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LINEAR MODELS: GENERALIZED LINEAR MODELS 

INTRODUCTION AND BASIC IDEAS 

 The simplest relationship between two variables is a linear one, namely  

     푌 = 훼 + 훽푋      (1) 

where훼 and 훽 are unknown parameters indicating the intercept and slope of the function.  Other 
relationships between two variables include 푌 = 훼푒 , 푌 = 훼푋 , 푌 = 훼 + 훽 .  However, the 
first and second relations can be reduced to linear form in transformed variable by taking logs of 
both sides to give 푙표푔 푌 = 푙표푔 훼 + 훽푋 and 푙표푔 푌 = 푙표푔 훼 + 훽푙표푔 푋.  The third relation may 
be regarded as linear in the variables Y and 1/X. 

The Generalized Linear Model is a generalization of the general linear model (of which, 
for example, multiple regression is a special case.  The generalized linear model differs from the 
general linear model in two major respects.  Firstly, the distribution of the dependent variable (or 
response variable) can be non-normal, and does not have to be continuous, i.e. it can be 
binomial, multinomial or ordinal multinomial (i.e. contain information on ranks only).  Secondly, 
the dependent variable values are predicted from a linear combination of predictor variables, 
which are connected to the dependent variable via a link function (to be explained). 

SIMPLE LINEAR REGRESSION MODEL IN MATRIX NOTATION 

By definition, the true regression of Y on X consists of the means of populations of Y 
values where a population is determined by the X value.  The mathematical description of an 
observation is given by 

   푌 = 휇 . + 휀     (1.1a) 

   = 훼 + 훽푋 + 휀    (1.1b)   (1.1) 

   = 휇 + 훽(푋 − 푋) + 휀   (1.1c) 

where훼 and 훽 are parameters to be estimated and X is an observable parameter; 훼 represents the 
population Y intercept, the value of 휇  at X = 0, that is 휇 . ; 훽 is the slope of the line through the 
means of the Ypopulation.  In the last form of 1.1, that is 1.1c with the  X’s measured from their 
mean, 휇 is estimated by 푌.  The 휀’s are assumed to be from a single population with zero mean 
and variance 휎 .  This variance is another parameter to be estimated. 

Writing the simple regression model as 푌 = 훽 + 훽 푋 + 휀 ,     푖 = 1,2, … ,푛 , we can 
write the set of observations as 



푌 = 훽 + 훽 푋 + 휀  

푌 = 훽 + 훽 푋 + 휀  

    ……………………… 

푌 = 훽 + 훽 푋 + 휀  

In vector and matrix notation, we can write the above set of equations as 

푌 =

푌
푌
⋮
푌

,    푋 =

1 푋
1 푋
⋮ ⋮
1 푋

,    훽 = 훽
훽 ,   휀 =

휀
휀
⋮
휀

 

Writing compactly we have: 

푌
푌
⋮
푌

=

1 푋
1 푋
⋮ ⋮
1 푋

훽
훽 +

휀
휀
⋮
휀

 

or   푌 = 훽푋 + 휀  or  y= 푋푏 + 푒 

 For the above model, we make the following assumptions presenting them in matrix 
form.  For the assumption that the 휀’s have zero mean, we write 퐸(휀) = 0 = 0 , the null vector, 
E is for expectation or mean.  Thus 푌 = 훽푋 + 휀 ⟹ 퐸(푌) = 푋훽.  Note that  

휀휀 =

휀 휀 휀
휀 휀 휀

휀 휀 휀 휀
휀 휀 휀 휀

⋯ ⋯
휀 휀 휀 휀

⋯ ⋯
휀 휀 휀

 

Squares on the diagonal suggest variances, off diagonal cross products suggest covariances.  
Consequently, assumptions concerning homogeneous variance and uncorrelated errors may be 
stated as follows: 

퐸(휀휀 ) =
휎 0
0 휎

0 … 0
0 … 0

⋯ ⋯
0 0

  ⋯ ⋯
  0 … 휎

 

= 퐼휎   or   퐼휎 .  

whereI is the identity matrix. 

