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1 Electromagnetic Waves 
 

1.1 Maxwell’s Equations 

 

In the latter half of the nineteenth century, the Scottish physicist James Clerk Maxwell 

demonstrated that all previously established experimental facts regarding electric and 

magnetic fields could be summed up in just four equations. Nowadays, these equations are 

generally known as Maxwell’s equations.  

The first equation is simply Gauss’ law. This equation describes how electric charges 

generate electric fields. Gauss’ law states that:  

The electric flux through any closed surface is equal to the total charge enclosed 

by the surface, divided by ϵ0 .  
 
This can be written mathematically as  
  
 

∮ 𝑠〖𝐸. 𝑑𝑆〗 =  𝑄/𝜀0  (1.1) 

  
where S is a closed surface enclosing the charge Q.  The above expression can 

also be written ∮ 𝑠〖𝐸. 𝑑𝑆〗 =  1/𝜀0∮ 𝑠(𝜌𝑑𝑉)                                                        (1.2) 

 
   

where V is a volume bounded by the surface S, and ρ is the charge density: i.e.,  

the electric charge per unit volume.  

The second equation is the magnetic equivalent of Gauss’ law.  

This equation describes how the non-existence of magnetic monopoles causes  

magnetic field-lines to form closed loops.  Gauss’ law for magnetic fields states  

that:  

The magnetic flux through any closed surface is equal to zero. This can 

be written mathematically as  

∮ 𝐵. 𝑑𝑆 = 0,                                                                                              (1.3)
 

𝑠
  

 
  



 
 

 

 

 

 

where S is a closed surface.  

The third equation is Faraday’s law.  This equation describes  

how changing magnetic fields generate electric fields. Faraday’s law states that:  

 

The line integral of the electric field around any closed loop is equal to minus the time 

rate of change of the magnetic flux through the loop.  

 

This can be written mathematically as  

  

 𝐸. 𝑑𝑠 =  −
𝑑

𝑑𝑡

 

𝑐

  B . ds′                                         1.4 
 

S ′

 

  

where S ′ is a surface attached to the loop C.  

The fourth, and final, equation is Ampère’s circuital law. This equation describes how 

electric currents generates magnetic fields.  Ampère’s circuital law states that:  

 

The line integral of the magnetic field around any closed loop is equal to µ0 times the 

algebraic sum of the currents which pass through the loop.  

 

This can be written mathematically as  
∮ 𝑠(𝐵. 𝑑𝒓) = 𝜇0𝐼                                                  (1.5) 

  

where I is the net current flowing through loop C.  This equation can also be 

written  ∫ 

                                                                           ∮B · dr = µ0 𝒋. 𝑑𝑺
 

𝑠′  (1.6) 
C  

where S ′ is a surface attached to the loop C, and j is the current density: i.e., the electrical 

current per unit area.  

When Maxwell first wrote Eqs. (1.2), (1.3), (1.4), and (1.6) he was basi- 

cally trying to summarize everything which was known at the time about electric  

and magnetic fields in mathematical form. However, the more Maxwell looked at  
 



 
 

 

 

 

1 ELECTROMAGNETIC WAVES 1.1 Maxwell’s Equations 

his equations, the more convinced he became that they were incomplete. Eventually, he 

proposed adding a new term, called the displacement current, to the right-hand side of 

his fourth equation.  In fact, Maxwell was able to show that (1.2), (1.3), (1.4), and (1.6) 

are mathematically inconsistent unless the displacement current term is added to Eq. (1.6). 

Unfortunately, Maxwell’s demonstration of this fact requires some advanced 

mathematical techniques which lie well beyond the scope of this course.  In the 

following, we shall give a highly simplified version of his derivation of the missing 

term. 

C 
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Figure 1.1: Circuit containing a charging capacitor.  

Consider a circuit consisting of a parallel plate capacitor of capacitance C in  

series with a resistance R and an steady emf V , as shown in Fig. 1.1. Let A be  

the area of the capacitor plates, and let d be their separation. Suppose that the  

switch is closed at t = 0.  The current i flowing around the circuit starts from  

an initial value of I = V/R, and gradually decays to zero on the RC time of the  

circuit. Simultaneously, the charge q on the positive plates of the  

capacitor starts from zero, and gradually increases to a final value of Q = C V.  

