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STOCHASTIC PROCESS  STS461 

SECTION 1 

OVERVIEW OF STOCHASTIC PROCESSES 

COURSE CONTENTS 
Random Walk, Simple and General Random Walk with absorbing and Reflecting 

Barriers. Markovian Properties with Finite Chains.  Limit Theorem Poisson, 

Branching, Birth and Death Processes.  Queueing Processes: M/M/1, M/M/S, M/G/1 

Queues and their Waiting Time Distributions.  Relevant Applications. 

INTRODUCTION 

Many real-world applications of probability theory have the particular feature that 

data are collected sequentially in time.  A few examples are weather data, stock 

market indices, air pollution data, demographic data and political tracking polls.  

These also have in common that successive observations are typically not 

independent.  We refer to any such collection of observations as a stochastic process. 

DEFINITION 

A stochastic process is a collection of random variables that take values in a set S, the 

state space.    The collection is indexed by another set T, the index set.  The two most 

common index sets are the natural numbers = {0,1,2, … } , and the nonnegative real 

numbers ܶ = [0,∞) , which usually represent discrete time and continuous time, 

respectively. 

The first index set thus gives a sequence of random variables (rvs) {ܺ଴, ଵܺ ,ܺଶ, … } and 

the second, a collection of random variables {ܺ(ݐ), ݐ ≥ 0}, one r.v. for each time t. 

Remarks: 

In general, the index set does not have to describe time but is also commonly used to 

describe spatial location.The state space can be finite, countably infinite, or 

uncountable, depending on the application. 
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SECTION 2 

CLASSIFICATION OF GENERAL STOCHASTIC PROCESSES 

2.1 INTRODUCTION 

The main elements of distinguishing stochastic processes are in the nature of the 
statespace, the index parameter T, and the dependence relations among the random 
variables Xt. 

2.1.1 State Space S 

This is the space in which the possible values of each Xt lie.  In the case that S 
=(0,1,2,…), we refer to the process as integer valued, or alternatively as a discrete 
state process.  

If S = the real line (−∞,∞), then we call Xt a real-valued stochastic process.  If S is 
the Euclidean k spaced then Xt is said to be a k-vector process. 

Remark:  The choice of state space is not uniquely specified by the physical situation 
being described, although usually one particular choice may stand out as most 
appropriate. 

2.1.2 Index Parameter T 

If ܶ = (0,1, … ) then we state that Xtis a discrete time stochastic process.  Often when 
T is discrete we shall write Xn instead of Xt.  If ܶ = [0,∞), then Xt is called a 
continuous time process. 

  

2.2 CLASSICAL TYPE OF STOCHASTIC PROCESSES 

We now describe (first briefly) then in detail, some of the classical types of stochastic 
processes characterized by different dependence relationships among Xt.  Unless 
otherwise stated, we take ܶ = [0,∞) and assume the random variables Xt are real 
valued. 

2.2.1 Process with Stationary Independent Increments 

If the random variables ܺ௧మ − ௧ܺభ, ௧ܺయ − ௧ܺమ , … , ௧ܺ೙ − ܺ௧೙షభ  are independent for all 
choices of ݐଵ, ,ଶݐ … , ଵݐ ௡ satisfyingݐ < ଶݐ < ⋯ < ௡, then we say that ௧ܺݐ  is a process 
with independent increments. 

If the index set contains a smallest index ݐ଴, it is also assumed ௧ܺభ, ௧ܺభ − ௧ܺబ , ௧ܺమ −
௧ܺభ , … , ௧ܺ೙ − ௧ܺ೙షభ  are independent.  If the index set is discrete that is T = (0,1,…), 

then a process with independent increments reduces to a sequence of independent 
random variables ܼ଴ = ܺ଴,ܼ௜ = ௜ܺ − ܺ௜ିଵ , ݅ = 1,2,3, …,  in the sense that knowing 
the individual probabilities/distributions of ܼ଴, ܼଵ, … enables us to determine the joint 
distributions of any finite set of ௜ܺ, in fact that of ܺ௜ = ܼ଴ + ܼଵ + ⋯+ ܼ௜, ݅ = 0,1,2, … 
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REMARKS/DEFINITIONS 

1. If the distribution of the increments ܺ(ݐଵ + ℎ) −  depends only on the (ଵݐ)ܺ
length h of the interval and not on the time t1, the process is said to have 
stationary increments. 

2. For a process with stationary increments, the distribution of ܺ(ݐଵ + ℎ)−
(ଵݐ)ܺ  is the same as the distribution of ܺ(ݐଶ + ℎ)− (ଶݐ)ܺ , no matter the 
values of ݐଵ ,  .ଶ and hݐ

3. We now state a theorem. 

 If a process {ܺ௧ , ݐ ∈ ܶ} , where ܶ = [0,∞)  or ܶ = (0,1,2, … )  has stationary 
independent increments and has a finite mean, then it is true that: 

(a) ܧ( ௧ܺ) = ଴ܯ + ଴ܯ where ݐଵܯ = ଵܯ and (଴ܺ)ܧ = )ܧ ଵܺ)  .଴ܯ−
(b) ߪ௧ଶ = ଴ଶߪ +  where ݐଵଶߪ

଴ଶߪ = ଴ܺ)]ܧ ଵଶߪ ଴)ଶ] andܯ− = )]ܧ ଵܺ [ଵ)ଶܯ− −  ଴ଶߪ

4. Both the Brownian motion process and the Poisson process have stationary 
independent increments. 

5. We now prove remark 3(a). 

 Proof of ܧ( ௧ܺ) = (଴ܺ)ܧ + ൫ܧൣݐ ଵܺ −  .൯൧(଴ܺ)ܧ

Let ݂(ݐ) = )ܧ ௧ܺ)−  (଴ܺ)ܧ

Then for any t and s, we have 

ݐ)݂ + (ݏ = ]ܧ ௧ܺା௦ − ܺ଴] 

  = ]ܧ ௧ܺା௦ − ܺ௦ + ܺ௦ − ܺ଴] 

 = ]ܧ ௧ܺା௦ − ܺ௦] + ௦ܺ]ܧ − ܺ଴] 

   = ]ܧ ௧ܺ − ܺ଴] + ௦ܺ]ܧ − ܺ଴] using the property of stationary increments. 

The only solution to the functional equation ݂(ݐ + (ݏ = (ݐ)݂ + (ݏ)݂ =   .ݐ(1)݂
Differentiating with respect to t and independently with respect to s we have 
݂ᇱ(௧ା௦) = ݂ᇱ(ݐ) = ݂ᇱ(ݏ).   

