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CHAPTER ONE
ERRORS
An error may be defined as the difference between an exact and computed value,

Suppose the exact value of a solution of a computational problem is 1.023; now when a
computer or calculator is used, the solution is obtained as 1.022823; hence the error in this
calculation is (1.023 — 1.022823) 0.000177

Types of Error

Round-off error:- This error due to the rounding-off of a quantity due to limitations in the
digits.

Truncation error:-Truncation means cutting off the other digits i.e. no rounding —off. For
instance, 1.8123459 may be truncated to 1.812345 due to a preset allowable number of digits.

Absolute Error:- The absolute value of an error is called the absolute error; that is;
Absolute error = |error]|

Relative error:- Relative error is the ratio of the absolute error to the absolute value of the exact
value.: That is

Absoluteerror

Relative error =

|lexactvalue|
Percentage error:-This is equivalent to Relative error x 100

Inherent error:- In a numerical method calculation, we may have some basic mathematical
assumptions for simplifying a problem. Due to these assumptions, some errors are possible at the
beginning of the process itself. This error is known as inherent error.

Accumulated error:-Consider the following procedure:
Y;,1 =100Y; (i=0,12,....)
Therefore,
Y, = 100Y,
Y, = 100Y;
Y, = 100Y,etc

Let the exact value of Yo = 9.98



Suppose we start with Yo = 10

Here, there is an inherent error of 0.02

Therefore,

Y, = 100Y, = 100 x 10 = 1000

Y, = 100, = 100 x 1000 = 100,000

Y; = 100Y, = 100 x 100,000 = 10,000,000

The table below shows the exact and computed values,

Variable Exact Value Computed value Error
Yo 9.98 10 0.02
Y1 998 1000 2

Y 99800 100,000 200

Y3 9980000 10,000,000 20,000

Notice above, how the error quantities accumulated. A small error of 0.02 at Ygleads to an error
of 20,000 in Y3 So, in a sequence of computations, an error in one value may affect the
computation of the next value and the error gets accumulated. This is called accumulated error.

Relative Accumulated Error

This is the ratio of the accumulated error to the exact value of that iteration. In the above
example, the relative accumulated error is shown below.

Variable Exact Value | Computed value | Accumulated | Relative Accumulated error
Error

Yo 9.98 10 0.02 0.02/9.98 = 0.002004

Y1 998 1000 2 2/998 = 0.002004

Y 99800 100,000 200 200/99800 = 0.002004

Y3 9980000 10,000,000 20,000 20,000/9980000 = 0.002004

Notice that the relative accumulated error is same for all the values.




CHAPTER TWO

ROOT FINDING IN ONE DIMENSION

This involves searching for solutions to equations of the form: F(x) = 0
The various methods include:

1. Bisection Method
This is the simplest method of finding a root to an equation. Here we need two initial
guesses Xaandxy which bracket the root.

Let F, = f(x,) and F, = f(x}) such that F,F;, < O (see fig 1)

; e
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Figurel: Graphical representation of the bisection method showing two initial guesses (x, and
Xpbracketting the root).



Clearly, if E,F, = 0 then one or both of x, and x;, must be a root of F(x) = 0

The basic algorithm for the bisection method relies on repeated applications of:

Let x, = (atxp)

If F=1f(c) =0then, x =X isan exact solution,

Else if F,F, < 0 then the root lies in the interval (x,, x.)

Else the root lies in the interval (x., x;)
By replacing the interval (x,, x;,) with either (x4, x.) or (x., x,)( whichever brackets the
root), the error in our estimation of the solution to F(x) = 0 is on the average, halved.
We repeat this interval halving until either the exact root has been found of the interval is
smaller than some specified tolerance.
Hence, the root bisection is a simple but slowly convergent method for finding a solution
of F(x) = 0, assuming the function f is continuous. It is based on the intermediate value
theorem, which states that if a continuous function f has opposite signs at some x = aand
x = b(>a) that is, either f(a) <0, f(b) > 0orf(a) >0, f(b) <O, then f must be 0
somewhere on [a, b].
We thus obtain a solution by repeated bisection of the interval and in each iteration, we
pick that half which also satisfies that sign condition.

Example:
Given thatF (x) = x — 2.44, solve using the method of root bisection, the form
F(x)=0.

Solution:
Giventhat F(x) = x —244=0
Therefore,
x—244=0
Direct method gives x = 2.44
But by root bisection;
Let the trial value of x = -1



X F(x) = x-2.44
Trial value -1 | -3.44
-2.44
-1.44
-0.44
+0.56

WIN RO

It is clear from the table that the solution lies between x = 2 and x = 3.

Now choosing x = 2.5, we obtain F(x) = 0.06, we thus discard x = 3 since F(x) must lie
between 2.5 and 2. Bisecting 2 and 2.5, we have x = 2.25 with F(x) = -0.19.

Obviously now, the answer must lie between 2.25 and 2.5.

The bisection thus continues until we obtain F(x) very close to zero, with the two values

of x having opposite signs.

X F(x) = x-2.44
2.25 -0.19
2.375 -0.065
2.4375 -0.0025
2.50 -0.06

When the above is implemented in a computer program, it may be instructed to stop at
say, |F(x)] < 1074, since the computer may not get exactly to zero.

Full Algorithm

© oo Nk~ wDdPE

Define F(x)

Read Xx; , X2, values of x such that F(x;)F(x2) <0

Read convergence term, s = 10°°, say.

Calculate F(y), y = (xatx2) / 2

If abs(x2-x1) <'s, then y is a root. Go to 9

If abs(xz-x1) >s, Goto 7

If F(x1)F(x2) <0, (x1,y) contains a root, set x, =y and return to step 4
If not, (y, X2) contains a root, set x; =y and return to step 4

Write the root A



Flowchart for the Root Bisection Method

A

Dimension

A

Define F(x)

y

Input interval limits x1, x2, tolerance, s

Y=(x1+x2)/2

Abs (x2-x1):s

IN

A 4

Output Root = A




2. The RequlaFalsi (False position) Method

This method is similar to the bisection method in the sense that it requires two initial
guesses to bracketthe root. However, instead of simply dividing the region in two, a
linear interpolation is used to obtain a new point which is (hopefully, but not necessarily)
closer to the root than the equivalent estimate for the bisection method. A graphical
interpretation of this method is shown in figure 2.

o
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Figure2: Root finding by the linear interpolation (regulafalsi) method. The two initial guesses x, and x,
must bracket the root.



The basic algorithm for the method is:

Xp—X Xp—X
Let Xc = xq = fl;—f:fa %~ fl;—f:fb

- Xafp—%pfa
fb_fa

If f. = f(x.) =0 thenx = x. is an exact solution..

