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LECTURE ONE 

STATISTICAL INFERENCE PROCEDURES 

INTRODUCTION 

 Statistics is the study of how information should be employed to reflect on, and give 

guidance for action in a practical situation involving uncertainty.  Any statistical procedure 

which utilizes information to obtain a description of the practical situation (through a 

probability model) is an inferential procedure.  The study of such procedure will be termed 

statistical inference.  A procedure with the wider aim of suggesting action to be taken in the 

practical situation, by processing information relevant to that situation, is a decision-making 

procedure.   The study of such procedures is termed statistical decision-making.   

 A decision problem means the choice between several possible courses of action: this 

will have observable consequences, which may be used to test its rightness.  An inference 

concerns the degree of belief, which need not have any consequences, though it may.  For 

example, the question “Shall I eat this apple?: is a matter of decision, with possible highly 

satisfactory or uncomfortable outcomes. 

 “Is this apple green?” is a question of belief.  A statistical inference carries us from 

observations to conclusions about the population sampled.  Statistical inferences involve the 

data, a specification of the set of possible populations sampled, a question concerning the true 

populations.  The theory of statistical decision deals with the action to take on the basis of 

statistical information.  Decisions are based not only the considerations listed for inferences, 

but also on an assessment of the losses resulting from wrong decisions, and on prior 

information, as well as, on a specification of a set of possible decisions. 

Point Estimation 

 Consider a random sample of size n from a population with p.d.f, 푓(푥,휃).  The term 

random sample may refer either to the set of random variables 푋 ,푋 , … ,푋  or to the 

observed data 푥 ,푥 , … , 푥 . 

Definition 1: Statistic 

  A function of the random sample, 푇 = 푡(푋 ,푋 , … ,푋 ), that does not depend on any 

random parameter is called a statistic.  A statistic is also a random variable, the distribution of 
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which depends on the distribution of a random sample and on the form of the function 

푡(푋 ,푋 , … ,푋 ).  A particular value of the estimator, T is called an estimate. 

Loss Function and Risk Function 

 When an estimate differs from the true value of the parameter being estimated, one 

may consider the loss involved to be a function of this difference.  We shall assume that the 

loss increases as the square of the difference.  In this case, the means square error (MSE) 

criterion considers the average squared error loss associated with the estimator. 

Definition 2: Loss Function 

 If T is an estimator of 푡(휃), then a loss function is any real-valued function 퐿(푡, 휃), 

such that 

   퐿(푡; 휃) ≥ 0  for every 푡      (1.1) 

and    퐿(푡; 휃) = 0 when 푡 = 푡(휃)      (1.2) 

Definition 3: Risk Function 

 The risk function is defined as the expected value of the loss function.  That is 

   푅 (휃) = 퐸[퐿(푇;  휃)]       (1.3) 

 If a parameter or a function of a parameter is being estimated, one may choose an 

appropriate loss function depending on the problem, and then try to find an estimator, the 

average loss (or risk) function that is small for all possible values of the parameter.  If the loss 

function is taken to be squared error, then the risk becomes the MSE.  Another reasonable 

loss function is absolute error, whose risk function is given by 

  푅 (휃) = 퐸|푇 − 푡(휃)|       (1.4) 

Definition 4: Admissible Estimator 

 An estimator T1 is a better estimator than T2 iff 

(i) 푅 (휃) ≤ 푅 (휃)  for all 휃 ∈ Ω and 

(ii) 푅 (휃) < 푅 (휃) for at least one 휃. 

An estimator T is admissible iff there is no better estimator. 
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LECTURE TWO 

DECISION THEORY (DT) APPROACH 

 In DT, the decision maker chooses an action ‘a’ from a set of all possible actions 

based on the observation of a random variable, or data, X, which has a probability distribution 

that depends on a parameter 휃 called the state of nature.  The set of all possible values of 휃 is 

denoted by (H).  The decision is made by a statistical decision function d, which maps the 

sample space (the set of all possible data values) onto the action space A.  Denoting the data 

by X, the action is random and is given as a = d(X).   

 By taking the action a = d(X), the decision makers incurs a loss, 퐿(휃;  푑(푋)), which 

depends on both 휃 and 푑(푋).  The comparison of different decision functions is based on the 

risk function, or expected loss, 

   푅(휃;  푑(푋)) = 퐸[퐿(휃;  푑(푋))]     (1.1) 

Here, the expectation is taken with respect to the probability distribution of X, which depends 

on 휃.  Note that the risk function depends on the true state of nature, 휃, and on the decision 

function, 푑(푋).  Decision theory is concerned with methods of determining “good” decision 

functions, i.e. decision functions that have small risk 

2. Bayes Rule and Minimax Rule 

2.1 Minimax Rule (MR) 

The MR proceeds as follows: for a given decision function 푑(푋), consider the 

worst that the risk could be: 

max
∈( )

[푅(휃)푑(푋)]. 

Then choose a decision function, d*, that minimizes this maximum risk 

min max
∈( )

푅 휃;  푑(푋)  

Such a decision rule, if it exists, is called a minimax rule. 
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The weakness of the minimax method is that it is a very conservative procedure.  It 

places all its emphasizes on guarding against the worst possible case.  The worst case may 

not likely occur. 

To make this idea more precise, we can assign a probability distribution to the state of 

nature 휃; this distribution is called the prior distribution of 휃.  Given such a prior distribution, 

we can calculate the Bayes risk of a decision function d: 

퐵(푑) = 퐸[푅(퐻); 푑(푋)] 

Here the expectation is taken with respect to the probability distribution of both (퐻) and X.  

By the property of iterated conditional expectation, the Bayes risk can be expressed as 

퐵(푑) = 퐸 퐸 퐿 휃,푑(푋) |(퐻) = 휃  

where the inner expectation is conditional on (퐻) = 휃 and the outer expectation is taken with 

respect to the distribution of (퐻).  The Bayes risk is the average of the risk function with 

respect to the prior distribution of 휃.  A function that minimizes the Bayes risk is called a 

Bayes rule. 