Therefore for s = 1, we find ݂ᇱ(௧) = constant = ݂ᇱ(ݐ) = ܿ.  Integrating this 
elementary differential equation yields ݂(ݐ) = ݐܿ + ݀ .  But ݂(0) = 2݂(0) 
implies ݂(0) = 0 and therefore d = 0. 

The expression ݂(ݐ) =  is ݐ(1)݂

)ܧ ௧ܺ)−݉଴ = ]ܧ) ଵܺ] −݉଴)ݐ 

⟹ ]ܧ ௧ܺ] = ݉଴ + ݉ଵݐ as required. 



5 
 

2.2.2 Markov Processes 

A Markov process is a process with the property that, given the value of Xt, the values 
of Xs, s > t, do not depend on the value of Xu, u < t; that is, the probability of any 
particular future behavior of the process, when the present state is known exactly, is 
not altered by additional knowledge concerning the past behavior (provided our 
knowledge of the present state is precise).   

Definition1: In formal terms, a process is said to be Markov if 

൛ܽݎܲ < ௧ܺ ≤ ܾ|ܺ௧భ = ଵ,ܺ௧మݔ = ,ଶݔ … , ௧ܺ೙ =  ௡ൟݔ

where ݐଵ < ଶݐ < ௡ݐ⋯ < ݐ = ܲ൛ܽ < ௧ܺ ≤ ܾ| ௧ܺ೙ =  ௡ൟ   …… (1)ݔ

Definition 2: Let A be an interval of the real line.  The function  

;ݔ)ܲ   ;ݔ (ܣ;ݐ = }ݎܲ ௧ܺ ∈ ହܺ|ܣ = ,{ݔ ݐ >  (2) ……   ݏ

is called the transition probability function and is basic to the study of the structure of 
Markov processes. 

We may express the condition (1) as follows:  

൛ܽݎܲ < ௧ܺ ≤ ܾ| ௧ܺభ = ,ଵݔ ௧ܺమ = ,ଶݔ … , ௧ܺ೙ = ௡ൟݔ = ,௡ݔ)ܲ ௡ݐ ∈  (ܣ

where ܣ = ܽ|ߦ} < ߦ ≤ ܾ}. 

2.2.3 Martingales 

Let { ௧ܺ} be a real-valued stochastic process with discrete or continuous parameter set.  
We say that { ௧ܺ} is a Martingale if, ܧ[| ௧ܺ|] < ∞ for all t, and if for any ݐଵ < ଶݐ <
⋯ < ൫ܧ   ,௡ାଵݐ ௧ܺ೙శభ| ௧ܺభ = ܽଵ , … ௧ܺ೙ = ܽ௡൯ = ܽ௡ for all values of ܽଵ, ܽଶ, … ,ܽ௡. 

2.2.4 Renewal Processes 

A renewal process is a sequence Tk of independent and identically distributed (i.i.d.) 
positive random variables, representing the lifetimes of some “units”.  The first unit is 
placed at time zero; it fails at time T1 and is immediately replaced by a new unit 
which then fails at time T1 + T2 and so on, thus motivating the name “renewal 
process”.  The time of the nth renewal is ܵ௡ = ଵܶ + ଶܶ + ⋯+ ௡ܶ. 

A renewal counting process ௧ܰ counts the number of renewals in the interval [0,t].  
Formally, ௧ܰ = ݊, for ܵ௡ ≤ ݐ < ܵ௡ାଵ,   ݊ = 0,1,2, … 

Remark:  The Poisson process with parameter ߣ is a renewal counting process for 
which the unit lifetimes have exponential distribution with common parameter ߣ. 

2.2.5 Other examples such as Poisson process, birth and death processes and Branching 
Processes will be considered in small details. 
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SECTION 3 

MARKOV CHAINS 

3.1 INTRODUCTION 

 In this section, we consider a stochastic process {ܺ௡ , 0,1,2, … } that takes on a finite 
or countable number of possible values.  Unless otherwise mentioned, this set of 
possible values of the process will be denoted by the set of nonnegative integers 
{0,1,2, … }.  If ܺ௡ = ݅, then the process is said to be in state i at time n.  We suppose 
that whenever the process is in state i, there is a fixed probability Pij that it will next 
be in state j.  That is we suppose that  

  ܲ{ܺ௡ାଵ = ݆|ܺ௡ିଵ = ݅௡ିଵ, … , ଵܺ = ݅ଵ,ܺ଴ = ݅଴} = ௜ܲ௝ …… (3.1) 

for all ݅଴ , ݅ଵ, … , ݅௡ିଵ, ݅, ݆  and all ݊ ≥ 0 .  Such a stochastic process is known as a 
Markov chain.  

Equation (3.1) may be interpreted as stating that, for a Markov chain, the conditional 
distribution of any future state ܺ௡ାଵ  given the past states ܺ଴ , ଵܺ , … ,ܺ௡ିଵ  and the 
present state ܺ௡  is independent of the past states and depends only on the present 
state. 

The value ௜ܲ௝ represents the probability that the processes will, when in state i, next 
make a transition into state j.  Since probabilities are nonnegative and since the 
process must make a transition into some state, we have that  

௜ܲ௝ ≥ 0, ݅, ݆ ≥ 0;  ෍ ௜ܲ௝ = 1,   ݅ = 0,1, …
ஶ

௝ୀ଴

 

Let P denote the matrix of one-step transition probabilities ௜ܲ௝, so that  

ܲ = ተ
ተ

଴ܲ଴ ଴ܲଵ ଴ܲଶ   …
ଵܲ଴ ଵܲଵ ଵܲଶ   …
⋮
௜ܲ଴ ௜ܲଵ ௜ܲଶ   …
⋮     ⋮ ⋮

ተ
ተ 

Example 3.1: (Forecasting Weather)  

Suppose that the chance of rain tomorrow depends on previous weather conditions 
only through whether or not it is raining today and not on past weather conditions.  
Suppose also that if it rains today, then it will rain tomorrow with probability α; and if 
it does not rain today, then it will rain tomorrow with probability β.  If we say that the 
process is in state 0 when it rains and state 1 when it does not rain, then the preceding 
is a two state Markov chain whose transition probabilities are given by 

ܲ = ൤ߙ 1 − ߙ
ߚ 1 − ൨ߚ                        ܲ = ൬ߙ 1 − ߙ

ߚ 1 −  ൰ߚ
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Example 3.2: (A Communications System) 

Consider a communications system which transmits the digits 0 and 1.  Each digit 
transmitted must pass through several stages, at each of which more is a probability P 
that the digit entered will be unchanged when it leaves.  Letting ܺ௡ denote the digit 
entering the nth stage, then {ܺ௡ ,݊ = 0,1, … } is a two-state Markov chain having a 
transition probability matrix 

ܲ = ቂ ܲ 1 − ܲ
1 − ܲ ܲ ቃ        ܲ = ቀ ܲ 1 − ܲ

1− ܲ ܲ ቁ 

Example 3.3: On any given day, Gary is either cheerful (c), so-so (s) or glum (G).  If 
he is cheerful today, then he will be c, s, or G tomorrow with respective probabilities 
0.5, 0.4, 0.1.  If he is feeling so-so today, then he will be c, s or G tomorrow with 
probabilities 0.3, 0.4, 0.3.  If he is glum today, then he will be c, s, or G tomorrow 
with probabilities 0.2, 0.3, 0.5. 