Else if fofc< 0 then the root lies in the interval (Xa,Xc)

Else the root lies in the interval (X, Xp)

Because the solution remains bracketed at each step convergence is guaranteed as was the
case for bisection method, The method is first order and is exact for linear f

Note also that the method should not be used near a solution.

Example

Find all real solutions of the equation x* = 2 by the method of false position.
Solution

Let x,=1and x, =2

Now rewriting the equation in the form:x* —2 =0

Then f;=1-2=-1

f,=8-2=14

Therefore,

Xafp=Tpfa _DAD-G)(D _ 16 _ 4 oo
fo=tfa 14—(-1) 15

Xo =

f. =(.07)*-2=-0.689
Now, from the algorithm, f. # 0, hence X; # X, the exact solution.
Again, fyfy = (-1)(-0.689) = 0.689 > 0
Therefore, the roots lie in the interval x¢, X,
That is, £(1.07, 2) (two roots)



3. The Newton-Raphson Method

This is another iteration method for solving equations of the form: F(x) = 0, where f is
assumed to have a continuous derivative f . The method is commonly used because of its
simplicity and great speed. The idea is that we approximate the graph of f by suitable
tangents. Using an approximate value x, obtained from the graph of f, we let x be the
point of intersection of the x — axis and the tangent to the curve of f at x,.

y

B)

X2 x1 x0

v

Figure 4: Illustration of the tangents to the curve in Newton-Raphson method

Then,

tan = f'(xo) = —9{0(9—60)’

X1

Hence,
f(x0)
X1 = Xo — =,
1750 T Py
. — f(x1)
In the second step, we compute; X, = x; — ——,
f(x1)
And generally,
f(xy)

Xk+1 = Xk —m
k



Algorithm for the Newton-Raphson method
Define f(x)

Define f (x)

Read Xo, s (tolerance0

K=0

A w o

_ f(xk)
Xk+1 = X — Txlli)’

o1

6. Print kK+1, Xk+1, f(Xk+1)

7. If |xg4; — x| < sthen goto 10
8. K=k+1

9. Gotostep5

10. Print “The root is ----- ‘) Xk+1

11. End

Consider the equation: x3 + 2x2 +2.2x +04 =0

Here, f(x)=x3+2x2+22x+04
f(x)=3x?+4x+22
Let the initial guess, xo = - 0.5

Let us now, write a FORTRAN program for solving the equation, using the Newton-
Raphson’s method.



50

10

100

15

NEWTON RAPHSON METHOD
DIMENSION X(100)

F(X) = X**3. + 2. *X*X + 2.2 *X + 0.4
FL(X) = 3. *X*X + 4. *X + 2.2

WRITE (*,*) “TYPE THE INITIAL GUESS’
READ (*,5) X(0)

FORMAT (F10.4)

WRITE (*,*) ‘“TYPE THE TOLERANCE VALUE’
READ (*,6) S

FORMAT (F3.6)

WRITE (*,*) ‘ITERATION X F(X)’

K=0

X(K+1) = X(K) = F(X(K)) / F1(X(K))
WRITE (*,10) K+1, X(K+1), F(X(K+1))
FORMAT (1X, 16, 5X, F10.4, 5X, F10.4)

IF (ABS(X(K+1) - X(K) .LE. S) GOTO 100
K = K+1

GOTO 50

WRITE (*,15) X(K+1)

FORMAT (1X, ‘“THE FINAL ROOT IS *, F10.4)
STOP

END



Assignment

If S =0.00005, manually find the root of the above example after 5 iterations.

CHOOSING THE INITIAL GUESS, X

In the Newton-Raphson’s method, we have to start with an initial guess, Xo. How do we

choose Xp?

If f (a) and f (b) are of opposite signs, then there is at least one value of x between a andb
such thatf(x)= 0. We can start with f(0), find f(0), f(1), f(2) ----------------- . Ifthereis a
number k such that f(k) and f(k+1) are of opposite signs then there is one root between k and

k+1, so we can choose the initial guess xo = k or xo = k+1.

Example;

Consider the equation: x3 — 7x2+x+1=0

F0O)=1(= +ve)

F(1) =-4 (= -ve)

Therefore, there is a root between 0 and 1, hence our initial guess Xo, may be takenas 0 or 1

Example:

Evaluate a real root of x3 + 2.1x2 + 13.1x + 22.2 = 0, using the Newton Raphson’s
method, correct to three decimal places.

Solution;
F(X) = x3+21x%+13.1x +22.2
F(0) = 22.2 (positive)

Now, since all the coefficients are positive, we note that f(1), f(2), ------- are all positive. So
the equation has no positive root.

We thus search in the negative side:



F (-1) = 20.2 (positive)

F(-2) = +ve = f(-3) ------ f (-11). But f (-12) is negative, so we can choose xo = -11.
Iteration 1

F(x) fx3+21x%2+13.1x +22.2

F(x)=f3x2+242x +13.1

Now, with xo =-11

F () = F(-11) = 11.2

F (o) = F(-11) = f 3(~11)% + 24.2(—11) + 13.1 =109.9

Therefore,

_ . fGo) - qq 112 _
X1 = Xo = ooy = =11 — 0 = -11.1019

Iteration 2
X;=-11.1019
F (x;) =f(-11.1019) = -0.2169

F (x1) =F (-11.1019) = 114.1906

Therefore,.

x, = x; — 282 = 11,1019 - 522299 = 17 100001
f(xq1) 114.1906

Iteration 3

Xz = -11.100001
F (x2) = F (- 11.100001) = - 0.0001131
F (x2) = F (-11.100001) = 114.1101

Therefore,



— . Sx2) _ _ (-0000113) _
X3 = X2 T ey T 11.100001 114.1101

- 11.1000000

Now, correct to three decimal places, x, = X3, and so, the real root is x = -11.1000.

Example 2

Set up a Newton-Raphson iteration for computing the square root x of a given positive
number c and apply ittoc =2

Solution

We have x = +/c, hence

F(X)=x2—c=0

f'(x) =2x
Newton-Raphson formula becomes:
T £ € N € ).
k+1 k f'(xk) k 2xk

_ 2x,€—x,€+c _ x,%+c
- 2xk - 2xk

_1 £

= /2 (o + xk)
Therefore,

For ¢ = 2, choosing Xo = 1, we obtain:
X1 =1.500000, x, = 1.416667, x3 = 1.414216, X4 = 1.414214, .........

Now, X4 is exact to 6 decimal places.



Now, what happens iff '(x;) = 0?