Example 1: Consider a loss function and probability distribution below: 

 (H) 
A 휃  휃  
a1 0 400 
a2 100 0 

 

 

 

We shall consider the following four decision rules: 

 

 

 

 

X  휃  휃  
x1 0.60 0.10 
x2 0.30 0.20 
x3 0.10 0.70 

d  푥  푥  푥  
d1 a1 a1 a1 
d2 a1 a2 a2 
d3 a1 a1 a2 
d4 a2 a2 a2 
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 To apply the minimax rule, we compute the risk of each of the decision functions in 
the case where 휃 = 휃  and in the case where 휃 = 휃 .  For the case 휃 = 휃 , each risk function 
is computed as  

푅 휃 , 푑 (푋) = 퐸 휃 , 푑 (푋)  

       

= 퐿 휃 ,푑 (푋) 푃(푋 = 푥; |휃 = 휃 ) 

We have 

푅 휃 ,푑 (푋) = 0(0.60) + 0(0.30) + 0(0.10) = 0 

푅 휃 ,푑 (푋) = 0(0.60) + 100(0.30) + 100(0.10) = 40 

푅 휃 ,푑 (푋) = 0(0.60) + 0(0.30) + 100(0.10) = 10 

푅 휃 ,푑 (푋) = 100(0.60) + 100(0.30) + 100(0.10) = 100 

Similarly, for 휃 = 휃 , we have 

푅 휃 ,푑 (푋) = 400 ; 푅 휃 , 푑 (푋) = 40; 푅 휃 , 푑 (푋) = 120; 푅 휃 , 푑 (푋) = 0. 

 To find the minimax rule, we note that the maximum values of 푑 , 푑 , 푑  and 푑  are 

400, 40, 120 and 100, respectively, thus, 푑  is the minimax rule. 

Bayes Rule 

 Suppose we assume a prior distribution 휋(휃 ) = 0.80 and 휋(휃 ) = 0.20. Using this 

prior distribution and the risk functions computed above, we find for each decision function 

its Bayes risk, 

퐵(푑) = 퐸[푅(휃, 푑(푋))] 

= 푅 휃 ,푑(푋)휋(휃 ) + 푅 휃 , 푑(푋) 휋(휃 )  

Thus we have 

퐵(푑 ) = 0(0.8) + 400(0.2) = 80 

퐵(푑 ) = 40(0.8) + 40(0.2) = 40 
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퐵(푑 ) = 10(0.8) + 120(0.2) = 32 

퐵(푑 ) = 100(0.8) + 0(0.2) = 80 

Given Bayes rule = d3 

Given 푓(푥;휃) =
!

, 푥 = 0,1, … 

  = 0 

(i) Calculate the risk function if 

퐿(휃;푑(푋)) = (푑(푋) − 휃) 휃⁄  for d(x) = cx 

(ii)   Calculate the risk if c = N11 and 휃 = 0.10 

(iii)  Determine the value of c for which the risk function is minimum. 

(푑(푋) − 휃)
휃 = (푐푥 − 휃) 휃⁄  

                     = (푐 푥 − 2휃푐푥 + 휃 ) 

                     = − 2푐푥 + 휃  

푅(휃;푑(푋)) = 퐸[퐿(휃; 푑(푋))] 

                   = 퐸 − 2푐푥 + 휃  

   = 푐 − 2푐휆 + 휃 

   = 푐 − 2푐휃 + 휃 

   = 푐 (휃 + 1)− 2푐휃 + 휃 

   = 푐 + 휃(푐 − 2푐 + 1) 

    = 푐 + 휃(푐 − 1) . 

Example 1 

Given 푓(푥/휃) =
!

, 푥 = 0,1, … 

Calculate 퐿(휃, 푑) = (푑 − 휃)  for 푑(푋) = 퐶푋 

= 퐶푋 so that 
(퐶푋 − 휃)

휃 =
퐶 푋 − 2퐶푋휃 − 휃

휃  

푅(휃,푑) = 푋 푓(푋/푢) = 휆 + 휆 



8 
 

푅(휃,푑) =
1
휃

{퐶 (휆 + 휆) − 2퐶휃휆 + 휃 } 

=
1
휃

{퐶 휃 + 퐶 휃 − 2퐶휃 + 휃 } 

= 퐶 휃 + 퐶 − 2퐶휃 + 휃 

= 퐶 + 퐶 휃 − 2퐶휃 + 휃 

= 퐶 + 휃(퐶 − 2퐶 + 1) 

= 퐶 + 휃(퐶 − 1)  

Example 2 

Given 푓(푥/휃) = 2
푥 휃 (1 − 휃) , 푥 = 0,1,2;   0 < 휃 < 1 

                        = 푛
푥 푝 푞  

and 퐿(휃,푑) = (푎 − 휃) , 

calculate 푅(휃,푑) for  (i) 푑(푋) = = ( ) =  

   (ii) 푑(푋) = =  

Find: 

(a) 푅 휃, 푑(푋)  when 푑(푋) = 푥/2 

(b) The result in (a) if 푝 = 푞 = . 

푓(푥/휃) = 2
푥 휃 (1− 휃)  

퐿(휃, 푎) =
푋
2 − 휃 =

푋
2 − 휃푋 + 휃  

푥푓 (푥/휃) = 푛(푛 − 1)푝 + 푛푝 = 푛(푛 − 1)휃 + 푛휃 

푅(휃,푑) =
1
4

[푛(푛 − 1)휃 + 푛휃] − 휃푋 + 휃  

         = [푛 휃 − 푛휃 + 푛휃] − 휃푋 + 휃  
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         = 휃 − + − 2휃 + 휃  

         = −  

         = (1 − 휃). 

Example 3 

푓(푥/휃) =
푒 휃
푥! , 푥 = 0,1,2, … 

퐿(휃, 푑) = (푑 − 휃) /휃 

Find 푅(휃,푑) for 푑(푋) = 퐶푋 

Solution: 

(퐶푋 − 휃)
휃 =

(퐶 푥 − 2퐶푥휃 − 휃 )
휃  

푅(휃,푑) =
1
휃

(퐶 푥 − 2퐶푥휃 − 휃 )푒
휃
푥!  

 = {퐶 (휆 + 휆)− 2퐶휃휆 + 휃 } 

 = {퐶 (휃 + 휃) − 2퐶휃 + 휃 } 

 = 퐶 휃 + 퐶 − 2퐶휃 + 휃 

 = 퐶 + 퐶 휃 − 2퐶휃 + 휃 

 = 퐶 + 휃(퐶 − 2퐶 + 1) 

 = 퐶 + 휃(퐶 − 1)  
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EXERCISES 

(a) Given  푓(푥/휃) =
!

, 푥 = 0,1, … ,   휃 > 0 

 and  퐿(휃,푎) = (푎 − 휃) , 

(i) Calculate 푅(휃, 푑) for 푑(푋) = 푥 

(ii) Calculate 푅(휃, 푑) for 푑(푋) = 퐶푋 

퐿(휃, 푎) = (퐶푋 − 휃)  

   = 퐶 푋 −  

   = 퐶 푋 − 휃 + 휃 1 −  

    

푅(휃,푑) = 퐶 푋 − 휃 + 휃 1 −
1
푐

푒 휃
푥!  