REMARKS 



1. From The sample, 훽 is estimated by 훽 or b.   

2. To estimate the population mean when 푋 = 푋 , we write 푋′ = (1 푋 ) and the sample 
regression equation is 

휇̂ = 푋′ 훽   or   Y = 푋′ 훽 

3. 푋′푋is the matrix of the model given by 푋 푋 =
푛 ∑푋
∑푋 ∑푋   

 

4. 푋 푌is a 2 x 1 where 푋 푌 =
∑푌
∑푋 푌   

 

5. If 푋 푋 is nonsingular, its inverse (푋 푋) =
∑ (∑ )

∑푋 −∑푋
−∑푋 푛

 

6. 훽 = 푏 =
푌 − 훽 푋

∑ (∑ )(∑ )/
∑ (∑ ) /

 

7. By definition, 푒 = 푌 − 푌 is a deviation of the observation from the regression line.  It is 
called a residual.  We note that the sum of squares of the residual is a measure of the 
overall failure of the model to fit the data.  We can write 

푒 푒 = 푆푆(residual) 

      = 푌 − 푋훽 ′ 푌 − 푋훽  

      = 푌 푌 − 훽′푋′푌 

8. It will be shown that 휎  can be estimated using the simple residual sum of squares. 

9. 푆푆(model) =  훽′푋′푌 

10. According to Gauss Markov, the model 푌 = 훽푋 + 휀  may also be denoted by 
(푌,훽푋, 휎 퐼 ). 

ESTIMATION (휷,흈ퟐ) AND PROPERTIES  

Basically, there are 4 methods of estimation which lead to the same estimator under 
certain frequently-used assumptions.  All the four procedures are summarized in terms of the full 
rank model, where in 푌 = 푋훽 + 휀, X has full column rank, 퐸(푌) = 푋훽 and 퐸(휀) = 0. 

1. Ordinary Least Square (OLS) 



This involves choosing 훽 or b as the value of 훽 which minimizes the sum of squares of 
deviations of the observations from their expected value, i.e. choose 훽 as that 훽 which 
minimizes 

푌 = ( ) [푦 − 퐸(푌 )] = (푌 − 푋훽)′(푌 − 푋훽) 

 The resulting estimator is, as we have seen 훽 = (푋′푋) 푋 푌 = 푏 (To be proved). 

2. Generalized Least Squares 

On assuming that the variance-covariance matrix of e is Var(e) = V, this method involves 
minimizing (푌 − 푋푏)′푉 (푌 − 푋푏) with respect to b.  This leads to  

푏⃡ = (푋′푉 푋) 푋 푉 푌 or  푏 or   푏  

Remark:When 푉 = 휎 퐼, the generalized and the OLS estimators are the same: 푏⃡ = 푏 

3. Maximum Likelihood 

With least squares estimation no assumption is made about the form of the distribution of 
the random error terms in the model.  On assuming that the errors, e’s are normally 
distributed with zero mean and variance-covariance matrix V, i.e. 푒~푁(0,푉) , the 
likelihood is 

퐿 = (2휋) |푉| exp −
1
2 푌 − 푋훽 ′(푉 ) 푌 − 푋훽  

Maximizing with respect to 훽  is equivalent to solving 훿(푙표푔 퐿)/훿훽 = 0  which 
gives푏 = (푋′푉 푋) 푋 푉 푌; the same as generalized least squares estimator. 

4. BLUE: The Best Linear Unbiased Estimator 

 We shall take this up fully. 

 TWO REMARKS (ABOUT THESE ESTIMATORS) 

1. Least squares estimation does not pre-suppose any distributional properties of the 
e’s other than finite zero means and finite variances. 

2. M.I estimation under normality assumption leads to the same estimator, 푏 , as 
generalized least squares; and this reduces to the ordinary least squares estimator 
b or 훽 when 푉 = 휎 퐼. 

Again, from equation 푌 = 훽푋 + 푒,   푒 = 푌 − 푋훽 



푒′ = (푌 − 푋훽)′ 

Sum of squares of the observation, 푆푆 = 푒 푒 

푆푆 = (푌 − 푋훽) ( ) = 푒′푒 

     = 푌 푌 − 푌 (푋훽) − (푋훽) 푌 + (푋훽)′푋훽 

     = 푌 푌 − 훽푋푌 − 훽 푋 푌 + 훽′푋′푋훽  
     = 푌 푌 − 2훽 푋 푌 + 훽′푋′푋훽   (1.4) 

To estimate 훽 by OLS, we differentiate (1.4) with respect to 훽 and set resultant effect to zero to 
obtain an estimate 훽 or simply b. 