Recall, if f(x) =0,and f'(x) = 0, we have repeated roots or multiplicity (multiple roots).
The sign in this case will not change; the method hence breaks down. The method also fails

for a complex solution (i.e. x2 + 1 =0)

4. The Secant Method
We obtain the Secant method from the Newton-Raphson method, replacing the

derivative F (x) by the difference quotient:

f'(xk) — Fxe)—f(xk-1)

Xk—Xk-1

_ fxg)

— (as in Newton-Raphson’s), we have
f(xk)

Then instead of using xj,; = X

Xk — Xk—1

Xis1 = X — f(xk) f ) = f(xk-1)

Geometrically, we intersect the x-axis at Xx+1 with the secant of f (x) passing through Py.; and Py

in the figure below.

A
y Secant

Xit

We thus, need two starting values X, and x;.



CHAPTER THREE

COMPUTATION OF SOME STANDARD FUNCTIONS

Consider the sine x series:

x3 x5

Sinx =x——+
3! 5!
For a given value of x, sin x can be evaluated by summing up the terms of the right hand

side. Similarly, cosx, €* ,etc can also be found from the following series;

Cosx =1——
20 4!
2 3
e*=1+x+=—+14 -
20 3l
Example:

Solve sin (0.25) correct to five decimal places.

Solution;

Given that x =0.25

0257 026041
36 6

x> _x Q29 000081
51 120 120

o x _0297 000000
7' 5040 5040

(correct to 6 D)

Therefore,
x3  x°
Sinx = x — —+— =0.25 - 0.002641 + 0.0000081

3! 5!

=0.2475071 = 0.24751 (correct to 5D) in radians



1. Taylor’s Series Expansion
Let F(x) be a function. We want to write f(x) as a power series about a point Xo. That is,

we want to write f(x) as:

f(x)=co+ci(x —xg) +cp(x —x0)% + oo s =mmmmmmmm e (1)
Where cy, C1, Cz, ---------- , are constants.
We are interested in finding the constants ¢,, 1, ---------- , given f(x) and xo.

Therefore, from equation (1),

co = f(xo)
If we differentiate equation (1), we obtain:
C, + 2c,(x—x9) + 3c3(x=x9)> + ———— — — — )
Therefore,

Differentiating equation (2), we obtain:

F () = 2¢, + 3(2)(cs5) (x — x,)
Hence,
f"(xo) = 2c,0rc, = %

Proceeding like this, we shall get;

_ fm(xo) de, = f(iv)(xo)
=g Ty
In general,
_ f9(x)
%=k

Equation (1) thus becomes;

F) = Foxo) + 80 (x — xg) + 28D (6 — x)2 oo 3)



This is called the Taylor’s series expansion about Xo.

Taylor’s series can be expressed in various forms. Putting X = Xo + h in equation (3), we get

another form of Taylor’s series:

f(xo+h) = f(xo) +f(1’§°)h +/ ;’!‘°) R (4)

Some authors use x in the place of h in equation (4), so we get yet another form of Taylor’s

series;

_ f(xo) . f(x0)
flro+x) = fxg) + =2 x + 77207+ o o (5)

2. The Maclaurin’s Series

The Taylor’s series of equation (5) about xo = 0 is called Maclaurin’s series of f(x), that is,

F@ = FO) + D + LDz 4 (6)

3. Binomial Series
Consider,
f&x)=@Q+x)"
f'(x) =n@+x)"?
f'(x) = n(n—1)(1 + x)"2
£ () = n(n — 1)(n — 2)(L + x)"~3

Now applying the above to the Maclaurin’s series, we obtain, noting that;

f(0)=1
f(O)=n
f'(0) = n(n—-1)

70 = n(n-1)(n-2)



So we obtain:

nn —1) 5 nn—21)mn-2) 5
TR 3l x

@QA+x)"=1+nx
This is the Binomial series.
Example

Derive the Maclaurin’s series for e=* and hence, evaluate e ~%2 correct to two decimal places.

Solution:
fx)=e™ f(0)=1
fx)=—e>, f(O)=-1
ffey=e™, fO)=1
frfe)y=—-e™, f(0)=-1

Now, by Maclaurin’s series,

(0 (0
o=@+ L LDy

That is,

Therefore,

L 027 (02 (02)*

—-0.2 — _
e =1-0.2 > 6 2

= 0.81 (to 2D).



CHAPTER FOUR

INTERPOLATION

Suppose F(x) is a function whose value at certain points X, X, ...... Xn are known. The values are

f(xo), f(x1), ...... , f(Xn). Consider a point x different from x,, X1, ...... Xn . F(X) is not known.

We can find an approximate value of F(x) from the known values. This method of finding F(x)
from these known values is called interpolation. We say that w interpolate F(x) from f(xo), f(x1),

Linear Interpolation

Let xo, X1 be two points and fo, f1 be the function values at these two points respectively. Let x be
a point between xo and x;. We are interested in interpolating F(x) from the values F(xo) and F(x).

FO F(x) =2 F1

x0 X x1

Now consider the Taylor’s series:

f (x0)
1

(x; —x0) + oo

f (1) = fxo) +
Considering only the first two terms, we have:

fi = fo + f'(x0) (21 — x0)

Therefore,

fi—fo

X1 — Xp

f'(xo) =

The Taylor’s series at x gives



f (x0)
1

fx) = f(xo) +
Also considering the first the first two terms, we have:

f(x) = f(x0) + f(xo)(x — x0) = fo +M(x — Xo)

(xy — x0)

x—

Now let === be denoted by p
e

We thus get; f(x) = fo + (fi — fo)p = fo + fi —Pfo = fo —pfo +Dfi
Therefore,

f(x)=Q-p)fo +rfi

This is called the linear interpolation formula. Since x is a point between xo and x;, p is a non-

negative fractional value, i.e. 0 <p <1
Example

Consider the following table:

X 7 19
7 15 35

Find the value of £(10)

Solution:

F0 =15 F(x) =2 F1=35

x0 =7 X=10 x1=19



_x—=x9 _ 10-7 3
Py —x 19-7 12

=0.25

Therefore,

1-p=1-025 =075
Hence, f(x) = (1 —p)fo + 0fi
=(0.75x15) + (0.25x 35) = 11.25 + 8.75
F(10) = 20
Lagrange Interpolation

Linear Lagrange interpolation is interpolation by the straight line through (x,, f5), (x1, f1)

P1(x)

F1

FO 5

v
>

X0 X X1

Thus, by that idea, the linear Lagrange polynomial P; is the sum P;= Lofo + Lif; with L , the
linear polynomial that is 1 at xo and O at X; .

