

Therefore for

$$
\begin{gathered}
k=0, z_{0}=2\left(\cos \frac{\Pi}{3}+i \sin \frac{\Pi}{3}\right)=1+i \sqrt{3} \\
k=1, z_{1}=2(\cos \Pi+i \sin \Pi)=-2 \\
k=2, z_{2}=2\left(\cos \frac{5 \Pi}{3}+i \sin \frac{5 \Pi}{3}\right)=1-i \sqrt{3}
\end{gathered}
$$

Example: Solve $z^{4}+4 \sqrt{3}=4 i$
Solution:

$$
\begin{gathered}
z^{4}+4 \sqrt{3}=4 i \Longrightarrow \quad z^{4}=4 i-4 \sqrt{3} \\
\Longrightarrow \quad z^{4}=8\left(\cos \frac{5 \Pi}{6}+i \sin \frac{5 \pi}{6}\right)
\end{gathered}
$$

Hence using De Moivre's theorem

$$
z=8^{\frac{1}{4}}\left\{\cos \frac{\frac{5 \Pi}{6}+2 k \Pi}{4}+i \sin \frac{\frac{5 \Pi}{6}+2 k \pi}{4}\right\} \quad k=0,1,2,3
$$

The four roots are

$$
\begin{gathered}
k=0: z_{0}=8^{\frac{1}{4}}\left(\cos \frac{5 \Pi}{24}+i \sin \frac{5 \Pi}{24}\right) \\
k=1: z_{1}=8^{\frac{1}{4}}\left(\cos \frac{17 \Pi}{24}+i \sin \frac{17 \Pi}{24}\right. \\
k=2: z_{2}=8^{\frac{1}{4}}\left(\cos \frac{29 \Pi}{24}+i \sin \frac{29 \Pi}{24}\right)=\overline{z_{0}} \\
k=3: z_{3}=8^{\frac{1}{4}}\left(\cos \frac{41 \Pi}{24}+i \sin \frac{41 \Pi}{24}=\overline{z_{1}}\right.
\end{gathered}
$$