Letting ܺ௡  denote Gary’s mood on the nth day, then {ܺ௡, ݊ ≥ 0}  is a three state 
Markov chain (state 0 = c, state 1 = s, state 2 = G) with transition probability matrix 

ܲ = ൥
0.5 0.4 0.1
0.3 0.4 0.3
0.2 0.3 0.5

൩ =

⎝

⎜
⎛

ଵ
ଶ

ଶ
ହ

ଵ
ଵ଴

ଶ
ଵ଴

ଶ
ହ

ଷ
ଵ଴

ଵ
ହ

ଷ
ଵ଴

ଵ
ଶ⎠

⎟
⎞

 

Example 3.4: (Transforming a Process into a Markov Chain) 

Suppose that whether or not it rains today depends on previous weather conditions 
through the last two days.  Specifically, suppose that if it has rained for the past two 
days, then it will rain tomorrow with probability 0.7; if it rained today but not 
yesterday, then it will rain tomorrow with probability 0.5; if it rained yesterday but 
not today, then it will rain tomorrow with probability 0.4; if it has not rained in the 
past two days, then it will rain tomorrow with probability 0.2. 

If we let the state at time n depend only on whether or not it is raining at time n, then 
the preceding model is not a Markov chain (why not?).  However, we can transform 
this model into a Markov chain by saying that the state at any time is determined by 
the weather conditions during both that day and the previous day.   

In other words, we can say that the process is in 

state 0, if it rained both today and yesterday, 

state 1, if it rained today but not yesterday, 

state 2, if it rained yesterday but not today, 

state 3, if it did not rain either yesterday or today. 

The preceding would then represent a four-state Markov chain having a transition 
probability matrix 
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ܲ = ቎
0.7 0
0.5 0

0.3 0
0.5 0

0 0.4
0 0.2

0 0.6
0 0.8

቏ 

You should carefully check the matrix P, and make sure you understand how it was 
obtained. 

 

BIRTH AND DEATH PROCESSES 

 A continuous-time Markov chain with states 0, 1,… for which ݍ௜௝ = 0  whenever 
|݅ − ݆| > 1  is called a birth and death process.  Thus a birth and death process is a 
continuous-time Markov chain with states 0,1,… for which transitions from state i  can only 
go to either state i – 1 or state i + 1.  The state of the process is usually thought of as 
representing the size of some population, and when the state increases by 1, we say that a 
birth occurs and when it decreases by 1, we say that a death occurs. 

 Let ߣ௜ and ߤ௜ be given by  

௜ߣ = ௜ݍ ,௜ାଵ, 

௜ߤ =  .௜,௜ିଵݍ

The values {ߣ௜ , ݅ ≥ 0} and {ߤ௜ , ݅ ≥ 1} are called respectively one birth rates and one death 
rates.  Since ∑ ݆ ௜௝ݍ =  ௜, we see thatݒ

௜ݒ = ௜ߣ +  ௜ߤ

௜ܲ,௜ାଵ =
௜ߣ

௜ߣ + ௜ߤ
= 1 − ௜ܲ,௜ିଵ . 

Hence, we can think of a birth and death process by supposing that whenever there are i 
people in the system, the time until the next birth is exponential with rate ߣ௜  and is 
independent of the time until the next death, which is exponential with  rate ߤ௜. 

EXAMPLE: 

Two Birth and Death Processes 

(i) The M/M/S Queue: Suppose that customers arrive at an s-server service station in 
accordance with a Poisson process having rate ߣ .  That is, the time between 
successive arrivals are independent exponential random variables having mean 1/ ߣ.  
Each customer, upon arrival, goes directly into service if any of the servers are free, 
and if not, then the customer joins the queue (i.e. he waits in line).  When a server 
finishes serving a customer, the customer leaves the system and the next customer in 
line, if there are any waiting, enters the service. 

 The successive service times are assumed to be independent exponential random 
variable having mean 1/ߤ.  If we let X(t) denote the number in the system at time t, 
then {ܺ(ݐ), ݐ ≥ 0} is a birth and death process with 
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௡ߤ = ൜݊ߤ 1 ≤ ݊ ≤ ݏ
ߤݏ ݊ > ݏ  

௡ߣ = ݊    ,ߣ ≥ 0. 

(ii) A Linear Growth Model with Immigration. 

 A model in which   

௡ߤ = ݊    ,ߤ݊ ≥ 1, 

௡ߣ = ݊    ,ߣ݊ ≥ 0, 

 is called a linear growth process with immigration.  Such processes occur naturally in 
the study of biological reproduction and population growth.  Each individual in the 
population is assumed to give birth at an exponential rate ߣ; in addition, there is an 
exponential rate of increase E of the population due to an external source such as 
immigration.  Hence, the total birth rate where there are n persons in the system is 
ߣ݊ +  for each member of the ߤ Death are assumed to occur at an exponential rate  .ߠ
population, and hence ߤ௡ =  .ߤ݊

 A birth and death process is said to be a pure birth process if ߤ௡ = 0 for all n (that is, 
if death is impossible).  The simplest example of a pure birth process is the Poisson 
process, which has a constant birth rate  ߣ௡ = ݊    ,ߣ ≥ 0. 

  A second example of a pure birth process results from a population in which each 
member acts independently and gives birth at an exponential rate ߣ.  If we suppose 
that no one ever dies, then, if X(t)represents the population size at time t, {ܺ(ݐ), ݐ ≥
0} is a pure birth process with ߣ௡ = ݊    ,ߣ݊ ≥ 0. 

 This pure birth process is called a Yule process. 