Similarly, L; is 0 at xo and 1 at x;.

Therefore,



X —X

X—X
1 ,L1(x): 0
X1

Lo(x) =

xO_ xl_xo

This gives the linear Lagrange polynomial,

Py (x) =Lofo + Lafy = ;__211 fo+t=—2f

X1—Xo
Example 1

Compute In5.3 from In5.0 = 1.6094,In5.7 = 1.7405 by linear Lagrange interpolation and

determine the error from In5.3 = 1.6677.

Solution;
xo = 5.0
X, =957
fo =In5.0
fi =In57
Therefore.
L,(53) = 53-57 _ -04 — 057
50-57 =07
Li(53) =25 =20 -3 _ 43
57-50 07
Hence,

IN5.3 = Ly(5.3)f, + L,(5.3)f;
= 0.57 x 1.6094 + 0.43 x 1.7405 = 1.6658

The error is 1.6677 — 1.6658 = 0.0019

The quadratic Lagrange Interpolation



This interpolation of given (xo,fo), (X1, f1), (X2, f2) by a second degree polynomial P,(x), which
by Lagrange’s idea, is:

Py(x) = Lo(x)fo + L1 (x)fi + L (x)f;
With,
Lo(xy) =1,L,(x;) =1, Ly(x,) =1and
Lo(xy) = Ly(x,) = 0, e.t.c., we therefore claim that:

lo(x) _ (x —x1)(x — x3)

Lox) = Lo(xo) - (o — x1) (%0 — x2)
_ 11 (x) _ (x — x0)(x — x3)

Lix) = l1(x1) - (21 — x0) (x4 — x3)

L,(x) = l(x) _ (x = x0) (x — x1)

L (x3) - (x5 — x0)(x2 — x1)

The above relations are valid since, the numerator makes Ly (x;) = 0 ifj # k; and the

denominator makes L (x;) = 1 because it equals the numerator at x = x;
Example 2

Compute In 5.3 by using the quadratic Lagrange interpolation, using the data of example 1
and In7.2 = 1.9741. Compute the error and compare the accuracy with the linear Lagrange

case.
Solution:

(x—x)(x—x;) (63-57)(63-72)
(xo —x1)(xo — x,) (5.0-5.7)(50-7.2)

Ly(5.3) =

__ (-04)(-19) _ 076 __
= ConCas = 1ss = 04935

(x —x0)(x—x;) (63-50)(53-7.2)
(x; —x0)(x; — x,) (5.7 =5.0)(5.7—-7.2)

L,(53) =



_(03)(-19) _-057
~ (0.7)(-15) -105

= 0.5429

(x —x0)(x—x;) (63-50)(53-5.7)

L,(53) = (x, —x0)(x, —x;) (7.2 =5.0)(7.2-5.7)

_ (03)(-04) _—0.12

= @2)15) _ 33 _ 003636

Therefore,
IN5.3 = Ly(5.3)f, + L, (5.3)f, + L,(5.3)f,
= 0.4935 x 1.6094 + 0.5429 x 1.7405 + (- 0.03636) x 1.9741
=0.7942 + 0.9449 — 0.07177 =1.6673 (4D)
The error = 1.6677 -1.6673 = 0.0004
The above results show that the Lagrange quadratic interpolation is more accurate for this case.

Generally, the Lagrange interpolation polynomial may be written as:

O (%)
P Lie (xx)

FE) =R = ) Lfi = fi
k=0

Where,

L (x;) = 1 and O attheothernodes



CHAPTER FIVE

INTRODUCTION TO FINITE DIFFERENCES

Consider a function: f(x) = x3 —5x2+6

The table below illustrates various finite difference parameters.

x f(x) Af A% f A3 f A o
0 6
-4
1 2 g - 4 6
2 -6 2
-6 6
3 -12 2 8 6
4 |-10 16 14
) 6 20 6
36
6 42

Notice that a constant (6) occurs in the forward difference at A3f (3" forward difference)

It can be shown that:

a*f
R

Therefore,

Cf _

dx3_6

dzf
“ 7 _ +
TxZ 6x+ A

d
& a2+ Ax+B
dx

A
Hence, f = x3 +Ex2 +Bx+C




We now determine the constants:

Atx=0,f(x)=6=C

Therefore, f(x) = x3 + %xz +Bx+6

Atx =1, f(x) = 2 (from the table)

Therefore, 2 =1+ % + B+ 6, - (@)
Atx=2f(x)= —6

Hence,
—6 =842 (4) + 2B + 6 --rmrmrmenememm e (2)

We then solve simultaneously for the other constants.

The first forward difference is generally taken as an approximation for the first difference, i.e.
Af = f'(x) , (but will be exact if linear). Also, A%f = f"(x) (but exact if quadratic).

Similarly, A3f = f"(x) (but exact if cubic).
Note also that;

f (x)will be linear if the constant terms occur at Af column, quadratic if they occur at A f

column and cubic if at A3f column.

Now,

f1_f0 — fi+1_fi

X1 —Xo Xiy1 — Xj

Af = f(x) =

Let x;.; — x; = h = interval,
Then,

fi+1_fi

f(x) =



Now, from the Taylor’s series expansion, let us on this occasion consider the expansion about a

point x;:
_ 1) , h? v | h® (3)
frar = it b+ T A (1)

In this and subsequently, we denote the nth derivative evaluated at x; by fi(”)

Hence,

h? h3
firr = fi— RO+ TP T g e ()

From equations one and two, three different expressions that approximate fi(l) can be derived.

The first is from equation (1), considering the first two terms:

h?
for = fi =D + 5 2

fiva=fi _ h £(2)
Therefore, —=—=f +—f;

W) — (A _firafi _ h Q)
Hence, f; (dx) - ~fi 3
The quantity, L f —£—1is known as the forward difference and it is clearly a poor approximation,
since it is in error by approximately gfi(z).

The second of the expressions is from equation (2), considering the first two terms:

o P @
fi—fis = RO =2 f

fi=fiea _ (1) _ R% £(2)
Therefore, == = f*" — =,

L

D _ (U _ficfioa P2
L o B (4)

flfll

Also, the quantity,~/——= is called the backward difference. The sign of the error is reversed,

compared to that of the forward difference.