= 퐶 푥
푒 휃
푥! − 휃 + 휃 1 −

1
푐  

(iii) 푓(푥/휃) = 2
푥 휃 (1 − 휃) ,   푋 = 0,1,2,    0 < 휃 < 1 

퐿(휃, 푎) = (푎 − 휃)  

Calculate 푅(휃, 푑) for 푑(푋) = . 

Q5 

퐿(휃, 푎) =
푥
푛 − 휃 =

푥
푛 −

2푥휃
푛 + 휃  

푥휃 (1 − 휃) = 푛(푛 − 1)푝 + 푛푝 

=
1
푛

(푛 푝 − 푢푝 + 푛푝) 

= 휃 −
휃
푛 +

휃
푛 − 2휃 + 휃  

=
휃
푛 −

휃
푛  

= (1 − 휃). 
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Q7 

푓
푥
휃 =

푒 휃
푥! , 푥 = 0,1, …,    

   퐿(휃, 푎) = (푎 − 휃) , 

Calculate 푅(휃, 푑) for 푑(푋) = 푥 

퐿(휃, 푎) = (푥 − 휃) = 푥 − 2푥휃 + 휃  

푥 푓(푥/휃) = 휆 + 휆 = 휃 + 휃 

∴    (푥 − 휃) 푓(푥/휃) = 휃 + 휃 − 2휃 + 휃  

= 휃.  
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LECTURE THREE 

SOME UNIVARIATE DISTRIBUTIONS 

1.0 Binomial Distribution 

 푓(푥) = 푛
푥 푝 (1 − 푝) , 푥 = 0,1,2, … ,푛     (1.1) 

          = 0, otherwise 

퐸(푋) = 푥푓(푥) = 푛
푥 푥 푛

푥 푝 (1 − 푝)  

          

         =
푛(푛 − 1)!

푥(푥 − 1)! (푛 − 푥)! 푥 푝 .  푝 (1 − 푝)  

 
        

      = 푢푝
(푛 − 1)!

(푥 − 1)! (푛 − 푥)!
푝 (1− 푝)  

          

   = 푢푝 푛 − 1
푡 푝 (1− 푝)  

  = 푢푝(1) = 푢푝            (1.2) 

퐸(푋 ) = 푛
푥 푥 푝 (1 − 푝)  

 

           = [푥(푥 − 1) + 푥]푝 (1 − 푝)  

          = 푥(푥 − 1) 푛
푥 푝 푞 + 푛푝, using (1.2) 

         = 푥(푥 − 1)
푛(푛 − 1)(푛 − 2)!

푥(푥 − 1)(푥 − 2)! (푛 − 푥)!푝 푝 푞 + 푛푝 

       = 푛(푛 − 1)푝
(푛 − 2)!

(푥 − 2)! (푛 − 푥)!푝 푞 + 푛푝 

       = 푛(푛 − 1)푝 푛 − 2
푡 푝 푞 + 푛푝 

퐸(푋 ) = 푛(푛 − 1)푝 (1) + 푢푝         (1.3) 

푉푎푟(푋) = 퐸(푋 ) − [퐸(푋)]  
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푉푎푟(푋) = 푛(푛 − 1)푝 + 푛푝 − [퐸(푋)]  

 = 푛 푝 − 푛푝 + 푛푝 − 푛 푝 , using (1.2) & (1.3)  

= 푛푝 − 푛푝   

= 푛푝(1 − 푝)  

= 푛푝푞     (1.4) 

 
 

2.0 POISSON DISTRIBUTION 

 푃(푋) = 푒 휆 |푥! ,    푥 = 0,1,2, …      (2.1) 

          = 0, otherwise 

  

             퐸(푋) = 푥푒 휆 |푥!  

         

                      = 푥푒 휆. 휆 |푥(푥 − 1)!  

                   = 푒 휆 (휆 − 1)|(푥 − 1)! 

   

                  = 푒 휆
휆
푡! ,    푡 = (푥 − 1) 

    = 푒 휆푒  

    = 휆            (2.2) 

     

          퐸(푋 ) = 푥 푒 휆 |푥!  

         

                     = [푥(푥 − 1) + 푥] 푒 휆 |푥!  

                   = 푥(푥 − 1)푒 휆 |푥! + 휆 ,    using (2.2) 
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                 = 푥(푥 − 1)푒 휆 휆 |푥(푥 − 1)(푥 − 2)! + 휆 

  

             = 푒 휆
휆

(푥 − 2)! + 휆 

  

          = 푒 휆
휆
푡!

 

+ 휆 

         = 푒 휆 푒 + 휆  

        = 휆 + 휆            (2.3) 

푉푎푟(푋) = 퐸(푋 ) − [퐸(푋)]  

  = 휆 + 휆 − (휆)  

  = 휆 + 휆 − 휆   

  = 휆            (2.4) 

 

Example: 

Given  푓(푥) = 푒 휃 /푥!, 푥 = 0,1, …,    and  퐿(휃,푎) = (푑 − 휃) /휃 

(i) Calculate the risk, 푅(휃,푑) for 푑(푋) = 퐶푋 

(ii) Determine the value of C for which 푅(휃,푑) is a minimum 

(iii) The minimum value of the risk. 

Solution  

1
휃

(퐶푥 − 휃) =
1
휃

(퐶 푥 − 2푥휃퐶 + 휃 ) 

 푅(휃, 푑) = 퐸 (퐶푥 − 휃)   

푅(휃,푑) =
1
휃

(퐶 푥 − 2퐶휃푥 + 휃 )
푒 휃
푥!  

                         = [퐶 (휆 + 휆) − 2퐶휃(휆) + 휃 (1)] 
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  = [퐶 (휃 + 휃) − 2퐶휃(휃) + 휃 ] 

                       = [퐶 휃 + 퐶 휃 − 2퐶휃 + 휃 ] 

          = [퐶 휃 + 퐶 − 2퐶휃 + 휃] 

         = 퐶 + 퐶 휃 − 2퐶휃 + 휃 

         = 퐶 + [휃(퐶 − 2퐶 + 1)] 

   푅(휃, 푑) = 퐶 + 휃(퐶 − 1)  

(ii) The 푅(휃,푑) is at a minimum when C = 1 

(iii) At C = 1, 푅(휃,푑) = 1. 