훿푠
훿훽

= 0 ⟹ 2푋′푌 

훿푠
훿훽

= −푋푌 + 훽 푋 푋 = 0 

     훽 푋 푋 = 푋푌′     (1.5) 

Premultiply (1.5) by (푋′푋) , to get  

  훽(푋′푋) 푋 푋 = 훽(푋′푋) 푋 푌, where 퐼 = (푋′푋) 푋 푋 

훽퐼 = (푋′푋) 푋 푌 

     훽 = (푋′푋) 푋 푌    (1.6) 

 

1.3 Variance or Dispersion of Parameters in a Functional Regression Model 

 Given 훽 = (푋′푋) 푋 푌 

 푉 훽 = 푉[(푋 푋) 푋 푌] 

 = 푉(푀′푌)where푀 = (푋′푋) 푋  

 = 푀 푉(푌)푀              푀 = 푋(푋′푋)  

 = (푋 푋) 푋 푉(푌)푋(푋′푋) where   푉(푌) = 휎  

= (푋 푋) 푋 휎 푋(푋 푋)  

= 휎 (푋 푋) 푋′푋(푋 푋)  



= 휎 푖(푋 푋)  

푉 훽 = 휎 (푋 푋)         (1.7) 

1.4 Properties of Least Square Estimator 

One of the properties of a good estimator is unbiasedness.  From a Gauss-Markov 
model (푌,푋훽, 휎 퐼 ) where the estimate of 훽is 훽 = (푋 푋) 푋 푌.  It can be investigated if 
훽 is unbiased of 훽, where it is required to show that 퐸 훽 = 훽 

   퐸 훽 = 퐸[(푋 푋) 푋 푌] where 푌 = 푋훽 

   = 퐸[(푋 푋) 푋 푋훽] 

 = 퐸[퐼훽] 

 퐸 훽 = 훽       (1.8) 

 

1.5 Estimation of Variance,흈ퟐ 

1.5.1 Residual Error Sum of Square 

  The residual vector can be stated as original – predicted value  

푌 − 푌 = 푌 − 퐸(푌)      푌 = 푋훽 

   푌 − 푋훽where 훽 = (푋′푋) 푋 푌,  we have  푌 − 푋(푋′푋) 푋 푌 

   [퐼 − 푋(푋′푋) 푋 ]푌      (1.7) 

by denoting 퐼 − 푋(푋′푋) 푋  by M, we have MY, M is idempotent symmetric matrix 

푀 푀 = 푀푀 = 푀                            푀푋 = 0 

[퐼 − 푋(푋′푋) 푋 ]푋 = 0 

푋 − 푋(푋′푋) 푋 푋 

푋 − 푋 = 0    required 

  푆푆퐸 = 푌 − 푌 ′ 푌 − 푌  

  = (푀푌)′(푀푌) 

  = 푌′푀′푀푌 



  = 푌′푀푌 

  푆푆퐸 = 푌′[1 − 푋(푋′푋) 푋 ]푌     (1.8) 

  = 푌 푌 − 푌′푋(푋 푋) 푋′푌 

  = 푌 푌 − (푋 푋) 푋 푌푋 푌 = 푌 푌 − 훽푋′푌    (1.9) 

 

1.5.2 Estimating 흈ퟐ 

 푆푆퐸 = 푌 [퐼 − 푋(푋 푋) 푋 ]푌       since   푌~푁(푋훽,휎 ) 

If there exist 푋~푁(휇,푉), then 

퐸(푋 퐴푋) = 푡푟(퐴푉) + 휇 퐴휇 

Proof: 

Given 퐸(푋) = 휇,    푉푎푟(푋) = 푉 

푉(푋) = 퐸[푋 − 휇][푋 − 휇]′ 

  = 퐸[푋 푋 − 푋휇 − 휇푋 + 휇휇′] 

 = 퐸[푋′푋] − [푋휇′]− 퐸[휇푋′] + 퐸(휇휇′) 

 = 퐸[푋′푋] − 퐸(푋)휇 − 휇퐸(푋 ) + 휇휇′ 

 = 퐸[푋′푋] − 휇휇 − 휇휇 + 휇휇′ 

 = 퐸[푋′푋] − 휇휇 = 퐸(푋′푋) = 푉 + 휇휇′    (1.10) 

퐸[푋′퐴푋] = 퐸[푡푟(푋′퐴푋)] 

= 퐸[푡푟(퐴푋푋′)] 

= 푡푟[퐴퐸(푋푋′)] 

= 푡푟[퐴(푉 + 휇휇′)] 

= 푡푟(퐴푉) + 푡푟(휇′퐴휇) 

= 푡푟(퐴푉) + 휇′퐴휇 

Applying this theorem and noting that Y = X 

퐴 = [퐼 − 푋(푋 푋) 푋 ],     휇 = 푋훽,    푉 = 휎 퐼 



퐸(푆푆퐸) = 푡푟[퐼 − 푋(푋 푋) 푋 ]휎 퐼 + 훽′푋′[퐼 − 푋(푋 푋) 푋 ]푋훽 

 

PROOFS ON GLM’s 

Assumption: 