Further Remarks about Birth and Death Process 

1. We have seen that a Multiserver Exponential Queueing System is an example of birth 
and death process. 

 Description: 

 Consider an exponential queueing system in which there are s servers available, each 
serving at rate ߤ.  An entering customer first waits in line and then goes to the first 
free server.  This is a birth and death process with parameters 

௡ߤ = ൜݊ߤ 1 ≤ ݊ ≤ ݏ
ߤݏ ݊ > ݏ  

௡ߣ = ݊    ,ߣ ≥ 0. 

 To see why this is true, we reason as follows: 

 If there are n customers in the system, where ݊ ≤   .then n servers will be busy ,ݏ
Since each of these servers works at rate ߤ, the total departure rate will be ݊ߤ.  On the 
other hand, if there are n customers in the system, where ݊ >  then all s of the ,ݏ
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servers will be busy, and thus the total departure rate will be ߤݏ.  This is known as an 
M/M/S queueing model. 

2. For the birth and death process having parameters ߣ௜ ≡ ,ߣ ௜ߤ ≡  ߤ

)ܧ ௜ܶ) =
1
ߣ ൫1 + )ܧߤ ௜ܶିଵ)൯ 

 where ௜ܶ denotes the time, starting from state i, it takes or the process to enter state 
݅ + 1, ݅ ≥ 0. 

 

CONTINUOUS TIME MARKOV CHAINS 

DEFINITIONS AND PROPERTIES 

 Consider a continuous-time stochastic process {ܺ(ݐ), ݐ ≥ 0} taking on values in the 
set of nonnegative integers.  In analogy with the definition of a discrete-time Markov chain, 
given earlier, we say that the process {ܺ(ݐ), ݐ ≥ 0} is a continuous-time Markov chain if for 
all ݏ, ݐ ≥ 0 and nonnegative integers ݅, ,(ݑ)ܺ,݆ 0 ≤ ݑ ≤  ,ݏ

ݐ)ܺ}ܲ + (ݏ = (ݏ)ܺ|݆ = (ݑ)ܺ,݅ = ,(ݑ)ݔ 0 ≤ ݑ ≤  {ݏ

ݐ)ܺ}ܲ + (ݏ = (ݏ)ܺ|݆ = ݅}. 

 In other words, a continuous-time Markov chain is a stochastic process having the 
Markovian property that the conditional distribution of the future states at time t + s, given 
the present state at t and all past states depends only on the present state and is independent of 
the past.  If, in addition ܲ{ܺ(ݐ + (ݏ = (ݏ)ܺ|݆ = ݅} is independent of s, then the continuous-
time Markov chain is said to have stationary or homogenous transition probabilities.  All 
Markov chains we consider will be assumed to have stationary transition probabilities. 

 Suppose that a continuous-time Markov chain enters state i at some time, say time 0, 
and suppose that the process does not leave state i (that is, a transition does not occur) during 
the next s time units.  What is the probability that the process will not leave state i during the 
following t time units? 

 To answer this, note that as the process is in state i at time s, it follows, by the 
Markovian property, that the probability it remains in that state during the interval [s, s + t] is 
just the (unconditional) probability that it stays in state i for at least t time units.  That is, if 
we let ߬௜denote the amount of time that the process stays in state i before making a transition 
into a different state, then 

ܲ{߬௜ > ݏ + ௜߬|ݐ > {ݏ = ܲ{߬௜ >  {ݐ

for all ݏ, ݐ ≥ 0.  Hence, the random variable ߬௜ is memoryless and must thus be exponentially 
distributed. 

 The above gives us a way of constructing a continuous-time Markov chain.  Namely, 
it is a stochastic process having the properties that each time it enters state i: 
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(i) the amount of time it spends in that state before making a transition into a different 
state is exponentially distributed with rate say ݒ௜; and 

(ii) when the process leaves state i, it will next enter state j with some probability, call it 
௜ܲ௝, when ∑ ௜ܲ௝ = 1௝ୀଵ . 

A state i for which ݒ௜ = ∞ is called an instantaneous state since when entered it is 
instantaneously left.  Whereas such states are theoretically possible, we shall assume 
throughout that 0 ≤ ௜ݒ < ∞ for all i.  (If ݒ௜ = 0, then state i is called absorbing since 
once entered it is never left). 

DEFINITION: 

Hence, for our purposes, a continuous-time Markov chain is a stochastic process that moves 
from state to state in accordance with a (discrete-time) Markov chain, but is such that the 
amount of time it spends in each state, before proceeding to the next state is exponentially 
distributed.  In addition, the amount of time the process spends in state i, and the next state 
visited, must be independent random variables.  For if the next state visited were dependent 
on ߬௜ , then information as to how long the process has already been in state i would be 
relevant to the prediction of the next state – and this would contradict the Markovian 
assumption. 

A continuous-time Markov chain is said to be regular if, with probability 1, the n umber of 
transitions in any finite length of time is finite.  An example of a non-regular Markov chain is 
the one having 

௜ܲ,௜ାଵ = ௜ݒ   ,1 = ݅ଶ. 

It can be shown that this Markov chain – which always goes from state i to i + 1, spending an 
exponentially distributed amount of time with mean 1/݅ଶ  in state i – will, with positive 
probability, make an infinite number of transitions in any time interval of length, t, t> 0.  We 
shall assume from now on that all Markov chains considered are regular. 

Let ݍ௜௝ be defined by 

௜௝ݍ = ௜ݒ ௜ܲ௝,      all ݅ ≠ ݆ 

since ݒ௜ is the rate at which the process leaves state i and ௜ܲ௝ is the probability that it then 
goes to j, it follows that ݍ௜௝ is the rate when in state i that the process makes a transition into 
state j; and in fact we call ݍ௜௝ the transition rate from i to j. 

Let us denote by ௜ܲ௝(ݐ) the probability that a Markov chain, presently in state i, will be in 
state j after an additional time. 

௜ܲ௝(ݐ) = ݐ)ܺ}ܲ + (ݏ = (ݏ)ܺ|݆ = ݅}. 

Definitions: 

 ௜௝ is the transition rate from i  to jݍ (1)

 where ݍ௜௝ = ௜ݒ ௜ܲ௝,      all ݅ ≠ ݆ 

  .ଵ is the rate at which the process leaves iݒ (2)
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SECTION 4 

CHAPMAN-KOLMOGOROV EQUATIONS 

The n-Step Transition Probabilities  

 By definition, the n-step transition probabilities ௜ܲ௝
௡  is the probability that a process in 

state i will be in state j after n additional transitions. 