As the charge q varies, so does the potential difference v between the capacitor  

plates, since v = q/C.  

The electric field in the region between the plates is approximately uniform,  

directed perpendicular to the plates (running from the positively charged plate  

to the negatively charged plate), and is of magnitude E = v/d. It follows that  

q = C v = C d E. (1.7) 

In a time interval dt, the charge on the positive plate of the capacitor increases by  
 
  



 

       
 

 

 

 

1 ELECTROMAGNETIC WAVES 1.1 Maxwell’s Equations 

an amount dq = C d dE, where dE is the corresponding increase in the electric field-

strength between the plates. Note that both C and d are time-independent quantities. It 

follows that  
𝑑𝑞

𝑑𝑡
= 𝐶𝑑

𝑑𝐸

𝑑𝑡
,

                                                        (1.8)  

Now, dq/dt is numerically equal to the instantaneous current i flowing around the circuit 

(since all of the charge which flows around the circuit must accumulate on the plates of the 

capacitor).  Also, C = ϵ0 A/d for a parallel plate capacitor. Hence, we can write 

 

 

                      𝑖 =
𝑑𝑞

𝑑𝑡
= 𝐶𝑑

𝑑𝐸

𝑑𝑡
=  𝜀0𝐴

𝑑𝐸

𝑑𝑡
                        (1.9 

 

Since the electric field E is normal to the area A, we can also write 

 

i = ϵ0 A
𝑑𝐸⊥

𝑑𝑡
  

 

(1.10)  

Equation (1.10) relates the instantaneous current flowing around the circuit  

to the time rate of change of the electric field between the capacitor plates. Ac- 

cording to Eq. (1.6), the current flowing around the circuit generates a magnetic  

field. This field circulates around the current carrying wires connecting the vari - 

ous components of the circuit. However, since there is no actual current flowing  

between the plates of the capacitor, no magnetic field is generated in this region,  

according to Eq. (1.6). Maxwell demonstrated that for reasons of mathematical  

self-consistency there must, in fact, be a magnetic field generated in the region  

between the plates of the capacitor. Furthermore, this magnetic field must be the  

same as that which would be generated if the current i (i.e., the same current as  

that which flows around the rest of the circuit) flowed between the plates.  Of  

course, there is no actual current flowing between the plates. However, there is a  

changing electric field. Maxwell argued that a changing electric field constitutes  

an effective current (i.e., it generates a magnetic field in just the same manner  

as an actual current).  For historical reasons (which do not particularly interest  

us at the moment), Maxwell called this type of current a displacement current.  

Since the displacement current ID flowing between the plates of the capacitor  

must equal the current i flowing around the rest of the circuit, it follows from  
 
 



 
 

 

 

 

1 ELECTROMAGNETIC WAVES 

 

Eq. (1.10) that                 

               

              
0 (1.11)D

dE
I A

dt
   

 
 
 
 

1.1 

 

 

 
 
 
 

Maxwell’s Equations 

 

 

Equation (1.11) was derived for the special case of the changing electric field  

generated in the region between the plates of a charging parallel plate capaci- 

tor.  Nevertheless, this equation turns out to be completely general.  Note that  

A E⊥  is equal to the electric flux ΦE  between the plates of the capacitor.  Thus,  

the most general expression for the displacement current passing through some  

closed loop is 

ID  =     ϵ0    dΦE 

dt  , 
where ΦE is the electric flux through the loop. 

(1.12)  

According to Maxwell’s argument, a displacement current is just as effective at generating 

a magnetic field as a real current. Thus, we need to modify Ampère’s circuital law to take 

displacement currents into account. The modified law, which is known as the Ampère-

Maxwell law, is written  

 

The line integral of the electric field around any closed loop is equal to µ0 times the 

algebraic sum of the actual currents and which pass through the loop plus µ0  times 

the displacement current passing through the loop.  

 

This can be written mathematically as  
 

∮B · dr = µ0 (I + ID ), (1.13) 
      C 

where C is a loop through which the electric current I and the displacement 

current ID pass. This equation can also be written 
   

∮B · dr = µ0∫ j · dS ′ + µ0 ϵ0     d   ∫E · dS
 ′
 , (1.14) 

      C S ′ dt S ′ 

where S ′ is a surface attached to the loop C.  