A linear relationship between a variable Y and k – 1 explanatory variables 푋 ,푋 … ,푋  
and a disturbance term U.  If we have a sample of n observations on Y and the X’s we can write 

푌 = 훽 + 훽 푋 + 훽 푋 + ⋯+ 훽 푋 + 푈 ,     푖 = 1,2, … , 푛     (1) 

or 푌 = 푋훽 + 휇          (2) 

푌 =

푌
푌
⋮
푌

,   푋 =

1 푋
1 푋

⋯ 푋
⋯ 푋

⋮
1 푋

⋮
⋯ 푋

 

    훽 =

훽
훽
⋮
훽

,    푈 =

푈
푈
⋮
푈

     (3) 

퐸(푈) = 0,   퐸(푈푈 ) = 휎 퐼,   푋has rank  k<n, X is a set of fixed numbers. 

퐸(푈푈 ) =

⎣
⎢
⎢
⎡ 퐸(푈 ) 퐸(푈 푈 )
퐸(푈 푈 ) 퐸(푈 )

⋯ 퐸(푈 푈 )
⋯ 퐸(푈 푈 )

⋮
퐸(푈 푈 ) 퐸(푈 푈 )

⋮
⋯ 퐸(푈 ) ⎦

⎥
⎥
⎤

=
휎 0
0 휎

⋯ 0
⋯ 0

⋮
0 0

⋮
⋯ 휎

  (4) 

PROOF OF LEAST SQUARES ESTIMATES 

Let 훽 =

⎣
⎢
⎢
⎡훽
훽
⋮
훽 ⎦
⎥
⎥
⎤
 denote a column vector of estimates of 훽 then  

    푌 = 푋훽 + 푒       (5) 

Where edenotes the column vectors of n residuals 푌 − 푋훽 

푒 푒 = 푒  



     = 푌 − 푋훽 ′ 푌 − 푋훽  

     = 푌 푌 − 2훽 푋 푌 + 훽′푋′푋훽    (6) 

Since 훽 푋 푌 is a scalar and thus equal to its transpose 푌′푋훽 . 

To find the value of 훽 which minimizes the sum of squared residuals, we differentiate (6) 

휕
휕훽

(푒′푒) = −2푋 푌 + 2푋′푋훽 

Equating to 0 gives 

푋 푋훽 = 푋′푌 

    ⟹ 훽 = (푋′푋) 푋′푌     (7) 

This is the fundamental result for the least squares estimators.  Alternatively, we can write 

    
휕
휕훽

(푒′푒) = −2푌푋 + 2훽 푋 푋    which gives 

훽 = 푌′푋(푋′푋)  

Transposing both sides of this last result takes us back directly to the fundamental result 
given by (7). 

MEAN AND VARIANCE OF 훽 

훽 = (푋′푋) 푋′푌        (i) 

But 푌 = 푋훽 + 휀         (ii) 

Using (ii) in (i) by substituting for Y we obtain  

훽 = (푋′푋) 푋′(푋훽 + 휀) 

    = (푋′푋) 푋 푋훽 + (푋′푋) 푋 휀 

    = 훽 + (푋′푋) 푋 휀 

    퐸 훽 = 퐸[(푋′푋) 푋 휀] 

    = 퐸(훽) + 퐸[(푋′푋) 푋 휀]   

    = 퐸(훽) + (푋′푋) 푋 .퐸(휀) 



    = 퐸(훽) 

    = 훽  showing that 푎 is an unbiased estimator of 푏 

푉 훽 = 푉[(푋′푋) 푋′푌]from (i) above 

Let 퐴 = (푋′푋) 푋′, then add 퐴 = 푋(푋′푋)  

푉 훽 = 푉(퐴′푌) 

= 퐴′푉(푌)퐴  

= (푋′푋) 푋′휎 푋(푋′푋)  

= 휎 (푋′푋) 푋′푋′푋(푋′푋)  

= 휎 퐼(푋′푋)  

= 휎 (푋′푋) . 

PROPERTIES OF A GENERALIZED INVERSE 

 In our study of generalized linear models and statistical inference, a matrix of the form 
X’X often occurs.  Suppose we take our matrix A to be X’X.  We now state four (4) useful 
properties of X’X as follows: 

Theorem: When G is a generalized inverse of X’X, then  

(i) G’ is also a generalized inverse of 푋′푋; 

(ii) 푋퐺푋 푋 = 푋 i.e. 퐺푋′ is a generalized inverse of X; 

(iii) 푋퐺푋′ is invariant to G 

(iv) 푋퐺푋′ is symmetric, whether G is or not. 

Proof: 

(i) By definition, G satisfies 
푋 푋퐺푋 푋 = 푋′푋 

Transposing gives 
푋 푋퐺 푋 푋 = 푋 푋   proved. 