The third expression is obtained by subtracting equation (2) from equation (1), we then have:

h3
fi+1 _fi—l — hf;(l) + hf;(l) + 2§]¢;(3)

1) A
= 3/i
= 2hf " +2h 3
Hence,
2f(3)

fis1 — fi-1=2h f(l) +—L 3l

Therefore,
fl+1 fl f(l) h2]¢£(3)
- 2n T 3!
So,
1) — (4f _ fit1=fi-1 _ hzfi(s)
f (dx) 2h g1 T (5)
fl+1 fl 1

The quantity, is known as the central difference approximation to f, () and can be seen

from equation (5) to be in error by approximately %fi(”. Note that this is a better approximation

compared to either the forward or backward difference.

By a similar procedure, a central difference approximation to fi(z) can be obtained:

2 A?f\ . fir1=2fitfi
f( ) = ( ) = firr=2fi+fica -

h2

2
The error in this approximation, also known as the second difference of f, is about % “)

It is obvious that the second difference approximation is far better that the first difference.



Example:

The following is copied from the tabulation of a second degree polynomial f(x) at values of x

from 1 to 12 inclusive.

2,2,78,14,22,32,46,7, 74,92, 112

The entries marked ?were illegible and in addition, one error was made in transcription.

Complete and correct the table.

Solution:
SIN | f(x) [ Af A%f
1 2 Because, the polynomial is second degree, the 2™
2 2 9) ? differences (which are proportional to %) should be
3 ? 2 ? constant and clearly, this should be 2. Hence, the 6™ value in
4 8 6 ’ the A%f column should be 2 and also all the ?in this column.
Z ;2 8 2 Equally, the 7" value in the Af column should be 12 and not
10 14. And since all the values in the.A% fcolumn are a constant

; jz i4 f,l ,2, the first two ? inAf column are 2 and 4 respectively and
9 ) 7 2 the last two are 14 and 16 respectively. Working this
10 24 '18 5 backward to f(x)column, the first ? = 4, while the 8" value
1 9 2 in this column = 44 and not 46.. Finally, the last ? in the
1 112 20 f(x) column =58

The entries should therefore read:

2,2,4,8,14, 22, 32, 44, 58, 74, 92, 112




CHAPTER SIX

SIMULTANEOUS LINEAR EQUATIONS

Consider a set of N simultaneous linear equations in N variables (unknowns), x;,i = 1,2,....N.

The equations take the general form:

Aj1xq + Appx, + o + AyxXy = by

Aypixy +Ayx, + o + A,yxy = b,
----------------------------------------------------------- (1)
Ani1X1 + Apox, + o + AynXy = by

Where, A;;are constants and form the elements of a square matrix A. The b; are given and form a

column vector b. If A is non-singular, equation (1) can be solved for the x; using the inverse of

A according to the formula; x = A~ 1b.

Systems of linear Equations

Consider the following system of linear equations:

A11X1 + AgX7 + . + A1nXn = A1n41
Az1X1 + AppXp + . + A Xn = A2 n41
An1Xy + ApaXp + oo + ApnXn = Ann+1
A solution to this system of equations is a set of values x,, x5, ... .., x,, which satisfies the above

equations.



Consider the matrix:

A1 Q12 Q13 .- A1n
Az1 Qz2 QA3 .. Aon
An1  Qnz  Apz - Ann

This called the coefficient matrix

A1n+1
The vector: | — — —

an,n+1

is called the right hand side vector.

In some special cases, the solution can be got directly.

Cases 1

A square matrix is called a diagonal matrix if the diagonal entries alone are non-zeros. Suppose

the coefficient matrix is a diagonal matrix, i.e. the coefficient matrix is of the form:

[Q11 0 O.....O]
IO az, 0..0 |

The equations will be of the form:
A11X1 = A1 n+1

A2Xy = Ay n+1

annxn = an,n+1
In this case, the solution can be directly written as:

_ A1n+1 _ Azn41 _ Apn+a
X, = , Xy = T Xy =

ajq az; Ann




Case 2
A matrix is said to be lower triangular if all its upper diagonal entries are zeros.
Suppose the coefficient matrix is a lower diagonal matrix, i.e. it is of the following form:

[ 311 0 0....01
| aziaz; 0...0 |

The equations will be of the following form:

a11x1 = al,n+1

Az1X1 F A%, = A+

Az1Xq + A33X, + Az3X3 = d3n+1
An1Xy + AnaXp + ApzXz + oo + ApnXn = Ann+1

From the first equation,
_ A1n+1
X, =
ajq

Substituting x; into the second equation, we have:

1
Xy = _(az,n+1 - a21x1)
az;

Also, doing the same for x,:n

1
X3 = _(a3,n+1 — a31X1 — A33X3)
ass

Similarly, we can find x4, xs, ... ... ., x,,. This is called forward substitution method.



Case 3

Suppose the coefficient is upper triangular. Then, the equations will be of the following form;
11X ¥ appXy + o F A Xy = A1pt
0  + agpx;+ . +ayX, = aype
+ appxy = Apnn+1

Starting from the last equation,

Ann+1

Xn =
Ann

The(n — 1)th equation can now be used to evaluate x,,_, thus:

1

Xn-1— (an—l,n—l - an—l,nxn)

an—l,n—l
In general, after evaluating x,,, x,_1 ... .. Xx4+1 , We evaluate x;as:

1

X = — = (Qn+1 — Aiges1Xk41 o oo AgenXn)
Akk

We can thus evaluate all the x; values. This is called backward substitutiion method.

Elementary Row Operations

Consider a matrix

Operation 1

Multiplying each element of a row by a constant:



If the ith row is multiplied by a constant k, we write: R; = kR; (read as R;becomes kR;).

Operation 2

Multiplying one row by a constant and subtracting it from another row, i.e. R; can be replaced by

Operation 3

Two rows can be exchanged: If R; and R; are exchanged, we write R; < R;.

When operation 1 is performed, the determinant is multiplied by k.

If operation 2 is performed on a matrix, its determinant value is not affected.

When operation 3 is performed, the sign of its determinant value reverses.

Now consider a matrix in which all the lower diagonal entries of the first column are zero;
a1 Q12 Qq3.-Q1

A=0 az az.axn
0 aj assz..as,

Pivotal Condensation

Consider a matrix,

Aj; Q12 Aq3..099
A =ay; ay;; ajsz..ay,

dn1 dn2 an3 ..dnn

Also consider a row operation R < R, — ?Rl, performed on the matrix A; then the
11

a,qentry will become zero. Similarly, do the operation :R; < R; — ZiRl, fori=2,34,...n
11



Then the lower diagonal entries of the first column will become zero. Note that these operations
not affect the determinant value of A.