(*) That is, ௜ܲ௝
௡ = ܲ{ܺ௡ା௞ = ݆|ܺ௞ = ݅}    ݊ = 0, ݅, ݆ ≥ 0 

The Chapman-Kolmogorov Equations 

 The C-K equations provide a method for computing these n-step transition 
probabilities.  These equations are given by: 

(**)  

௜ܲ௝
௡ା௠ = ෍ ௜ܲ௞

௡
௞ܲ௝
௠

ஶ

௞ୀ଴

  for all ݊,݉ ≥ 0, all ݅, ݆ 

REMARKS 

1. ௜ܲ௝ denotes the one-step transition probabilities   

2. ܲ′௜௝ = ௜ܲ௝ from (*). 

3. Observe that  ௜ܲ௞
௡

௞ܲ௝
௠ represents the probability that starting in i the process will go to 

state j in n + m transitions through a path which takes it into k at the nth transition. 

Proof of C-K Equations 

 Using remark (3) above, we now sum over all intermediate states k yields the 
probability that the process will be in state j after n + m transitions.  We have: 

 ௥ܲ௝
௡ା௠ = ܲ{ܺ௡ା௠ = ݆|ܺ଴ = ݅} 

௜ܲ௝
௡ା௠ = ෍ܲ

ஶ

௞ୀ଴

{ܺ௡ା௠ = ݆,ܺ௡ = ݇ |ܺ଴ = ݅} 

                         = ෍ܲ
ஶ

௞ୀ଴

{ܺ௡ା௠ = ݆, |ܺ௡ = ݇ ,ܺ଴ = ݅}ܲ{ܺ௡ = ݇ ,ܺ଴ = ݅} 

  

                         = ෍ ௞ܲ௝
௡

௜ܲ௞
௠

ஶ

௞ୀ଴
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Matrix of n-step transition Probabilities: (࢔)ࡼ 

 Letܲ(௡) denote the matrix of n-step transition probabilities ௜ܲ௝
௡  then the C-K Equation 

given by (**) asserts thatܲ(௡)ା௠ = ܲ(௡)ܲ(௠). 

In particular,ܲ(ଶ) = ܲ(ଵାଵ) = ܲ.ܲ = ܲଶ 

By induction, 

ܲ(௡) = ܲ(௡ିଵାଵ) = ܲ௡ିଵܲଵ = ܲ௡ 

That is, the n-step transition matrix may be obtained by multiplying the matrix P by itself n 
times. 

 

SOME NOTES ON MARKOV CHAIN 

(1) Irreducible Property: We say that the Markov chain is irreducible if there is only 
one class – i.e. if all states communicate with each other. 

 

CHAPMAN-KOLMOGOROV EQUATIONS AND CLASSIFICATION OF STATES 

 The nth-step transition probabilities ௜ܲ௝
௡  is the probability that a process in state i will 

be in state j after n additional transitions, that is, 

௜ܲ௝
௡ = ܲ{ܺ௡ା௠ = ݆|ܺ௠ = ݅},    ݊ ≥ 0,   ݅, ݆ ≥ 0. 

Of course, ௜ܲ௝
ᇱ∗ = ௜ܲ௝.  The Chapman-Kolmogorov equations provide a method for computing 

these n-step transition probabilities.  These equations are: 

௜ܲ௝
௡ା௠ = ෍ ௜ܲ௞

௡
௞ܲ௝
௠

௫

௞ୀ଴

for all   ݊,݉ ≥ 0,   all ݅, ݆                 (1) 

and are established by observing that 

 ௜ܲ௝
௡ା௠ = ܲ{ܺ௡ା௠ = ݆|ܺ଴ = ݅} 

  

                         = ෍ܲ{ܺ௡ା௠ = ݆,ܺ௡ = ݇|ܺ଴ = ݅}
ஶ

௞ୀ଴

 

  

                       = ෍ܲ{ܺ௡ା௠ = ݆| ܺ௡ = ݇,ܺ଴ = ݅}
ஶ

௞ୀ଴

ܲ{ܺ௡ = ݇| ܺ଴ = ݅} 

  

                      = ෍ ௞ܲ௝
௠

ஶ

௞ୀ଴
௜ܲ௞
௡  
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If we let ܲ(௡) denote the matrix of n-step transition probabilities ௜ܲ௝
௡ , then Equation (1) asserts 

that ܲ(௡)ା௠ = ܲ(௡).  ܲ(௠) 

where the dot represents matrix multiplication.  Hence  

ܲ(௡) = ܲ .ܲ(௡ିଵ) = ܲ.ܲ.ܲ(௡ିଶ) = ⋯ = ܲ௡, 

and thus ܲ௡  may be calculated by multiplying the matrix P by itself n times. 

Illustrative Examples 

 Consider Example 2.1 in which the weather is considered as a two-state Markov 
chain.  If α = 0.7 and β = 0.4, then calculate the probability that it will rain four days from 
today given that it is raining today. 

Solution: The one-step transition probability matrix is given by ܲ = ቀ0.7 0.3
0.4 0.6ቁ 

Hence, ܲ(ଶ) = ܲଶ = ቀ0.7 0.3
0.4 0.6ቁ ቀ

0.7 0.3
0.4 0.6ቁ 

  = ቀ0.61 0.39
0.52 0.48ቁ 

ܲ(ସ) = ൫ܲ(ଶ)൯
ଶ

= ቀ0.61 0.39
0.52 0.48ቁ ቀ

0.61 0.39
0.52 0.48ቁ 

 = ቀ0.5749 0.4251
0.5668 0.4332ቁ 

Hence the required probability ଴ܲ଴
ସ  equals 0.5749 

Example 2: Consider Example 2.4.  Given that it rained on Monday and Tuesday, what is the 
probability that it will rain on Thursday? 

Solution: The two-step transition matrix is given by  

ܲ(ଶ) = ܲଶ = ቌ
0.7 0
0.5 0

0.3 0
0.5 0

0 0.4
0 0.2

0 0.6
0 0.8

ቍቌ
0.7 0
0.5 0

0.3 0
0.5 0

0 0.4
0 0.2

0 0.6
0 0.8

ቍ 

= ቌ
0.49 0.12
0.35 0.20

0.21 0.18
0.15 0.30

0.20 0.12
0.10 0.16

0.20 0.48
0.10 0.64

ቍ 

Since rain on Thursday is equivalent to the process being in either state 0 or state 1 on 
Thursday, the required probability is given by ଴ܲ଴

ଶ + ଴ܲଵ
ଶ = 0.49 + 0.12 = 0.61 . 
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STOCHASTIC PROCESS   STS 461 

CLASSIFICATION OF STATES 

Introduction  

 In order to analyze precisely the asymptotic behavior of the Markov chain process, we 
need to introduce some principles of classifying states of a Markov chain. 