Equations (1.2), (1.3), (1.4), and (1.14) are known collectively as Maxwell’s equations. 

They constitute a complete and mathematically self-consistent description of the behaviour of 

electric and magnetic fields.  
 



 
 

 

 

 

1 ELECTROMAGNETIC WAVES 1.2 Electromagnetic Waves 

 

1.2 Electromagnetic Waves 

 

One of the first things that Maxwell did with his four equations, once he had  

obtained them, was to look for wave-like solutions. Maxwell knew that the wave- 

like solutions of the equations of gas dynamics correspond to sound waves, and  

the wave-like solutions of the equations of fluid dynamics correspond to gravity  

waves in water, so he reasoned that if his equations possessed wave-like solutions  

then these would correspond to a completely new type of wave, which he called  

an electromagnetic wave.  

Maxwell was primarily interested in electromagnetic waves which can propagate 

through a vacuum (i.e., a region containing no charges or currents). Now, in a vacuum, 

Maxwell’s equations reduce to  

                                                                               ∮ E · dS, 
S 

 
                                                                               ∮ B · dS 

S 

 
                                                                                  ∮ E · dr 

C 

 
                                                                                
                                                                                  ∮ B · dr 

C 

 

=  0, (1.15) 

 

=  0, (1.16) 

 

 =  − d    𝑩. 𝑑𝑺′     (1.17) 
               S ′ 
dt  

                    

=       µ0 ϵ0 
𝒅

𝒅𝒕
  𝑬.𝑑𝑺′                                           (1.18)              

 S ′  

where S is a closed surface, and S ′  a surface attached to some loop C.  Note  

that, with the addition of the displacement current term on the right-hand side of  

Eq. (1.18), these equations exhibit a nice symmetry between electric and mag- 

netic fields.  Unfortunately, Maxwell’s mathematical proof that the above equa- 

tions possess wave-like solutions lies well beyond the scope of this course.  We  

can, nevertheless, still write down these solutions, and comment on them.  

Consider a plane electromagnetic wave propagating along the z-axis. According to 

Maxwell’s calculations, the electric and magnetic fields associated with such a wave 

take the form  

Ex =  E0  cos[2π (z/λ − f t)], (1.19) 

By =  B0  cos[2π (z/λ − f t)]. (1.20) 
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Note that the fields are periodic in both time and space. The oscillation frequency  

(in hertz) of the fields at a given point in space is f. The equation of a wave crest 

is  

       𝑧

𝜆
− 𝑓𝑡 = 𝑁                                 (1.21 

                                            

where N is an integer. It can be seen that the distance along the z-axis between  

successive wave crests is given by λ. This distance is conventionally termed the  

wavelength. Note that each wave crest propagates along the z-axis. In a time inter- 

val dt, the Nth wave crest moves a distance dz = λ f dt, according to Eq. (1.21).  

Hence, the velocity c = dz/dt with which the wave propagates along the z-axis  

is given by  

c = f λ. (1.22) 

Maxwell was able to establish that electromagnetic waves possess the following 

properties:  

 

1. The magnetic field oscillates in phase with the electric field. In other words,  

 a wave maximum of the magnetic field always coincides with a wave maxi- 

 mum of the electric field in both time and space.  

2. The electric field is always perpendicular to the magnetic field, and both  

 fields are directed at right-angles to the direction of propagation of the wave.  

 In fact, the wave propagates in the direction E × B. Electromagnetic waves  

 are clearly a type of transverse wave.  

3. For a z-directed wave, the electric field is free to oscillate in any direction  

 which lies in the x-y plane. The direction in which the electric field oscillates  

 is conventionally termed the direction of polarization of the wave.  Thus,  

 Eqs. (1.19) represent a plane electromagnetic wave which propagates along  

 the z-axis, and is polarized in the x-direction.  

4. The maximum amplitudes of the electric and the magnetic fields are related  

 via  

E0  = c B0 . (1.23) 
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5. There is no constraint on the possible frequency or wavelength of elec- 

 tromagnetic waves.  However, the propagation velocity of electromagnetic  

 waves is fixed, and takes the value  

1  
c =  (1.24) 

√µ0 ϵ0 .  