In the above operation, a;;would have now become:

a1

J 7 a,

a; -
a;i —_llalj, that is: aij < a;
11 11

R a;

J

Therefore, according to the new notation:

Apz Qz3.. Qzp
|[A] = ayq |A32 azz.. azp
anZ an3- ' ann

Now, we can once again repeat the above procedure on the reduced matrix to get determinant:

Q33dzs *° Q3p
|A] = ajqa;, [ : . : ]
An3lnge *° Qpp
‘A’ was a nxn matrix. In the first step, we condensed it into a (n — 1)x(n — 1) matrix. Now, it
has further been condensed into(n — 2)x(n — 2) matrix. Repeating the above procedure, we can
condense the matrix intolx1. So, determinant, A = a;;.az,.a33. ... . Apy.

Algorithm Development

Let A be the given matrix,

1. Do the row operation R; « R; — ~2R,

(fori =234...n)

This makes all the lower diagonal entries of the first column zero.

2. Do the row operation R; « R; — “2 R, (fori =34...n)

az2



This also makes all the lower diagonal entries of the second column zero.

3. Do the row operation R; « R; — “2 R, (fori =45...n)

ass

This makes all the lower diagonal entries of the third column zero.

In general, in order to make the lower diagonal entries of the k" column zero,

4. Do the row operation, R; « R; — ZiRk fori=k+1k+2...n)
kk

Doing the above operation for k = 1,23, ....,n — 1, makes all the lower diagonal entries of

the matrix zero. Hence, determinant A = a;.a,;. ass3, ..., Apn-

Notice that the following segment will do the required row operation:

Ak

ratio =
Ak

Forj=1ton

a;j = a;; — ratio * ay;

next j

This operation has to be repeated for i = k + 1 to n in order to make the lower diagonal entries

of the k" column zero.
The complete algorithm is show below:

Read n
fori=1ton
forj=1ton
Read a;;

next j

next i
fork=1ton-1

fori=k+1lton

N o g b~ 0w D oE



9. ratio = Z—;’;

10. forj=1ton
11. a;; = a;j — ratio * ay;
12. next j

13. next i

14. next k

15. Det =1

16. fori=1ton
17. Det = Det * a;;
18. next i

19. Print Det

20. End.

Practice Questions

1. Write a FORTRAN program to implement the pivotal condensation method, to find the
determinant of any matrix of order n.

2. Find the determinant of :

12 -21 32 43
-14 -26 30 4.1
22 17 40 1.2
11 36 50 46
Using the pivotal condensation method,



Gauss Elimination Method

Consider the equation:
A11X1 F Q12X + oo F QX = Qg
Az1X1 + AgpXp + -+ Aop Xy = Az nyq
Ap1X1 + ApaXy + o+ appxy = Ann+1

This can be in matrix form and solved using the row operation which was done for the pivotal
condensation method.

The algorithm consists of three major steps thus:

(1 Read the matrix
(i) Reduce it to upper triangular form
(iif)  Use backward substitution to get the solution..

Algorithm:
Read Matrix A.

Read n
fori=1ton
forj=1lton+1
Read a;;

Next j

o g~ D P

Nexti

Reduce to upper Triangular
7. fork=1ton-1

8. fori=k+1lton

. a;
9. Ratio = =&
Akk



10. forj=1ton+1
11. a;; = a;; — Ratio * ay;
12. Next j
13. Next i
14. Next k
Backward Substitution

— Ann+1
15. x,, = Snntt
ann

16. fork=n—1tolstep—1
17. xp = agny1

18. forj=k+1ton

19. x = xp — ayj * x;

20. Next j

Xk

21. x;, =

Akk
22. Next k
Print Answer
23. fori=1ton
24. print x;
25. Next i
26. End

Example:

Solve the following system of equations by the Gauss elimination method:

1
X, + X,y +§x3 +x, =35

—Xxq +2x, + Xy =—2
—3x; +x, +2x3 +x, = -3
—Xxq + 2x, =0

Solution: The matrix is:



1 1 05 1 35
(12 0 1 -2
-31 2 1 -3
-1 0 0 2 O

In order to make zero, the lower diagonal entries of the first column, do the following operations

R, <« R, + R,
R; <« R; + 3R,
R, < R,+R;
These will yield:
1 1 05 1 35
0 3 05 2 15
04 35 4 75
0 1 05 3 35
Now do the operations:
R R 4R
(_ — —
3 3 3 2
2
Ry« Ry ——
4 4 3
These will yield:
1 1 05 1 35
0 3 05 2 15
00 2.833 1.33 55
0 0 066 233 3
Now, doing:
0.66

R4(_R4_E*R3

Will result to:



1 1 05 1 3.5
0 3 05 2 1.5
00 2.833 1.33 5.5
0 0 O 2.0196 1.70588

Now the equations become:

X1+ x, +%x3 + x4 =35 - 1)
3x, + -x3 +2x, =15 oo 2
2.833x5 + 1.33x, = 5.5 ~mmmemeemev ?)
2.0196x, = 1.70588 ------- 4)
From equation (4),
x, = 0.84466

From equation (3),
2.833x; + 1.33(0.84466) = 5.5
- x3 = 1544

Also, from equation (2),
1
3x, + > (1.544) +2(0.84466) =15

- x, =-03204
Finally, equation (1) gives, after substituting x,, x3, and x,values:

x; = 2.2039



CHAPTER SEVEN

DIFFERENTIAL EQUATIONS

The following are some differential equations:

yl — (xZ _|_y)ex
y"'=y'x+xy?
xym + (1 _ xZ)yyu + y — (xZ _ 1)8”

If y® is the highest order derivative in a differential equation, the equation is said to be ak®"
order differential equation.

A solution to the differential equation is the value of y which satisfies the differential equation.
Example:
Consider the differential equation: y"’ = 6x + 4
This is a second order differential equation. The function:
y=x3+2x2-1

satisfies the differential equation, hence, y = x3 + 2x2 — 1 is a solution to the differential

equation.

Numerical Solutions

Consider the equation: y" = 6x + 4

Asolutionis y =x3+2x2—1, however, instead of writing the solution as a function of x,
we can find the numerical values of y for various pivotal values of x. The solution from x =

0 to x = 1 can be expressed as follows:

X 0 0.2 04 0.6 0.8 1.0

y -1 —0.912 —0.616 0.064 0.792 20




The values are got by the function y = x3 + 2x? — 1. This table of numerical values of y is
said to be a numerical solution to the differential equation.

The initial value Problem
Consider the differential equation: y" = f(x,y); y(xo) = yo

This is a first order differential equation. Here, the y value at x, = y,. The solution y at x, is

given, We must assume a small incrementh. i.e.
X1 =Xx9t+h

X, =x,+h

Xip1 =Xt h

Yo v, =? Yy, =7 V3 =? Vs =7?
Xo X1 X2 X3 X4
Let us denote the y values at x4, x5, ... .... as y;,y, .... respectively.y,is given and so we must find

Y1,Y, ... This differential equation is called an initial value problem.