(ii)&(iii) will be proved later since we need a lemma to be able to prove this. 

Proof of property iv now follows   

(iv) LetS be a symmetric generalized inverse of 푋′푋 



Then 푋푆푋′ is symmetric 

But 푋푆푋 = 푋푎푋′ and therefore 푋퐺푋′ is symmetric.  Hence the theorem is proved. 

Lemma 1: 

푃푋 푋 = 푄푋′푋implies푃푋 = 푄푋′ 

Using this lemma, we now prove (iii) i.e. 푋푎푋′ is invariant to G. 

Proof: Suppose F is some other generalized inverse, different from G.   

Then (ii) gives 푋퐺푋 푋 = 푋퐹푋′푋.  Applying this lemma 1, we have 푋퐺푋 = 푋퐹푋′ showing that 
푋퐺푋′ is the same for all g-inverse of 푋′푋. 

Another Procedure 

 In the last procedure just described and verified (or proved), we stated that the matrix A 
was partitioned such that its leading minor is of rank r where r is the rank of A.  in this method, 
which is about to be described, there is no need for the non-singular minor of order r to be in the 
leading position.  Hence, an algorithm for finding a generalized inverse of A is as follows: 

(i) In A, of rank r, find any non-singular minor of order r.  Call it M. 

(ii) Invert M and transpose the inverse:(푀 )  

(iii) In A replace each element of M by the corresponding element of (푀 )  

(iv) Replace all other elements of A by zero 

(v) Transpose the resulting matrix.  The result is G, a generalized inverse of A. 

REMARKS AND PROPERTIES 

 In general, the algorithm must be carried out as described in steps (i) to (v).  One case 
where it can be simplified is when A is symmetric (퐴 = 퐴′).  Then only principal minor of A is 
symmetric and the transposing in both (iii) and (v) can be ignored.  The algorithm can then 
become as follows:- 

(i) In A, of rank r and symmetric, find any non-singular principal minor of order r.  Call it 
M. 

(ii) Invert M 

(iii) In A replace each element of M by the corresponding element of 푀 . 

(iv) Replace all other elements of A by zero.  The result is G, a generalized inverse of A. 



We now state and prove where necessary the properties of a generalized inverse. 

 

THE GENERAL LINEAR HYPOTHESIS FOR THE MODEL (풀,푿휷,흈풏ퟐ) 

Let us consider the general hypothesis given by 

 퐻:푘 푏 = 푚    (1) 

whereb is the k + 1 order vector of parametes of the model;  

 푘 is any matrix of s rows and k + 1 columns; and 

 m is a vector of order s of specified constants. 

Remarks: 

(a) One limitation of 푘  is that it must have full row rank i.e. 푟(푘 ) = 푠 

(b) Four hypotheses of particular interest of which equation (1) above is the general form are: 

 (i) 퐻:푏 = 0, the hypothesis that all elements of b are zero. 

(ii) 퐻:푏 = 푏 , the hypothesis that 푏  and 푏 for 푖 = 0,1,2, … 푘, i.e. that each 푏  is 
equal to some specified value 푏  

(iii) 퐻: 휆 푏 = 푚, that some linear combination of the elements of b equals a specified 
constant 

(iv) 퐻:푏 = 0, that some of the 푏 ’s, q of them where q<k, are zero. 

We now develop the F-statistic to test the hypothesis 퐻: 푘 푏 = 푚 .  We already have the 
following: 

 푦~푁(푋푏, 휎 퐼) 

 푏 = (푋′푋) 푋′푦 

and푏~푁[푏, (푋′푋) 휎 ] 

Therefore 푘 푏 − 푚~푁[푘 푏 −푚,푘′(푋′푋) 푘휎 ]. 

Also it is true that when x is 푁(휇, 푣)  then 푧′퐴푥  is 휒 푟(퐴), ′휇′퐴휇  if and only if AV is 

idempotent, the following quadratic, in 푘 푏 −푚 , using [푘′(푋′푋) 푘]  as the matrix of the 
quadratic, has a 휒  distribution: if  



푄 = 푘 푏 − 푚 ′[푘′(푋′푋) 푘] 푘 푏 −푚  

Hence, 푄/휎 ~휒 {푠, (푘 푏 − 푚) [푘′(푋′푋) 푘] (푘 푏 −푚)/2휎 }   (2) 