Properties to be classified include: Accessible, Communicate, Aperiodic, Recurrent, 
Transient and Irreducible.  Definitions of these properties now follow: 

 State j is said to be Accessible from state i if for some ݊ ≥ 0, ௜ܲ௝
௡ > 0.  Two states i  

and j accessible to each other are said to Communicate, and we write ݅ ⟷ ݆. 

Proposition 4.2.1 

Communication is an equivalence relation.  That is: 

(i) ݅ ⟷ ݅; 

(ii) if ݅ ⟷ ݆, then ݆ ⟷ ݅; 

(iii) if ݅ ⟷ ݆, and ݆ ⟷ ݇, then ݅ ⟷ ݇. 

Proof: The 1st two parts follow trivially from the definition of communication.  To prove (iii) 
suppose that ݅ ⟷ ݆, and ݆ ⟷ ݇, then there exists m, n such that ௜ܲ௝

௠ > 0, ௝ܲ௞
௡ > 0.  Hence,  

௜ܲ௞
௠ା௡ = ෍ ௜ܲ௥

௠
௥ܲ௞
௡

ஶ

௥ୀ଴

≥ ௜ܲ௝
௠

௝ܲ௞
௡ > 0 

Similarly, we may show there exists an s for which ௞ܲ௜
௦ > 0.  Two states that communicate 

are said to be in the same class, and by proposition 4.2.1, any two classes are either disjoint or 
identical.  We say that the Markov chain is Irreducible if there is only one class – that is, if 
all states communicate with each other. 

 State i is said to have period d if ௜ܲ௜
௡ = 0, whenever n is not divisible by d and d is the 

greatest integer with this property.  (If ௜ܲ௜
௡ = 0 for all n> 0, then define the period of i to be 

infinite).  A state with period 1 is said to be Aperiodic.  Let d(i) denote the period of i, we 
can show that periodicity is a class property. 

Recurrent (or Persistent): A state ݅ ∈ ܵ is said to be recurrent if ܲݎ(߬௜ < ∞) = 1 where ߬௜ 
is the number of steps it takes for the chain to finally visit i.  

Transient: A state ݅ ∈ ܵ is said to be transient if ܲݎ(߬௜ < ∞) < 1 where ߬௜  is the number of 
steps it takes for the chain to finally visit i.  
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RANDOM WALK 

Description 

 A one-dimensional (simple) random walk is a Markov chain whose state space is a 
finite or infinite subset ܽ,ܽ + 1, … , ܾ of the integers, in which the particle, if it is in state i, 
can in a single transition either stay in i or move to one of the adjacent states ݅ − 1, ݅ + 1. 

Transition Matrix of a Random Walk 

If the state space is taken as the nonnegative integers, the transition matrix of a 
random walk has the form 

ܲ =

⎣
⎢
⎢
⎢
⎢
⎡
଴ݎ ଴݌
ଵݍ ଵݎ
0 ଶݍ

0 0
ଵ݌ 0
ଶݎ ଶ݌

⋯
⋯
⋯

⋱ 0 ଵݍ
⋱

௜݌ 0
⋮
⎦
⎥
⎥
⎥
⎥
⎤

 

where ݌௜ > 0, ௜ݍ > 0, ௜ݎ ≥ 0 and ݍ௜ + ௜ݎ + ௜݌ = 1,   ݅, 1,2, … (݅ ≥ 1) 

଴݌  ≥ ଴ݎ    ,0 ≥ 0, ଴ݎ + ଴݌ = 1. 

Specifically, if ܺ௡ = ݅ then, for ݅ ≥ 1, 

௡ାଵܺ}ݎܲ = ݅ + 1|ܺ௡ = ݅} = ௜ܲ:ܲݎ{ܺ௡ାଵ = ݅ − 1|ܺ௡ = ݅} =  ௜ݍ

௡ାଵܺ}ݎܲ = ݅|ܺ௡ = ݅} = ௜ݎ . 

REMARKS: 

1. We have a symmetric random walk (which is a Markov chain) if 

  ௜ܲ,ூାଵ = ଵ
ଶ

= ௜ܲ,௜ିଵ,   ݅ = 0, ±1, ±2, … 

That is, in each time unit the symmetric random walk is likely to take a unit step 
either to the left or to the right. 

2. A Markov chain whose state space is given by the integers ݅ = 0, ±1, ±2, … is said to 
be a random walk, if for some number 0 < ݌ < 1 

  ௜ܲ,௜ାଵ = ܲ = 1 − ௜ܲ,௜ିଵ ,   ݅ = 0, ±1, … 

SOME EXAMPLES 

1. The designation random walk seems apt since a realization of the process describes 
the path of a person (suitably intoxicated) moving randomly one step forward or 
backward. 

2. Gambler’s Ruin 

 The fortune of a player engaged in a series of contests is often depicted by a random 
walk process.  Specifically, suppose an individual (player A) with fortune k plays a 
game against an infinitely rich adversary and has probability ݌௞of winning one unit 
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and probability ݍ௞ = 1 − ݇)௞݌ ≥ 1) of losing one unit in each contest (the choice of 
the contest at each stage may depend on his fortune), and ݎ଴ = 1.  The process {ܺ௡}, 
where ܺ௡  represents his fortune after n contests, is a random walk.  Note that once the 
state 0 is reached (i.e. player A is wiped out), the process remains in that state.  This 
process is also commonly known as the “gambler’s ruin”. 

 REMARKS 

(i) The random walk corresponding to ݌௞ = ,݌ ௞ݍ = 1 − ݌ = ݇ for all ݍ ≥ 1 and 
଴ݎ = 1  with p>q describes the situation of identical contests with a finite 
advantage to player A in each individual trial. 

(ii) It can be proved that with probability (݌/ݍ)௫బ , where ݔ଴ represent his fortune 
at time 0, player A is ultimately ruined (his entire fortune is lost), while with 
probability 1 −  .௫బ, his fortune increases, in the long run without limit(݌/ݍ)

3. Consider a particle which is initially at point x = 0 on the x-axis.  At each subsequent 
time unit, it moves a unit distance to the right with probability p or a unit distance to 
the left with probability q where p + q = 1.  At time n, let the position of a particle be 
ܺ௡ .  This is an example of random walk. 

4. A simple random walk can be described as a Markov chain {ܵ௡} that is such that 

ܵ௡ = ෍ܺ௞

௡

௞ୀଵ

 

 where ܺ௞  are i.i.d. such that ܲ(ܺ௞ = 1) = ܲ,   ܲ(ܺ௞ = −1) = ݍ = 1 −  .݌

 This Markov chain (simple random walk) is irreducible, so it has to be either 
transient, null recurrent or positive recurrent and this will depend on p. 