 

 

 

  



16 
 

LECTURE FOUR 

POINT ESTIMATION 

 Let a random variable X have a p.d.f. which is of known functional form but the p.d.f. 

depends on an unknown parameter 휃 that may have any value in the set Ω.  That is, 푓(푥;휃),

휃 ∈  Ω is the p.d.f. of X, where Ω is the parameter space. 

Definition 1: 

Any statistic whose mathematical expectation is equal to a parameter 휃 is called an unbiased 

statistic for the parameter 휃.  Otherwise the statistic is said to be biased. 

Definition 2: 

For a given positive integer n, 푌 = 푡(푋 , … ,푋 ) will be called a “best statistic” for a 

parameter 휃 if 푌  is unbiased, 퐸(푌 ) = 휃, and if the variance of 푌  is less than or equal to the 

variance of every other unbiased statistic for 휃. 

Example 1: 

(i) Show that 푋 of a random sample of size n from a distribution having p.d.f.                        

 푓(푥;휃) = 푒 ( / ), 0 < 푥 < ∞
0 < 휃 < ∞;    is unbiased for 휃. 

(ii) Compute the variance of 휃  

Solution: 

푓(푥;휃) =
1
휃 푒

( / ), 0 < 푥 < ∞
0 < 휃 < ∞ 

Set 푛 = ⟹ 푥 = 휃푢
푑푥 = 휃푑푢 

i.e. 

퐸(푋) = 퐸
1
푛 푥 =

1
푛

푥
휃 푒

( / )푑푥                                                  (1.1) 

푥
휃 푒

( / )푑푥 = 휃 푢푒 .푑푢 = 휃Γ(2) 

  = 휃. 1 = 휃      (Γ(푛) = (푛 − 1)!)     (1.2) 
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Using (1.2) in (1.1) we have 

퐸(푋) =
1
푛 휃 = 휃                                                                                    (1.2.1) 

퐸(푋 ) = 퐸
1
푛 푥 =

퐸
푛 푥 + 푥 푥                      (1.3) 

퐸(푥 ) =
푥
휃 푒 푑푥 

                                   =
휃 푢
휃 푒  . 휃푑푢                 

                                    = 휃 푢 푒  푑푢 =  휃 Γ(3) 

     =  2휃                 (1.4) 

                                   퐸 푥 푥 =  휃 , from (1.2) 

From (1.2) 

퐸(푋 ) =
1
푛 2 휃 +  휃  

          =
1
푛

(2푛 휃 + 푛(푛 − 1) 휃 ) 

=
 2휃
푛 +

푛 − 1
푛  휃          

=
 2휃
푛 +  휃 −

 휃
푛          

퐸(푋 ) 

푉 휃 = 퐸(푋 ) − [퐸(푋)]  

      =
 휃
푛 +  휃 −  휃  

    =
 휃
푛                       

Exercise 1: 

Let 푌 < 푌 < 푌  be the order statistics of a random sample of size 3 from the uniform 

distribution 
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푓(푥;휃) =
1
휃 ,   0 < 푥 < 휃;   0 < 휃 < ∞ 

= 0, otherwise      

(i) Show that 4푌  is an unbiased statistic for  휃. 

(ii) Compute the variance for 휃. 

1. Let 푌  and 푌  be two statistically independent unbiased statistic for 휃.  Say the variance of 

푌  is twice the variance of 푌 .  Find the constants 푘  and 푘  so that 푘 푌 + 푘 푌  is an 

unbiased statistic with smallest possible variance for such a linear combination. 

Q2 

퐸(푘 푌 + 푘 푌 ) = 휃 

=> 푘 푌 + 푘 푌 = 휃 

i e.  푘 휃 + 푘 휃 = 휃 

      or  푘 + 푘 = 1     (1.1) 

푉 휃 = 푉(푘 푌 + 푘 푌 ) 

 푉(푌 ) = 2푉(푌 );  let  푉(푌 ) = 2휎  so that 푉(푌 ) = 휎 

We have 

푉 휃 = 2푘 휎 + 푘 휎 = 2푘 휎 + (1 − 푘 ) 휎,  from (1.1) 

          = 2푘 휎 + (1 − 2푘 + 푘 )휎 

푉 휃 = 3푘 휎 − 2푘 휎 + 휎  

= 0 ⟹ 6푘 휎 − 2휎 = 0  

i. e.  (6푘 − 2)휎 = 0  

since 휎 ≠ 0, 

6푘 − 2 = 0  or 
       푘 =

1
3

and 푘 =
2
3
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Definition 1 

If T is an estimator of 푡(휃) 

푀푆퐸(푇) = 퐸[푇 − 푡(휃)]   

               = 퐸[푇 − 퐸(푇) + 퐸(푇) − 푡(휃)]   

               = 퐸 푇 − 퐸(푇) + 퐸 퐸(푇)− 푡(휃) + 2퐸 푇 − 퐸(푇) 퐸(푇)− 푡(휃)   

               = 퐸 푇 − 퐸(푇) + 퐸 퐸(푇)− 푡(휃)  

               = 푉푎푟(푇) + [퐵(푇)]   

      = 푉푎푟(푇),  if 퐸(푇) = 푡(휃) 

Definition 2: 

 Let 푡(휃) be estimable.  An estimator 푇 = 푡(푋 , … ,푋 ) is said to be a VMVU 

estimator of 푡(휃) if it is unbiased and has the smallest variance within the class of all 

unbiased estimators of 푡(휃) under all 휎 ∈ Ω. 

 In many cases of interest, a VMVU estimator does exist.  The problem is how one 

would go about searching for it (if it exists).  There are two approaches which may be used.  

The first is appropriate when complete sufficient statistics are available and provides us with 

a UMVU estimator.  The second approach is to first determine a lower bound for the 

variances of all estimators in the class under classification and then try to determine an 

estimator whose variance is equal to this lower bound.  The Cramer-Rao inequality is 

instrumental to this approach. 

 

1. Method of Estimation 

1.1 Method of Maximum Likelihood 

We had earlier discussed the method of least squares.  According to the 

principle of maximum likelihood, we should choose the estimator which makes the 

likelihood function a maximum.  That is, tn will be the maximum likelihood estimator 

(m.l.e.) if  

퐿(푥 ,푥 , … , 푥 , 푡 ),      퐿(푥 ,푥 , … ,푥 , 푡′ ) 
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for any other estimator 푡′ .  If L is a differentiable function of 휃 then 푡 (푥 ,푥 , … ,푥 ) 

is the solution  (if any) of 

훿퐿
훿휃 = 0   with    

훿 퐿
훿휃 < 0 

 Since L is positive, the first equation is equivalent to 

훿 log 퐿
훿휃 = 0, 

 a form which is more convenient in practice. 