Euler’s Method
Consider the initial value problem: y' = f(x,y); y(xy) = yo
yis a function of x, so we shall write that function as y(x)

Using the Taylor’s series expansion:

2

y(xo + h) = y(x,) + %y’(xo) + %y”(xo) + -
Here, y(x, + h) denotes y value at x, + h
y'(x,)denotesy’ value at x, + h, e.t.c.
Given;

y(x0) = yo




y(xo + h) = y(x1) =y, (say)
y'(x0) =y’ at x,
But, y' = f(x.y)
- ¥'(x0) = f(x0,¥0)
Now, let
y'(x0) = f(x0,¥0) = fo
hence,y'(xq) = fo
Therefore, Taylor’s series expansion up to the first order term, gives:
Y1 = Yo+ hfy

Similarly, we can derive:

Y2 =y1 +hfp
Y3 =Yyt hfy
In general,

Yis1 = Yi + hfi ,where f; = f(x;,y;)

This is called the Euler’s formula to solve an initial value problem.

Algorithm for Euler’s method

1. Define f(x,y)

2. Read xy,yy,n,h

3. fori=0ton—1Do
4, x4 =x;+h

5 Yisr =¥ +hf O, y0)
6. Printxiy1,Yis1

7. nexti

8

. End

Assignment: Implement the above in any programming language (FORTRAN of BASIC)



Example:
Solve the initial value problem: y" = x2 + y2;y(1) = 0.8; x = 1(0.5)3
Solution:

Given: f(x,y) =x2+y%,x,=1,9,=08h=05x=1to3

Yo =038 V1 =? Y, =7 V3 =7 Vs =?
Xg=1 x; =15 X, =2 X3 =25 X4 =3
Y1 =Yo + hfy

But f, = f(xo, 7o) = f(1,0.8) = 1.64

Therefore, y; = 0.8 +(0.5)(1.64) = 1.62

Y2 =y, +hfy
But f; = f(xy,y,) = f(1.5,1.62) = 48744

Therefore, y, = 1.62 + (0.5)(4.8744) = 40572

Y3 =y, + hf;
But £, = f(x,,y,) = f(2,4.0572) = 20.460871

Therefore, y; = 4.0572 + (0.5)(20.460871) = 14.287635

Ya =y3 + hf3
But f; = f(xs,y5) = f(2.5,14.287635) = 210.38651

Therefore, y, = 14.287635 + (0.5)(210.38651) = 119.48088

So the numerical solution got by Euler’s method is:

y, = 1.62 y, = 40572 | y, = 14.287635

y, = 119.48088

x; =15 X, =2 X3 =25

X4 =3




Assignment: Using Euler’s method, solve: 52—1 =3x3y;y(0) =1

For the interval 0 < x < 0.3,withh =0.1

Backward Euler’s Method
The formula for backward Euler’s method is given by: y;,1 = y; + hfi 41

Where, fi 1 = f(Xir1,Yie1)
For example, consider the initial value problem:

y' =2x3y;y(0) =1;x = 0(0.2)0.4
Solution:

flx,y) =2x%y
X9 =0,y0=1h=02

The backward Euler’s method formula is: y;,1 = y; + hf;14

> Yipr = Vi Fh(2x} * Vie1)

Therefore,
Yi+1 — 2hxi3+1 *Viv1 = Vi
Hence,
Yi=Yir1(1— 2hxi3+1)
OR
Y T (= 2k,
Yo=1 v =? Y, =?
X9 =0 x; = 0.2 x, =04

Now, put i = 0 in the formula:



Yo 1

= = = 10032102
1T @ =2m3)  1-2(02)(02)°

Put i = 1 in the formula:

V1 1.0032102

= = = 10295671
V2T W= 2ra3)  1-2(02)(0.4)°

Therefore, the numerical solution to the problem is:

v, =1 y, = 1.0032102 | y, = 1.0295671

X9 =0 x,=0.2 x, =04

Euler-Richardson’s Method

The formula is written as
h
Yier =i+ g(fi + 2fi+%)
Where f; = £ (xi, ) and fy,3 = f (x30.7,5)
h h
Also, xl.+% = x; +E; yl.+% =y; +Efi
Algorithm
Define (f,x)

Read xg,y9,h,n
fori=0ton—1Do

h
xi+% =Xt

Xiv1 =X+ h

h
Vie1 = Vi + ;{f(xi:Yi) + Zf((xi+%|yi+%)}
Print Xiy1, Yi+1

Next i

1
2
3
4
h
5. Yied = Vi +5f(xi|}’i)
6
7
8
9.
10. End

Let us now, develop a FORTRAN programme for the function: f(x,y) = %(1 + x)y?

iey’ =>(1+x)y% y(0) =1; x=0(01)06
Hence, xo =0, yo =1, h=01, n=6

Note: Let XM = x;,, and YM = y;4



C PROGRAM FOR EULER RICHARDSON

DIMENSION X(20), Y(20)
F(X,Y) = 0.5%(1. +X) *Y*Y
WRITE (*,*) ‘ENTER X,, Yo, H, NVALUES’
READ (*,5) X(0). Y(0), H, N

5 FORMAT (3F15.5, 15)
WRITE (*,%) X(1), Y(I)
DO 251=0,N-1
XM = X(I) + H/2.0
YM = Y(I) + H/2.0 * F(X(1), Y(1))
X(1+1) = X(I) +H
FI =F(X(1), Y(I)
FM =F(XM, YM)
Y(I+1) = Y(I) +H/3. * (FI + 2.0 * FM)
WRITE (*,15) X(1+1), Y(I+1)

15 FORMAT (1X, 2F15.5)
CONTINUE
STOP

END

Taylor’s Series Method
Given that y is a function of x, it is written as y(x)

By Taylor’s series expansion;

y'x), ¥y,
TR TR

f

y(x+h) =y(x)+

2

h ! n
y(x; +h) =y, TR TE R



Where, yi =vy"at (x;, ;)

vy, =y"at (x;,y;)

2

h
- yxd =y +Eyi,+§yi”+ ---------
Let the given initial value problem to be solved be:
y' =f(xy); y(xo) =0

Now consider the problem:

y' =4x3+1

y(0) =15
x =0(0.2)0.8

Here,
y' =4x3+1

yi=4xi+1
y" = 12x%y]' = 12x?
y"' = 24xy;" = 24x;
y@ =24y = 24
y(v) — Oyi(v) -0
Therefore, Taylor’s expansion becomes:

2 3 4

h h h
Vi1 = y; + h(4x} + 1) + —(12x7) + — (24x;) + == (24)
2 6 24
Giventhat h = 0.2

Vis1 =¥ +0.8x? + 0.2+ 0.24x? + 0.052x; + 0.0016

Hence, by putting i = 0,1, 2, and 3 respectively, we can evaluate y;, y,, 3, V4.