 The independence of Q and SSE is not shown when 푥~푁(푢, 휇) the quadratic forms 푋′퐴푋 
and 푋′퐵푋 are distributed independently if and only if 퐴푉퐵 = 0 (or, equivalently, 퐵푉퐴 = 0).  To 
do this, we first express Q and SSE as quadratic forms of the same normally distributed random 
variable, noting initially that the inverse of 푘′(푋′푋) 푘 used in (2) exists because 푘  has full row 
rank and 푋′푋 is symmetric.  Then, on replacing 푏by (푋′푋) 푋′푦, equation (2) for Q becomes 

푄 = [푘′(푋′푋) 푋 푦 − 푚]′[푘′(푋′푋) 푘] [푘′(푋′푋) 푋 푦 − 푚] 

Therefore, 

푘′(푋′푋) 푋 푦 −푚 = 푘′푘′(푋′푋) 푋 [푦 − 푋푘(푘′푘) 푚]  

and so 

푄 = [푦 − 푋푘(푘′푘) 푚] 푋(푋′푋) 푘[푘′(푋′푋) 푘]  x푘′(푋′푋) 푋 . 

Now consider the error sum of squares 

푆푆퐸 = 푦′[1− 푋푘′(푋′푋) 푋′]푦. 

Because the products 푋′[1− 푋(푋′푋) 푋′] and [1− 푋(푋′푋) 푋′]푋  are both null, SSE can be 
written as 

푆푆퐸 = [푦 − 푋푘(푘′푘) 푚]′[1 − 푋(푋′푋) 푋′][푦 − 푋푘(푘′푘) 푚]. 

Both Q and SSE have now been expressed as quadratics in the vector 푦 − 푋푘(푘′푘) 푚 .  
Although we already know that 푄/휎  and 푆푆퐸/휎  have 휒  distributions, this is further seen 
form their being quadratics in 푦 − 푋푘(푘′푘) 푚 which is normally distributed vector; and the 
matrix in each quadratic is idempotent.  But, more importantly, the product of the two matrices is 
null  

[1 − 푋(푋′푋) 푋′]푋(푋′푋) 푘[푘′(푋′푋) 푘] 푘 (푋 푋) 푋 = 0 

Therefore, by the independence of Q and SSE as illustrated above, Q and SSE are distributed 
independently.  Hence 

퐹(퐻) =
푄/푠

푆푆퐸/[푁 − 푟(푋)] = 푄/푆휎  

 ~퐹′{푆,푁 − 푟(푋), (푘 푏 −푚)′[푘 (푋 푋) 푘] (푘 푏 − 푚)/2휎 }   (3) 

and under the null hypothesis 퐻: 푘 푏 = 푚 



퐹(퐻)~퐹 ,푁 − 푟(푋) 

Hence 퐹(퐻) provides a test of the hypothesis 퐻:푘 푏 = 푚 

Thus, the F-statistic for testing the hypothesis  퐻: 푘 푏 = 푚 is 

  퐹(퐻) = =     (4) 

 

withs and N – r  degrees of freedom, s being the number of rows in 푘 , it being of full row rank. 

REMARKS/IMPORTANT STATEMENTS 

(*) As long as 푘  has full row rank, 퐹(퐻) =  given in (4) above and enclosed for 
emphasis can be used to test any linear hypothesis whatever.  Nomatter what hypothesis 
is, it has only to be written in the form 푘 푏 = 푚 and 퐹(퐻) of equation (4) above provides 
the test. 

 

NONPARAMETRIC OR DISTRIBUTION FREE STATISTICS 

Introduction 

 What are nonparametric statistical procedures?  Thus far, the statistical procedures 
discussed or used have some underlying assumptions for which the procedures are valid.  These 
techniques are for the estimation of parameters and for testing the hypothesis concerning them.  
The assumptions generally specify the form of the distribution and in most cases are concerned 
largely with data where the underlying distributions is normal.  ARE MOST VARIABLES 
NORMALLY DISTRIBUTED?  OF COURSE NO. 

 However, a considerable amount of data of interest is such that the underlying 
distribution is not normal and is not specified.  For instance, environmental data are highly 
skewed.  Apart from normality condition, another factor that often limits the applicability of test 
based on the assumption that the sampling distribution is normal is the size of the sample 
available for the analysis.  If our sample is very small, parametric procedures cannot be used 
because there is no way to test the assumption of normality. 

 Another factor that often limits the applicability of test that are based on the normality 
assumptions is lack of precise measurement (problems in measurement).  This general 
measurement issue has to do with types of measurement or scale of measurement.  Data in form 
of counts, ranks, or the signs of differences for paired observations do not meet the assumptions 
of normality, therefore cannot be analyzed using parametric procedures. 