Example:  For a random sample from a normal population, find the m.l.e. for the population 

mean, when the variance is known. 

푓(푥;휇, 휎 ) =
√

푒 ( ) 2휎    

퐿 = (2휋휎 ) 푒 ∑ ( ) 2휎⁄  

log  퐿 = −
푛
2 log 2휋휎 − (푥 − 휇) 2휎  

δ log 퐿
δμ = 0 ⟹ (푥 − 휇) 휎 = 0 

                     ⟹ 푥 − 푛휇 = 0 

 or   휇̂ =
1
푛 푥  

           = 푥̅ 

Properties of Maximum Likelihood Estimators 

(a) Maximum likelihood estimators are consistent if  

 (i) the density function 푓(푥;휃) is continuous in x throughout its range and if 

(ii) 푓(푥;휃) is continuous and monotonic in 휃 in some 휃 interval containing the 

true value 휃  and for all x, in some x-interval, then the m.l.e., 휃 is consistent. 
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(b) The distribution of m.l.e. tends to normality for large samples.  More specifically, if 

 (i) 푓(푥;휃) is continuous in x throughout its range, and if 

(ii) in a 휃-interval containing the true value  휃 ,  is continuous in 휃 for every x,                                      

푥  approaches continuous function of 휃 as x tends to infinity, and  does 

not vanish in some interval, then for large n, the m.l.e. of 휃 will tend to be 

normally distributed with variance given by 

1
푉푎푟 휃

=
1
푓

휕푓
휕휃 푑푥 = 푛

휕
휕휃 log푓 푑푥 

= 푛퐸
휕
휕휃 log푓            

If the range is independent of f, or if f and  vanish at the extremity of the range 

which depends on 휃, we have the alternative form, namely, 

1
푉푎푟 휃

= −푛퐸
휕
휕휃 log푓  

(c) Maximum likelihood estimators are not efficient.  That is, in the cl.ass of estimators 

which for large n tends to be normally distributed about population parameters as 

mean, the variance of the m.l.e. will be less than or equal to that of any other 

estimator.  That is, if t is any other such estimator, 

푉푎푟(푡) ≥ 푉푎푟 휃 . 

(d) Maximum likelihood estimators are sufficient, if sufficient estimators exist.  That is, if 

a sufficient estimator exists, it is a function of the m.l.e. 

(e) Maximum likelihood estimators have the invariance property.  That is, if 휃 is a m.l.e. 

for 휃, then 푓 휃  will be a m.l.e. for 푓(휃). 

(f) Maximum likelihood estimators are not necessarily unbiased. 

Example 2:  Using example, find the efficiency of \푋 based on a random sample of size. 

The efficiency of an unbiased estimator 푋 is given by 
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푒(푋) =
1

푉푎푟(푋)퐸 log푓(푋;휃)
휕휃

 

훿
휕휃 log푓(푋;휃) =

훿
휕휇 log(푋; 휇, 휎 ) =

푥 − 휇
휎  

훿
휕휇 log(푋;휇, 휎 ) =

푥 − 휇
휎  

퐸
훿
휕휇 log(푋; 휇,휎 ) =

1
휎 퐸(푥 − 휇) =

1
휎

(휎 ) 

          =   

푉푎푟(푋) = 푉
1
푛 푥 =

1
푛 푉푎푟(푥 ) =

1
푛 휎  

               =
휎
푛  

푒(푋) =
1

휎
푛 푛(1/휎 )

= 1 

showing that 푋 is efficient. 

Exercise 

Let 푋 ,푋 , … ,푋  represent a random sample from 

푓(푥;휃) =
1
휃 푒 , 0 < 푥 < ∞,   0 < 휃 < ∞ 

               = 0,   elsewhere 

Find the m.l.e. of 휃. 

Method of Moments 

 The method due to K. Pearson is used in fitting distributions specially of the Pearson 

type.  According to this method, to choose m parameters of a population, we equate the first 

m moments of the sample values to the first m moments of the population and solve from 

these m equations for the m estimators. 

Example 3: Use the method of moments to obtain the parameters of the gamma density 
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푓(푥;훼,훽) =
푥 푒 /

훽 Γ(α) , 푥 > 0 

퐸(푋) = 휇 = 푀 = ∫ 푥 .  
/

( )
푑푥 = 훽훼              (1.1) 

퐸(푋 ) = 푀 = ∫  
/

( )
= 훼                      (1.2) 

So that 휎 = 푀 − (푀′) = 훼(훼 + 1)훽 − 훼 훽  

휎 = 훽 훼          (1.3)   

From (1.1) we have 

푥̅ = 훽훼          (1.4) 

From (1.3), 푠 = 훽 훼         (1.5) 

The solution of equations (1.4) and (1.5) gives  

훼 = 푥̅ 푠⁄   

훽 = 푠 푥̅⁄   

Moment Method of Estimation  

Definition 1: A sample Moment 

Let 푋 ,푋 , … ,푋  denote a random sample from the density 푓( . ).  The rth sample 

moment about zero, denoted by 푀 , is defined by 

푀 =
1
푛 푋                                                                                         (1.1) 

In particular, if r = 1, we have the sample mean given by  

푋 =
1
푛 푋                                                                                          (1.2) 

The rth sample moment about the mean (푋 ), denoted by Mr, is given by 

푀 =
1
푛

(푋 − 푋 )                                                                        (1.3) 
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It is well known that the sample moments reflect the population moments in the sense that the 

expected value of a sample (about zero) equals the corresponding population moment.  Also, 

the variance of a sample moment is  times some function of the population moments.  

Thus a sample moment can be used to estimate its corresponding population moment 

(provided the population moment exists). 

 Let 푋 ,푋 , … ,푋  denote a random sample from a population with a density 푓( . ).  

The expected value of the rth sample moment (about zero) is equal to the rth population 

moment.  That is, 

    퐸(푀 ) = 휇       (1.4)  

(if ur exists). 

For example, the two parameters 휇 and 휎  of a normal distribution are moments of the 

distribution.  Therefore they would be estimated by the sample mean 푋  and sample variance 

푆 . 

 If a distribution has only one unknown parameter but that parameter is not a moment 

of the distribution, the parameter may still be estimated by the method of moments by 

calculating the first moment of the distribution, which will be a function of the parameter, 

and equating it to 푋 .  The solution of the resulting equation for the unknown parameter 

value will be the desired estimate.  Similarly, if the distribution had two unknown parameters 

that were not moments, the same procedure would be followed with respect to the first two 

moments of the distribution. 