According to Eqs. (1.17) and (1.18), a changing magnetic field generates an electric 

field, and a changing electric field generates a magnetic field. Thus,  

we can think of the propagation of an electromagnetic field through a vacuum as  

due to a kind of “leap-frog” effect, in which a changing electric field generates a  

magnetic field, which, in turn, generates an electric field, and so on. Note that the  

displacement current term in Eq. (1.18) plays a crucial role in the propagation  

of electromagnetic waves.  Indeed, without this term, a changing electric field  

is incapable of generating a magnetic field, and so there can be no leap-frog  

effect. Electromagnetic waves have many properties in common with other types  

of wave (e.g., sound waves). However, they are unique in one respect: i.e., they  

are able to propagate through a vacuum. All other types of waves require some  

sort of medium through which to propagate.  

Maxwell deduced that the speed of propagation of an electromagnetic wave  

through a vacuum is entirely determined by the constants µ0 and ϵ0 [see Eq. (1.24)]. The former 

constant is related to the strength of the magnetic field generated by  

a steady current, whereas the latter constant is related to the strength of the elec- 

tric field generated by a stationary charge.  The values of both constants were  

well known in Maxwell’s day.  In modern units,  µ0   =  4π × 10−7 N s2 C−2  and  

ϵ0  =  8.854 × 10−12 C2 N−1 m−2 .  Thus, when Maxwell calculated the velocity of  

electromagnetic waves he obtained  

1 
c = √(4π × 10−7 ) (8.854 × 10−12 )             = 2.998 × 108𝑚/𝑠. 

(1.25)  

Now, Maxwell knew [from the work of Fizeau (1849) and Foucault (1850)] that  

the velocity of light was about 3 × 108 m s−1 .  The remarkable agreement be- 

tween this experimentally determined velocity and his theoretical prediction for  

the velocity of electromagnetic waves immediately lead Maxwell to hypothesize  
 



 
 

 

 

 

1 ELECTROMAGNETIC WAVES 1.2 Electromagnetic Waves 

that light is a form of electromagnetic wave.  Of course, this hypothesis turned out to be 

correct. We can still appreciate that Maxwell’s achievement in identifying light as a form 

of electromagnetic wave was quite remarkable. After all, his equations were derived from 

the results of bench-top laboratory experiments involving charges, batteries, coils, and 

currents, etc., which apparently had nothing whatsoever to do with light.  

Maxwell was able to make another remarkable prediction. The wavelength of light was 

well known in the late nineteenth century from studies of diffraction through slits, etc.  

Visible light actually occupies a surprisingly narrow range of wavelengths.  The shortest 

wavelength blue light which is visible has a wavelength of λ = 0.40 microns (one micron 

is 10−6  meters). The longest wavelength red light which is visible has a wavelength of λ = 

0.76 microns. However, there is nothing in Maxwell’s analysis which suggested that this 

particular range of wavelengths is special. In principle, electromagnetic waves can have any 

wavelength. Maxwell concluded that visible light forms a small element of a vast spectrum 

of previously undiscovered types of electromagnetic radiation.  

Since Maxwell’s time, virtually all of the non-visible parts of the electromag- 

netic spectrum have been observed. Table 1.1 gives a brief guide to the electro- 

magnetic spectrum. Electromagnetic waves are of particular importance because  

they are our only source of information regarding the Universe around us. Radio  

waves and microwaves (which are comparatively hard to scatter) have provided  

much of our knowledge about the centre of the Galaxy. This is completely unob- 

servable in visible light, which is strongly scattered by interstellar gas and dust  

lying in the galactic plane. For the same reason, the spiral arms of the Galaxy can  

only be mapped out using radio waves. Infrared radiation is useful for detecting  

proto-stars which are not yet hot enough to emit visible radiation.  Of course,  

visible radiation is still the mainstay of astronomy.  Satellite based ultraviolet  

observations have yielded invaluable insights into the structure and distribution  

of distant galaxies.  Finally, X-ray and γ-ray astronomy usually concentrates on  

exotic objects in the Galaxy such as pulsars and supernova remnants.  
 