The Runge — Kutta Methods
Consider the initial value problem:
y' =f(xy); y(xo) =0
Sincey is a function of x, and it can be written as y(x)
Then by mean value theorem,
y(x; + h) = y(x;) + hy'(x; + 6h)
Where,0 <6 <1
In our usual notation, this can be written as:
Yir1 = ¥i + hf (x; + 6h , y(x; + 6h))

Now, choosing = % , We obtain:

h h
Yitr1 =Yi v hf <xi MCREL +§fi)
And since Euler’s method with spacing % , this formula may be expressed as:
dy = hf(x;, y:)
h d,
d, = hf (x; +§ ' Vi "‘7)

Therefore,
Yit1 =yi +d;

This is called the second order Runge — Kutta formula.

The third order formula is:
dy = hf(xi ,}’i)
h d,
d, = hf(x; +§ ' Vi "‘7)

d3 = hf(x; +h,y; +2d, — dy)

Therefore,

1
Yie1 =Yi + g(d1 +4d, +d3)



The fourth order Runge — Kutta formula is given as:
dy = hf (x;,y:)
h d,
d; = hf (x; +§ ' Vi "‘7)

da

h
ds = hf (xi+5 v+ )
dy = hf(x;+ h,y; +d3)

Therefore,
1
Yit1=Yi + g(d1 +2d, +3d; +d,)

Example

Solve the initial value problem value using the Runge — Kutta second order method.

d
% =@+x2)y: y(0)=1; x =0(0.2)0.6
Solution:
fO,y)=@+xDy; xg=0y,=1h=02
Yo=1 v =? V2 =7 V3 =?
X9 =0 x,=0.2 x, =04 x; = 0.6
To find y,
d, = hf(x;,y;) =021+ x3)y,
=02(1)(1)=0.2
h d,
d, = hf <xi ot 7) = hf(0.1,1.1) = 0.2(1 + 0.01)1.1
= 0.2222
Therefore,
y=y,+d, = 1+02222

= 12222



To find y,:

dy = hf(x;,y;) =02(1+x2)y, =02(1+0.04)(1.2222)

= 02542222
h d,
d, = hf <x1 oo+ 7) = hf(0.3,1.349333) = 0.2(1 + 0.09)(1.34933)
= 02941546

Then, y, =y, +d, = 12222+ 0.2941546 = 15163768
To find y;
d, = hf(x,,y,) =02(1+x2)y, =0.2(1+ 0.16)(1.5163768)
= 0.3517994

h d,
d, = hf <x2 St 7) = hf(0.5,1.6922785)

= 0.4230691
Then, y; =y, +d, = 15163768 + 0.4230691

= 1.9394459
Assignment

Solve the problem given below, using the Runge — Kutta fourth order method:

d
% =(1+x2)y; y(0)=1: x=0(02)0.6



CHAPTER EIGHT
NUMERICAL INTEGRATION

Methods:

1. Trapezoidal Formula

b
Yo TV,
y:ff(x)dxzh( > 5 n+}’1+}’2+'”----}’n—1)
a

where, yi = f(xp), (i=012,....,n)

b—a
n

h =

2. Simpson’s Formula (Parabola formula)

b
h
y= ff(x)dx ~ §[YO +Yom F 22 FysF o Yom2) AL F Yz o FYamo1)]
a

b—a b-—a
where h = =
n 2m

3. Newton’s Formula (2 rule)

b
3h
y= ff(x)dx ~ g[}’o +Yam 23+ Yo+ Yam-3) F3n t Y FYs
a

+ o Yamo2) + Vamo1)]

b—a b-—a
where, h = =
n 3m




Example 1

Evaluate the integral, employing the trapezoidal rule, for n = 10

1
y= f e *"dx
0

Solution:

Form a table of the integrand function
t Xi xf Vi
0 0 0.0 1.0000
1 0.1 0.01 0.9900
2 0.2 0.04 0.9608
3 0.3 0.09 0.9139
4 04 0.16 0.8521
5 05 0.25 0.7755
6 0.6 0.36 0.6977
7 0.7 0.49 0.6125
8 0.8 0.64 05273
9 0.9 0.81 0.4449
10 1.0 1.00 0.3679

Applying the formula;

Yo +yn

b
y= [ FGdx = 2y, 4y, +
a

We note that :% (Vo +V10) + 2P,y = 7.4620

Therefore,

y= f01 e *’dx=h=74620 = 0.1 x7.4620

~ 0.746

e Y1)




Example 2

Compute the integral; y = f01 e* dx by the Simpson formula, for n = 10

Solution:

Form a table of the function:

Values of y; = e*”

i X; x? fori=0,10 for eveni for odd i
0 0 0.00 1.0000
1 0.1 0.01 1.0101
2 0.2 0.04 1.0408
3 0.3 0.09 1.0942
4 04 0.16 11735
5 05 0.25 1.2840
6 0.6 0.36 14333
7 0.7 0.49 1.6323
8 0.8 0.64 1.8965
9 0.9 0.81 2.2479
10 10 1.00 2.7183

Summation 3.7183 5.5441 7.2685

Applying the Simpson’s formula:

1
1
f e dx ~ %[(3.7183) + 2(5.5441) + 4(7.2685)]
0

= 146268 ~ 14627




Example 3

Compute the integral, using the Newton’s formula for h=0.1

06 dx
fo 1+x
Solution:
If h=01thenn=22=2%"%_-5¢
h 0.1
Now form a table of the function:
Values of y; = v
i Xi 1+x; fori=0,i=6 fori=3 fori=1245
0 0 1.00 1.0000
1 0.1 1.10 0.9091
2 0.2 1.20 0.8333
3 0.3 1.30 0.7692
4 04 1.40 0.7143
5 0.5 150 0.6667
6 0.6 1.60 0.6250
Summation 1.6250 0.7692 3.1234

Applying the formula, we obtain;

b
3h
y= ff(x)dx ~ g[}’o +Yam 23+ Yo+ Yam-3) F3n t Y FYs
a

+ o FYamo2) + Vamo1)]

06 dx 3
f ~—x*0.1%*(1.6250+ 1.5384 + 9.3702) ~ 0.47001
0

1+x 8
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