 For an illustration for which the parameters are not moments, consider estimating the 

two parameters of the gamma density with the method of moments.  Let the two parameter 

gamma be given by  

푓(푥; 훼,훽) =
1

Γ(α)훽 푥 푒 / , 0 < 푥 < ∞  

            = 0,   otherwise.     (2.1) 

The population mean, 휇 is given by 

퐸(푋) = ∫ ( )
푥 푒 / 푑푥 = 푥̅          (2.1.1) 
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       = ∫
/

( )
푑푥            set 

푢 =  

푑푥 = 훽푑푢
       

       = ∫ ( )
( )

 .훽푒 푑푢 

 =
( ) ∫ 푢 푒 푑푢 

 =
( )
Γ(훼 + 1) 

 =
( )!

(훼)! = ( )!
( )!

 

 = 훼훽 = 푥̅            (1.2) 

The second moment is given by 

퐸(푋 ) =
푥

Γ(α)훽 푥 푒 / 푑푥 

 = ∫
/

( )
푑푥 

 = ∫ ( )
( )

.훽 푑푢 

 =
( ) ∫ 푢 푒 푑푢 =

( )
Γ(α + 2) 

 =
( )!

(훼 + 1)! 

 = ( ) ( )!
( )!

 

 = 훼(훼 + 1)훽         (1.3) 

Population variance, 휎 = 퐸(푋 )− [퐸(푋)] = 푠        (1.4) 

i.e.  휎 = 훼(훼 + 1)훽 − (훼훽)  

 = 훼 훽 + 훼훽 − 훼 훽 = 훼훽 = 푠         (1.5) 

From (1.2) and (1.5), we have  

훼훽 = 푥̅      (1.2) 

훼훽 = 푠       (1.5) 
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Dividing (1.5) by (1.2) we have 

훽 = 푠 /푥̅                                      (1.6) 

Substituting from (1.6) in (1.2), we have 

훼(푠 /푥̅) = 푥̅  or 

훼 = 푥̅ /푠                 (1.7)   

Exercise 

1.      Given 푓(푥;휃) =
√

푒 / , show that ∑ 푋 , where 푋 ,푋 , … ,푋  is a random  

       sample from 푓(푥; 휃) is an unbiased estimator of 휃. 

2.    Given 푓(푥; 휃) =
( )

, 푋 > 0,θ > 0, find a value of c such that CX will be an   

       unbiased estimator of θ. 

3.    Find the lower bound of the variance for an unbiased estimator of the parameter θ for the     

      Cauchy density  

푓(푥;휃) =
[ ( ) ]

  

           = 0, otherwise. 

 

Questions (Point Estimation) 

Given 푓(푥;휃) =
√

푒 ,−∞ < 푥 < ∞,   휃 > 0.  Show that   ∑ 푋 , where 

푋 ,푋 , … ,푋  is a random sample from 푓(푥; 휃) is an unbiased estimator of 휃. 

Solution: 

퐸
1
푛 푋 =

1
푛 푥 (2휋휃) 푒 푑푥 

                    

                        = (2휋휃)
1
푛 푥 푒 푑푥                                                   (1.1) 
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푥 푒 푑푥 = 2 푥 푒 푑푥    set 푢 = 푥 /2휃,       휃푑푢 = 푥푑푥  

                          = 2 푥 . 푒  . 푥푑푥    

                        = 2 (2푢휃) /  푒  . 휃푑푢 

                     = 2√2휃 푢  푒 푑푢 = 2√2휃 푢  푒 푑푢 

                  = 2휃√2휃 Γ  

                 = 2휃√2휃 . Γ ,   Γ(α+ 1) = αΓ(α) 

                = 휃√2휃 Γ  

               = 휃√2휃  .  √휋, Γ = √휋                              (1.2) 

              = 휃√2휋휃 

Substituting from (1.2) in (1.1) we have  

퐸
1
푛 푋 =

1
√2휋휃

1
푛 휃

√2휋휃
1 =

1
푛 휃 

                     = 푛휃 

                    = 휃. 

We have  

퐶휃 = 휃 

or  퐶 = 1 

Note: 

1.  Γ = √π 

2. Γ(α + 1) = 훼Γ(α) 

3. Γ(α + 2) = 훼Γ(α + 1) 

4. Γ(α) = ( ) 
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LECTURE FIVE 

CONFIDENCE INTERVALS 

Definition 1:  

Let 푋 , … ,푋  be a random sample from the density 푓(푥;휃).  Let 푇 = 푡 (푋 , … ,푋 ) and 

푇 = 푡 (푋 , … ,푋 ) be two statistics satisfying 푇 ≤ 푇  for which 푃 [푇 < 푡(휃) < 푇 ] = 훾, 

where 훾 does not depend on 휃.  Then the random interval (푇 ,푇 ) is called a 100 훾 percent 

confidence interval for 휏(휃);   훾 is called the confidence coefficient; and 푇  and 푇  are called 

the lower and upper confidence limits, respectively, for 휏(휃).  A value (푡 , 푡 ) of the random 

interval (푇 ,푇 ) is also called a 100 훾 percent confidence interval for 휏(휃). 

Definition 2:  

An interval is said to be random if at least one of its end points 푡 , 푡  is a random variable. 

Example 1:  

Let X be 휒( ).  What is the probability that the random interval (푋, 3.3푋) contains the point x 

= 26.3?  Compute the expected length of the interval. 

Solution 

We have 푋 < 26.3 < 3.3푋 when 푋 < 26.3 and 3.3푋 > 26.3 or 푋 > .
.

= 7.96969697 =

7.97 

That is   푃푟표푏(7.97 < 푋 < 26.3) 

           = 푃(푋 ≤ 26.3)− 푃(푋 ≤ 7.97) 

          = 0.95 − 0.050 

          = 0.90 

The length of the interval is 3.3푋 − 푋 = 2.3푋. 

The expected length is 2.3퐸(푋) = 2.3(16) 

Since X is 휒( ), that is 36.80. 



29 
 

Example 2:  

Let the random variable X have the p.d.f. 푓(푥) = 푒 , 0 < 푥 < ∞, zero elsewhere.  

Compute the probability that the random interval (X, 3X) includes the point x = 3.  What is 

the expected value of the length of this random interval? 