The n-step Transition Probabilities 

We use the following proposition: 

State i  is  

transient if   

  

෍ ௜ܲ௜
(௡) < ∞

ஶ

௡ୀଵ

 

recurrent if 

෍ ௜ܲ௜
(௡) = ∞

ஶ

௡ୀଵ

 

Consider any state i and note that ௜ܲ௜
(ଶ௡ିଵ) = 0,   ݊ = 1,2, … since we cannot make it back to a 

state in an odd number of steps.  To make it back in 2n steps, we must take n steps up and n 
steps down, which has probability 
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௜ܲ௜
(ଶ௡) = (2݊)ܲ௡(1 −  ௡(݌

     = (ଶ௡)!
௡!௡!

൫1)݌ − ൯(݌
௡

 

     = ൫ସ௣(ଵି௣)൯
೙

√గ௡
 

where we have used Stirling’s formula which says ݊! ~݊௡√݊݁ି௡√2ߨ. 

 

EXPECTED VALUE AND VARIANCE OF A RANDOM WALK 

Let us consider the random walk {ܺ௡ , ݊ ≥ 0}.  We want to show that: 

(௡ܺ)ܧ  = ݌)݊ −  (ݍ

and   ܸ(ܺ௡) =  .ݍ݌4݊

We make use of the following lemma: 

Let ଴ܻ be a fixed positive integer and { ௡ܻ,݊ ≥ 1} be independent and identically distributed 
jump variables in a random walk {ܺ௡, ݊ ≥ 0} such that  

   ܺ௡ = ଴ܻ + ଵܻ + ଶܻ + ⋯+ ௡ܻ      (1) 

Consider the above as a random walk, we can write equation (1) as 

ܺ௡ିଵ = ଴ܻ + ଵܻ + ⋯+ ௡ܻ 

    ⟹  ܺ௡ = ܺ௡ିଵ + ௡ܻ, ݊ ≥ 1     (2) 

in general, where ௡ܻ  are i.i.d. rvs. 

From Equation (2) we obtain 

 ଵܺ = ܺ଴ + ଵܻ  
 ܺଶ = ଵܺ + ଶܻ 

= ܺ଴ + ଵܻ + ଶܻ 

⋮ 

ܺ௡ = ܺ଴ + ଵܻ + ଶܻ + ⋯+ ௡ܻ 

(௡ܺ)ܧ = ܧ ൭෍ ௞ܻ

௡

௞ୀଵ

൱ 

= )ܧ݊ ଵܻ)          (3) 

ܸ(ܺ௡) = ݎܸܽ ൭෍ ௞ܻ

௡

௜ୀଵ

൱ 

= )ݎܸܽ݊ ଵܻ)          (4) 
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But ܧ( ଵܻ) = ݌. 1 + ݍ.(1−) = ݌ −  .ݍ

)ܧ ଵܻ
ଶ) = +݌.1 ݍ.1 = ݌ +   ݍ

ܸ( ଵܻ) = )ܧ ଵܻ
ଶ)− )ܧ] ଵܻ)]ଶ 

 = ݌ + ݍ − ݌) −  ଶ(ݍ

 = 1 − ݌) − ଶ(ݍ +  ݍ݌4

 =  ݍ݌4

Hence ܧ(ܺ௡) = ݌)݊ −  (ݍ

and  ܸ(ܺ௡) =  .ݍ݌4݊

 

MORE DEFINITIONS 

1. Brownian Motion: (Definition) 

 A stochastic process {ܺ(ݐ), ݐ ≥ 0} is said to be a Brownian motion process if  

(i) ܺ(0) = 0 
(ii) {ܺ(ݐ), ݐ ≥ 0} has stationary and independent increments 
(iii) For every t> 0, X(t) is normally distributed with mean 0 and variance ߪଶݐ. 

Remarks: 

(a) Wiener process is another name for Brownian process. 

(b) Definition 2:Standard Brownian Motion: 

 When ߪ = 1, the process is called standard Brownian motion. 

(c) A Martingale process is a standard Brownian motion. 

Definition 3: Symmetric Random Walk 

A symmetric random walk is a Markov chain with  

௜ܲ,ூାଵ =
1
2 = ௜ܲ,௜ିଵ ,   ݅ = 0, ±1, … 

That is, in each time unit, the symmetric random walk is likely to take a unit step either to the 
left or to the right. 

Definition 3A: A Markov chain whose state space is given by the integers 0, ±1, ±2, … is 
said to be a random walk, if, for some number 0 <p< 1, 

௜ܲ,ூାଵ = ݌ = 1 − ௜ܲ ,௜ିଵ,   ݅ = 0, ±1, … 
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Remark 

A Markov chain having transition probabilities  

௜ܲ,ூାଵ = ݌ = 1 − ௜ܲ,௜ିଵ ,   ݅ = 1,2, … ,ܰ − 1 

଴ܲ଴ = ேܲே = 1. 

States 0 and Nare called ABSORBING states since once entered they are never left. 

 

A GAMBLING MODEL 

 Consider a gambler who, at each play of the game, either wins N1 with probability p 
or loses N1 with probability 1 – p(= q).  If we suppose that our gambler quits playing either 
when he goes broke or he attains a fortune of NN, then the gambler’s fortune is a Markov 
chain having transition probabilities  

௜ܲ,ூାଵ = ݌ = 1 − ௜ܲ,௜ିଵ ,   ݅ = 1,2, … ,ܰ − 1 

଴ܲ଴ = ேܲே = 1. 

States 0 and N are called Absorbing states since once entered they are never left. 

Remark 

The above is a finite state random walk with absorbing barriers (states 0 and N). 

Further Remarks on Random Walk 

(1) ଴ܲ଴
ଶ௡ିଵ = 0, ݊ = 1,2, … 

(2) ଴ܲ଴
ଶ௡ = ቀ2݊

݊ ቁܲ
௡(1 − ௡(݌ = (ଶ௡)!

௡!௡!
൫1)݌ − ൯(݌

௡
,   ݊ = 1,2, … 

  

଴ܲ଴
ଶ௡ = ෍

(2݊)!
݅! ݅! (݊ − ݅)! (݊ − ݆)! ൬

1
4൰

ଶ௡௡

௜ୀ଴

 

= ෍
(2݊)!
݊!݊!

݊!
(݊ − ݅)! ݅!