 What then are Nonparametric or Distribution free statistics?  Nonparametric statistics are 
statistics where it is not assumed that the population fits any parametrised distribution.  
Nonparametric statistics are typically applied to population that takes on a ranked order.  
Nonparametric procedures differ from parametric models because the distribution is not 
specified apriori but it is instead determined from the data.  The term nonparametric is not meant 
to imply that such models completely lacked parameters but that the number and the nature of 
parameters are flexible and not fixed in advanced.  Hence nonparametric models are also called 
distribution-free or parameter free. 

Brief Overview of Nonparametric Methods 

 Basically nonparametric or distribution free inferential statistical methods are 
mathematical procedures for statistical hypothesis testing which, unlike parametric statistics 
makes no assumptions about the frequency distribution of the variables being accessed.  Some of 
the most frequently nonparametric tests used include: 

1. Binomial test   2. Anderson-Darling test 

3. Chi-square test  4. Cochran’s Q 

5. Coher’s kappa 6.  6. Efron-Petrosian Test 

7. Fisher’s exact test  8. Friedman two-way analysis of variance 

9. Kendall’s tau   10. Kendall’s W 

11. Kolmogorov-Smirnov Test 12. Kruskal Wallis one-way analysis of variance by ranks 

13. Kniper’s test   14. Mann-Whitney U or Wilcoxon rank sum test 

15. McNemar’s test (a special case of the chi-squared test) 

16. median Test   17. Pitman’s permutation test 

18. Siegel-Turkey test  19. Spearman’s rank correlation coefficient 

20. Student-Newman-Keuls (SNK) test 

21. Wald-Wolfowitz runs test 22. Wilcoxon signed-rank test 

 There is at least one nonparametric equivalent for each parametric general type of test.  In 
general, these tests fall into the following categories: 

(i) Tests of differences between groups (independent samples) 
(ii) Tests of differences between variables (dependent samples) 
(iii) Tests of relationships between variables. 



Differences between independent groups – usually, when we have 2 samples that we want to 
compare concerning their mean value for some variable of interest, we will use the t-test for 
independent samples; nonparametric alternatives for this test are Wald-Wolfoyitz runs test, the 
Mann-Whitney U test, and the Kolmogorov-Smirnov two sample test.  If we have multiple groups, 
we would use analysis of variance; the nonparametric equivalents to this method are the Kruskal-
Wallis analysis of ranks and the Median test. 

Differences between dependent groups – If we want to compare two variables measured in the 
same sample, we would customarily use the t-test for dependent samples (in Basic Statistics for 
example, if we wanted to compare students’ math skills at the beginning of the semester with their 
skills at the end of the semester).  Nonparametric alternatives to this test are the sign test and 
Wilcoxon’s matched pairs test.  If the variables of interest are dichotomous in nature (i.e., “on”, vs 
“off”, “pass” vs “no pass”) then McNemar’s chi-square test is appropriate.  If there are more than 
two variables that were measured in the same sample, then we would customarily use repeated 
measures ANOVA.  Nonparametric alternatives to this method are Friedman’s two-way analysis of 
variance and Cochran Q test (if the variable was measured in terms of categories e.g. “passed” vs 
“failed”).  Cochran Q is particularly useful for measuring changes in frequencies (proportions) 
across time. 

Relationships between variables – To express a relationship between two variables, one usually 
computes the correlation coefficient.  Nonparametric equivalents to the standard correlation 
coefficient are Spearman R, Kendall Tau, and Coefficient Gamma.  If the two variables of interest 
are categorical in nature (e.g. “passed” vs “failed” by “male” vs “female”), appropriate 
nonparametric statistics for testing the relationship between the two variables are the chi-square test, 
the Phi coefficient, and the Fisher exact test.  In addition, a simultaneous test for relationships 
between multiple cases is available: Kendall coefficient of concordance.  This test is often used for 
expressing inter-rater agreement among independent judges who are rating (ranking) the same 
stimuli. 

 

THE KOLMOGOROV-SMIRNOV TEST (K-S TEST) 

Introduction 

 The K-S test is a test of goodness of fit test.  K-S finds out (or tests) whether two independent 
samples have been drawn from populations having the same cumulative distribution. There are 1-
sampl;e and 2-sample K-S tests procedures; 

1-Sample K-S Test: This is concerned with the agreement between the distribution of a set of 
sample values and some specified theoretical distribution. 



2-Sample K-S Test: The 2-sample K-S test is concerned with the agreement between two 
cumulative distributions (cumulative relative frequency distributions).  That is agreement between 
two sets of sample values. 

DESCRIPTION/PROCEDURE 

To apply K-S two-sample test, we proceed as follows: 

1. Arrange each of the two groups of scores in a cumulative frequency distribution by using the 
same intervals for both groups. 