Solution: 

We have X < 3 and X > 3/3 = 1.  That is we desire Prob(1 < X < 3) 

 = ∫ 푒 푑푥 = [−푒 ] = [푒 ]  

= 푒 = 푒 = 0.367879441− 0.049787068 

= 0.318092372 

= 0.318 

The length of the interval is 3푋 − 푋 = 2푋 

The expected length is 퐸(2푋) = 2퐸(푋) 

퐸(푋) = ∫ 푥푒 푑푥      set 푢 = 푥   and  = 푒 . 

We have ∫ 푢 푑푥 = 푢푣 − ∫ 푢 푑푥 

= −푥푒 + 푒 푑푥 

= −푥푒 − 푒  

= [−푒 (푥 + 1)] = [푒 (푥 + 1)]  

= 1 − 0 = 1 

∴     2퐸(푋) = 2 x 1 = 2 

∴  Expected length  = 2. 
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2. Confidence Interval for Means 

 Consider a sample 푋 , … ,푋  from a distribution which is 푁(휇, 휎 ), 휎  known. 

    푍 = (푋 − 휇) 휎⁄       (2.1) 

 is a unit normal variable, whatever the true value of 휇 may be.  Hence we infer that  

     푃(|푍|) ≤ 1.96 = 0.954     (2.2) 

So that   푃 푥̅ − 1.96
√

< 휇 < 푥̅ + 1.96
√

     (2.2.1) 

Again,   푇 = ( )√       (2.3) 

has a t distribution with (n – 1) degrees of freedom, whatever the value of 휎 > 0, and 

푠 =
1
푛

(푥 − 푥̅) .   For a probability of 0.95, we can ind numbers 푎 < 푏 from  

the table of t distribution such that  

   푃 푎 < ( )√ < 푏 = 0.95    (2.4) 

Noting that the random variable T is symmetric about the vertical axis through the 

origin, we would take a = -b with b > 0.  We have 

   푃 푋 −
√

< 휇 < 푋 +
√

= 0.95   (2.5) 

Example 3:  

Let n = 10, 푥̅ = 3.22 and s2 = 1.3689.  Compute a 95% C.I. for 휇. 

Solution:  From equation (2.5), 

푏 = 푡 / , = 2.262 and s = 1.17. 

We have 3.22− ( . )( . )

√
, 3.22 + ( . )( . )

√
 

or  (2.34, 4.10). 
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Example 4:  

Let a random sample of size 20 from a distribution which is 푁(휇, 80) have mean 푥̅ = 81.2.  

Find a 95% confidence interval for 휇. 

Solution: n = 20, and 휎 = 80  

   푋~푁(휇, 80) and 푋~푁 휇,  

The required interval is given by equation (2.2.1)  

i.e.,  푥̅ ± 1.96
√

= 푥̅ ± 1.96(2) 

i.e.  81.2 ± 3.92  

= (77.28, 85.12)  
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LECTURE SIX 

UNIFORMLY MINIMUM VARIANCE UNBIASED ESTIMATOR (UMVUE) 

CRAMER-RAO INEQUALITY 

 Consider the problem of how to find the best unbiased estimator of the parameter 휃 in 

the continuous density function 푓(푥; 휃).  The solution of the problem lies in obtaining an 

inequality for the variance of any unbiased estimator 푇 = 푡(푋 ,푋 , … ,푋 ) of 휃.  This 

inequality is derived in the following manner.  Since 푋 ,푋 , … ,푋  is a random sample from 

푓(푥;휃), its density function will be denoted by L, where  

퐿 = 푓(푥;휃) 

It follows that 

    ∫…∫퐿푑푥 푑푥 … 푑푥 = 1      (1.1) 

Since 푇 = 푡(푋 ,푋 , … ,푋 ) is assumed to be an unbiased estimator of 휃, it follows that 

    퐸(푡) = ∫…∫+퐿푑푥 푑푥 …푑푥 = 휃    (1.2) 

We differentiate (1.1) and (1.2) and assume that it is permissible to differentiate under the 

integral sign and that the limits of integration do not depend on 휃.  Differentiation of (1.1) 

will give  

    ∫…∫ 푑푥 푑푥 …푑푥 = 0     (1.3) 

Differentiation of (1.2) yields 

    ∫…∫ 푡 푑푥 푑푥 …푑푥 = 1     (1.4) 

The value of  is most easily obtained by calculating 

훿 log 퐿
훿휃 =

훿 log 퐿
훿퐿  .

훿퐿
훿휃 =

1
퐿
훿퐿
훿휃. 

Thus 
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훿퐿
훿휃 = 퐿

훿 log 푓(푥 ;휃)
훿휃  

Let 

푇 =
훿 log 푓(푥 ;휃)

훿휃                                                                                              (1.5) 

Equation (1.2) can be expressed as 

0 = … 푇퐿푑푥 푑푥 …푑푥 = 퐸(푇)                                                                 (1.6) 

Similarly, equation (1.4) will assume the form 

1 = … 푡푇퐿푑푥 푑푥 …푑푥 = 퐸[푡푇]                                                             (1.7) 

Next, consider the value of the correlation coefficient between the two random variables t and 

T.  That is, 

푃 =
퐸(푡푇)퐸(푡)퐸(푇)

휎 휎  

In view of the results in (1.6) and (1.7) this will reduce to  

     푃 =       (1.8) 

Since any correlation coefficient satisfies the inequality 푃 ≤ 1, it follows from (1.8) that 

휎   and  휎  must satisfy the inequality 

                                                             휎 ≥       (1.9) 

In view of (1.5) and the independence of the terms in that sum, it follows that 

휎 = 휎                                                                                                                           (1.10) 

where 휎  is the variance of  푓(푥 ;휃).  But from (1.5) and (1.6) 

퐸
훿 log 푓(푥 ;휃)

훿휃 = 0 
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Since the 푋  possess the same distribution, the quantities   ( ; ) , 푖 = 1,2, … , 푛, must 
possess the same distribution, hence the same expected value.  Since the sum of such 
expected values is zero, it follows that each expected value must be zero and therefore the 

variance 휎  of   ( ; ) is equal to its second moment.  Hence  

휎 = 퐸
훿 log 푓(푥 ;휃)

훿휃  

Consequently from (1.10), 

휎 = 푛퐸
훿 log 푓(푥 ;휃)

훿휃                                                                                     (1.11) 

because each 푋  has the same distribution as the basic variable X. Substituting from (1.11) in 
(1.9) we have 

휎 ≥ 푛퐸
1

훿 log 푓(푥 ;휃)
훿휃

                                                                                        (1.12) 

Example: Let 푋 ,푋 , … ,푋  be i.i.d. random variables from a Poisson distribution with 
parameter 휃.  Show that 푋 is UMVU estimator of 휃. 