݊!
(݊ − ݅)! ݅! ൬

1
4൰

ଶ௡௡

௜ୀ଴

 

= ൬
1
4൰

ଶ௡

ቀ2݊
݊ ቁ෍ቀ݊݅ ቁ ቀ

݊
݊ − ݅ቁ

௡

௜ୀ଴

 

   

= ቀଵ
ସ
ቁ
ଶ௡
ቀ2݊
݊ ቁቀ

2݊
݊ ቁ      (1) 

where the last equality uses the combinatorial identity 
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ቀ2݊
݊ ቁ෍ቀ݊݅ ቁ ቀ

݊
݊ − ݅ቁ

௡

௜ୀ଴

                                                                                                   (2) 
 

Now,  

ቀ2݊
݊ ቁ =

(2݊)!
݊!݊!  

  

                                     ≅
(2݊)ଶ௡ାଵ/ଶ݁ିଶ௡√2ߨ
݊ଶ௡ାଵ݁ିଶ௡(2ߨ)  

       ≅
4

݊ߨ√
 

From (1), we see that ଴ܲ଴
ଶ௡ ≅ ଵ

గ௡
 which shows that ∑ ଴ܲ଴

ଶ௡ = ∞௡ , and thus all states are 
recurrent (or persistent). 

 

6  Queueing Processes 

6.1 INTRODUCTION 

A Queueing Process: Is a process in which customers arrive at some designated place 
where a service of some kind is being rendered.  It is assumed that the time between 
arrivals, or inter-arrival time, and the time that is spent in providing service for a 
given customer are governed by probabilistic laws. 

It is assumed in this system/model that customers upon arrival are made to wait queue 
until it is their turn to be served.  Once served they are generally assumed to leave the 
system. 

In this system, we will be interested in determining, among other things, such 
quantities as the average number of customers in the system (or in the queue) and the 
average time a customer spent in the system (or spent waiting in the queue). 

 

6.2 TYPES OF QUEUEING SYSTEM 

We will consider queueing systems in which all of the defining probability 
distributions are assumed to be exponential.  For instance, the simplest of such model 
is to assume that customers arrive in accordance to a Poisson process and (thus the 
inter-arrival times are exponentially distributed) and are served one at a time by a 
single server who takes an exponentially distributed length of time for each service.  
These exponential queue models are special examples of continuous-time Markov 
chain. Specifically, we describe the following queueing models. 
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6.2.1 The Queueing System M/M/1: In this system, the first M refers to the fact that the 
inter-arrival process is Markovian (since it is a Poisson process) and the second M 
refers to the fact that the service distribution is exponential (and, hence, Markovian).  
The 1 refers to the fact that there is a single server. 

Theory: Suppose that customers arrive at a single-server service station in accordance 
with a Poisson process having rate ߣ.  That is, the times between successive arrivals 
are i.i.d. exponential random variables having mean 1 ⁄ߣ .  Service times are i.i.d. 
exponential with rate ߤ and independent of the arrivals (note that ߤ does not denote 
the mean here; the mean service time is 1 ⁄ߤ ).  If the server is busy, incoming 
customers will wait in line and as soon as a service is completed, the next begins.   

If we let X(t) denote the number in the system at time t then {ܺ(ݐ), ݐ ≥ 0} is a birth 
and death process with   

௡ߤ  = ݊   ,ߤ ≥ 1 

௡ߣ  = ݊   ,ߣ ≥ 0 

6.2.2 The Queueing System M/M/S: This is a multiserver exponential queueing system.  
Consider an exponential queueing system in which there are S servers available, each 
serving at rate ߤ.  An entering customer first waits in line and then goes to the first 
free server.  This is a birth and death process with parameters 

௡ߤ  = ൝
,ߤ݊ 1 ≤ ݊ ≤ ݏ
,ߤݏ ݊ > ݏ  

௡ߣ  = ݊           ,ߣ ≥ 0 

6.2.3 The Queueing System M/D/1: This is an example of a non-Markovian queueing 
system.  In this system, the service times are deterministic.  Also, both interarrival 
times and service times have some general distribution D. 

6.2.4 The Queueing System G/G/1: In this system which is non-Markovian, both 
interarrival times and service times have some general distribution not necessarily 
exponential. 

 

6.3 PROPERTIES OF QUEUEING SYSTEM 

In this section, we consider and illustrate with an example the stationary distribution 
of a queueing system.  When a queueing system has a stationary distribution, it is said 
to be in equilibrium.  Let us illustrate this concept for M/M/1 queueing system. 

 Example 

 Consider the M/M/1 queue with ߩ < 1 in equilibrium  
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What is the expected number of customers in the system? 
What is the expected queue length? 
When a customer arrives, what is the probability that she does not have to wait in 
line? 
When a customer arrives, what is her expected waiting time until service? 
When a customer arrives, what is her expected total time in the system? 

Let us introduce some random variables.  Thus, let 

N = the number of customers in the system 

Q = the queue length 

W = the waiting time until service 

T = the total time spent in the system 

For (a), we know that N has distribution 

௞ߨ = (1 − ,௞ߩ(ߩ ݇ = 0,1, … 

the geometric distribution including 0 with success probability 1−  and we know ,ߩ
that  

(ܰ)ܧ    = ఘ
ଵିఘ

  which answers (a) 

 is the traffic intensity ߩ
Equilibrium distribution {ߨ௡} = is given by ߨ௡ = (1 − ,௡ߩ(ߩ ݊ ≥ 0,   ݊ = 0,1, … 

(b) Note that 

   ܳ = ቄ 0 if  ܰ = 0
ܰ − 1 if  ܰ ≥ 1 

and hence  

ܲ(ܳ = 0) = ଴ߨ +  ଵߨ

ܲ(ܳ = ݇) = ,௞ାଵߨ ݇ ≥ 1 

which gives 

[ܳ]ܧ = ෍݇ܲ(ܳ = ݇) = ෍݇ߨ௞ାଵ

∞

௞ୀଵ

∞

௞ୀ଴

 

     

= ෍݇(1ߩ − ௞ߩ(ߩ = [ܰ]ܧߩ =
∞

௞ୀଵ

ଶߩ

1 −  ߩ
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The answer to (c) is simply ߨ଴ = 1 −  ߩ

For (d), note that ܹ = 0 if the system is empty and the sum of ߤ i.i.d. exponential. 
With mean  1/ߤ if there are N customers in the system (keep in mind that ߤ does not 
denote the mean but the service rate). 

[ܹ]ܧ = [ܰ]ܧ
1
ߤ =

ߩ
1)ߤ −  (ߩ

 For (e), let S be a service time and note that ܶ = ܹ + ܵ to obtain 

[ܶ]ܧ =
ߩ

1)ߤ − (ߩ +
1
ߤ =

1
1)ߤ −  (ߩ
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