2. Denote 퐹 (푥) the observed cumulative distribution for one sample of size 푛 where 퐹 (푥) =
푘/푛 , where k is the number of data equal to or less than x.  Similarly, let 퐹 (푥) = 푘/푛  
denote the observed cumulative distribution of the second sample of size 푛 . 

3. Determine the largest of these differences.  Call it  

  퐷 = maximum
supremum 퐹 (푥)− 퐹 (푥)     (1.1) 

K-S Statistic 

The Kolmogorov-Smirnov statistic is given by   

   퐷 = sup
푥 |퐹 (푥)− 퐹(푥)|     (1.2) 

Test Criteria 

 The method of determining the significance of the observed 퐷  depends on the sample 
sizes 푛  and 푛  and the nature of the alternative hypothesis 퐻   or  퐻 . 

(a) When 푛  and 푛  are both less than or equal to 25, use the appropriate table for a two-tailed 
test. 

(b) For a two-tailed test when 푛 or 푛 > 25, use the appropriate table. 

(c) For a one-tailed test when either 푛  or 푛  is >25, the value of 휒  is computed from 휒 =
4퐷  . ~휒  with df = 2. 

NONPARAMETRIC CORRELATION 

 We consider only the following measures of association among variables.  These are 

1. The Spearman Rank Order Correlation Coefficient, 푟  

2. The Kendall Coefficient of Concordance, W. 



Formulae: 

A. 푟 = 1− ∑
( )  where the symbols have their usual meanings. 

 Proof:  It is left as an exercise to be 푡 = 푟 ~ as studentst with n – 2 df. 

B. Test Statistics 

 Kendall (1948) showed that for fairly large n, n> 8.  

 푡 = ( ) is distributed as student t with degree of freedom, df = n – 2.   

REMARK 

Use the last statistic 푍 = 푟 √푛 − 1 and compare results. 

1. By the Glivenko-Cantelli theorem, if the sample comes from distribution F(x), then Dn 
converges to 0 almost surely. 

2. The Kolmogorov distribution is the distribution of the random variable 퐾 = ∈[ , ] |퐵(푡)| 
where 퐵(푡)is the Brownian bridge.  The cumulative distribution of K is given by  

푃 (퐾 ≤ 푥) = 1 − 2 (−1) 푒 =
√2휋
푥 푒 ( ) /  

3. K-S Test 

3.1 Under null hypothesis that the sample comes from the hypothesized distribution F(x),  

 √푛퐷 →
⟶ |퐵퐹(푡)|in distribution, where 퐵(푡) is the Brownian bridge. 

3.2 If F is continuous, then √푛퐷  converges to the Kolmogorov distribution which does not 
depend on F.  

3.3 The goodness-of-fit test or the K-S test is constructed by using the critical values of the 
Kolmogorov distribution. 

 The null hypothesis is rejected at level 훼  if √푛퐷 > 퐾  where 퐾  is found from                      
푃 (퐾 ≤ 퐾 ) = 1 − 훼. 

3.4 Remark: 



 In the K-S statistic, the empirical distribution function Fn for i.i. d (independent and 
identically distributed) observations Xi is defined as  

 퐹 (푥) = ∑ 퐼 ≤ 푥 

 where퐼 ≤ 푥 is the indicator function. 

1. Kendall Coefficient of Concordance, W 

Kendal coefficient of concordance, W, measures the extent of association among several 
k sets of rankings of N entities.  It is useful in determining the agreement among several 
judges or the association among three or more variables.  It has special applications in 
providing a standard method of ordering entities according to consensus when there is 
available no objective order of the entities. 

2. Summary of Procedure 

 These are the steps in the sue of W, the Kendall coefficient of concordance. 

(1) Let N = the number of entities to be ranked, and 
Let k = the number of judges assigning ranks 
Last the observed ranks in a K x N table. 

(2) For each entity, determine Rj, the sum of the ranks assigned to that entity by the K 
judges.   

(3) Determine the mean of the Rj.  Express each Rj as a deviation from the mean.  
Square these deviations, and sum the squares to obtain s.  Note that  

푠 = 푅 −
∑푅
푁   and that   

푊 =
푠

퐾 (푁 − 푁)
,    0 < 푊 < 1. 

3. Significance/Interpretation of W 

The method of determining whether the observed value of W is significantly different 
from zero depends on the size of N: 

(a) If N is 7 or smaller, table R gives critical values of s associated with W’s 
significant at the .05 and .01 levels. 

(b) If N is larger than 7, use any of the following formulae: 
(i) 휒 =

( )
withaf = N – 1. 



(ii) 휒 = 퐾(푁 − 1)푊 
 

 