We have 

푓(푥;휃) = 푒 휃 /푥!  so that  

푙표푔 푓(푥;휃) = −휃 + 푥 log휃 − log푥  

 log 푓(푥 ;휃) = −1 +   

퐸
훿 
훿휃 log 푓(푥 ;휃) = 1 −

2푥
휃 +

푥
휃 =

1
휃 

Since 퐸(푥) = 휃 and 퐸(푥 )휃(1 + 휃) 

The C-R lower bound = 휃/퐴.  Since 푋 is unbiased for 휃, with variance 휃/푛, we have that 푋 

is UMVE estimator of  휃. 

Exercises 

1. Let 푋 ,푋 , … ,푋  be i.i.d. random variables from a Bernoulli distribution, 퐵(1,휃).  
Show that 푥̅ is UMVU estimator of 휃. 

2. Let 푋 ,푋 , … ,푋  be i.i.d. random variables from 푁(휇,휎 ).  Assume 휎  is known and 
휇 = 휃.  Show that 푥̅ is a UMVU estimator of 휃. 
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LECTURE SEVEN 

TESTING HYPOTHESES 

 Statistical hypothesis is an assertion about the density function of a random variable.  

For example, given a probability density 푓(푥/휃) and a sample 푋 ,푋 , … ,푋  from it, a typical 

problem of testing a hypothesis, that is, a problem for which there are only two possible 

actions available, is to decide by means of a decision function 푑 = 푑(푋 ,푋 , … ,푋 ) whether 

휃 ≤ 휃  or 휃 > 휃 , where 휃  is some specified value.  For example, the statement that the 

mean of a Poisson random variable is 5 is a statistical hypothesis. 

Let us consider how a statistician proceeds in attempting to design a test that 

possesses desirable properties.  Assume an exponential density is given by  

  푓(푥/휃) = 휃푒        (1.1) 

Assume further that the parameter 휃 has the value 2.  This assumption is the statistical 

hypothesis to be tested, denoted by H0.  Let H1 denote the alternative hypothesis that 휃 = 1.  

Since there are only two possible actions that can be taken in this testing problem, namely 

accept H0 or accept H1, a decision function 푑 = 푑(푋 ,푋 , … ,푋 ) must separate n dimensional 

sample space into two parts.  Let A0 denote the part that is associated with accepting H0, and 

A1 the remaining part associated with accepting H1.  This means that if a random sample of X 

yields a point x=(푥 ,푥 , … ,푥 ) that lies in A0, we accept the hypothesis 퐻 :휃 = 휃 , whereas 

if it lies in A1, we accept the alternative hypothesis 퐻 : 휃 = 휃 .  To avoid complicating the 

discussion at this stage, only one observation is taken on X.  The problem of constructing a 

test for H0 under discussion is therefore the problem of choosing a critical region on the 

positive x axis.  This will lead to two types of error. 
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Two Types of Error 

 Suppose the statistician selects the part of the X axis to the right of x = 1 as the critical 

region.  To decide whether this was a wise choice, we consider its consequences.  If H0 is 

actually true and the observed value of X exceeds 1, H0 will be rejected.  This, of course, is an 

incorrect decision.  This type of error is called the type I error.  On the other hand, if H1 is 

actually true and the observed value of X does not exceed 1, H0 will be accepted.  This also is 

an incorrect decision.  This kind of error is called the type II error.  These two incorrect 

decisions, as well as the two correct decisions that are possible here, are displayed in table 1 

below. 

Table 1: Showing Two Types of Error 

           Status of H0 and H1 

Value of x 

H0 is True H1 is True 

x > 1 
(reject H0) 

Type I Error Correct Decision 

푥 ≤ 1 
(accept H0) 

Correct Decision Type II Error 

 

 It is necessary to measure the seriousness of making either one of these errors before 

one can judge whether the choice of a critical region was wise.  The size of an error is the 

measure of its seriousness.  In the sequel, the loss function for our testing problem is given by  

퐿(휃,푑) =
0, if the correct decision is made

1, if an incorrect decision is made
 

Definition 1: 

훼 = size of type I error = P(Accept H1/H0 is true) i.e. the sample falls in the critical region, 

when in fact H0 is true. 
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훽 = size of type II error = P(Accept H0/H1 is true) 

Note that the two possible values of the risk function are given by  

푅(휃 , 푑) = 퐸퐿 휃 , 푑(푋) = 0.푃(푋 ∈ 퐴 퐴⁄ ) + 1.푃(푋 ∈ 퐴 휃⁄ )  

   = 푃(푋 ∈ 퐴 휃⁄ )        (1.2) 

and  

푅(휃 ,푑) = 퐸퐿 휃 , 푑(푋) = 1.푃(푋 ∈ 퐴 휃⁄ ) + 0.푃(푋 ∈ 퐴 휃⁄ )  

   = 푃(푋 ∈ 퐴 휃⁄ )        (1.3) 

Definition 2: 

 The critical region of a test is that part of sample space that corresponds to the 

rejection of the hypothesis H0.  The size of the critical region, 훼, is the probability of the 

sample point falling in the critical region when H0 is true. 

Definition 3: 

A best critical region of size 훼 is one that minimizes the probability, 훽, of accepting H0 when 

H1 is true among all critical regions whose size does not exceed 훼.  A best test is a test that is 

based on a best critical region. 

Example: If X has the density 푓(푥/휃) = 휃푒 , 푥 > 0, 휃 > 0, and zero otherwise, if you 

are testing the hypothesis H0: 휃 = 2 against H1: 휃 = 1 by means of a single observed value of 

X and the critical region is 푋 ≥ 1, compute the sizes of 훼 and 훽. 

Solution: 

훼 = 푃(푋 ∈ critical region/H  is  true)  

   = ∫ 2푒 푑푥 = [푒 ] = 푒 = 0.135335 

훽 = 푃(푋 ∈ feasible/H  is  true)  
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   = ∫ 푒 푑푥 = [푒 ] = (1 − 푒 ) 

   = 1 − 0.36787944 

   = 0.632120 

Exercise: 

Given 푓(푥;휃) = , 0 ≤ 푥 ≤ 휃 and given the hypothesis 퐻 : 휃 = 1 against the alternative 

퐻 :휃 = 2, suppose a single observed value of X is to be taken. 

(a) If the critical region is to be chosen to be the interval 푋 > , what is the values of 훼 

and 훽? 

(b) What would those values become if 푋 > 1.5 were chosen as the critical region? 

(c) Comment on the power of the test in (a) above. 