 
 
 
 



 
 

 

 

 

1 ELECTROMAGNETIC WAVES 1.3 Effect of Dielectric Materials 

 

Radiation Type      Wavelength Range (m) 

Gamma Rays < 10−11 

X-Rays 10−11 -10−9 

Ultraviolet 10−9 -10−7 

Visible 10−7 -10−6 

Infrared 10−6 -10−4 

Microwave 10−4 -10−1 

TV-FM 10−1 -101 

Radio > 101 

Table 1.1: The electromagnetic spectrum.  

 

1.3  Effect of Dielectric Materials  

 

It turns out that electromagnetic waves cannot propagate very far through a conducting 

medium before they are either absorbed or reflected.  However, electromagnetic waves 

are able to propagate through transparent dielectric media without difficultly.  The speed 

of electromagnetic waves propagating through a dielectric medium is given by  

𝑐′ =
𝑐

 𝐾 ′
   , (1.26) 

 

where K is the dielectric constant of the medium in question, and c the velocity of light in 

a vacuum. Since K > 1 for dielectric materials, we conclude that:  

 

The velocity with which electromagnetic waves propagate through a dielectric  

medium is always less than the velocity with which they propagate through  

a vacuum.  

 

1.4 Energy in Electromagnetic Waves 

 

The energy stored per unit volume in an electromagnetic wave 

is given by 

 

w = 𝜀0 E2 +  B2 (1.27) 
2 2 µ0 . 
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Since, B  =  E/c, for an electromagnetic wave, and c  =  1/√µ0 ϵ0 , the above 

expression yields      

 
2 2 22

0 0 0

2

0

, (1.28)
2 2 2 2

E E EE
w

c

  


             

or  

 

w = ϵ0 E
2 . (1.29) 

It is clear, from the above, that half the energy in an electromagnetic wave is  

carried by the electric field, and the other half is carried by the magnetic field.  

As an electromagnetic field propagates it transports energy. Let P be the power per unit 

area carried by an electromagnetic wave: i.e., P is the energy transported per unit time across 

a unit cross-sectional area perpendicular to the direction in which the wave is traveling. 

Consider a plane electromagnetic wave propagating along the z-axis. The wave propagates a 

distance c dt along the z-axis in a time interval dt. If we consider a cross-sectional area A at 

right-angles to the z-axis, then in a time dt the wave sweeps through a volume dV of 

space, where dV = A c dt. The amount of energy filling this volume is  

dW = w dV = ϵ0 E
2 A c dt. (1.30) 

It follows, from the definition of P, that the power per unit area carried by the wave is 

given by                         

                                              
2

0 (1.31)
E AcdtdW

P
Adt Adt


    

 
so that  

P = ϵ0 E
2 c. (1.32) 

Since half the energy in an electromagnetic wave is carried by the electric field, and the 

other half is carried by the magnetic field, it is conventional to convert the above 

expression into a form involving both the electric and magnetic field strengths. Since, E 

= c B, we have 

 

P = ϵ0 c E (c B) = ϵ0 c
2 E B = 

0

EB


 

                                                             

                                                            Thus,           P =   E B 

                                                                                           µ0 
                               . 

 

(1.33) 

 

 

(1.34)  
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Equation (1.34) specifies the power per unit area transported by an electromagnetic 

wave at any given instant of time. The peak power is given by  

0 0
0

0

E B
P




 , (1.35) 

where E0  and B0  are the peak amplitudes of the oscillatory electric and magnetic fields, 

respectively. It is easily demonstrated that the average power per unit area transported by an 

electromagnetic wave is half the peak power, so that 

2

0 0 0 0 0

0 0

(1.36)
2 2 2

E B cE cB
S P



 
     

 

The quantity S is conventionally termed the intensity of the wave.  

 

 

1.5  Worked Examples  

 

Example 1.1: Electromagnetic waves  

 

Question: Consider electromagnetic waves of wavelength λ = 30 cm in air. What is the 

frequency of such waves? If such waves pass from air into a block of quartz, for which K = 4.3, 

what is their new speed, frequency, and wavelength?  

Answer:  Since, f λ  = c, assuming that the dielectric constant of air is approximately 

unity, it follows that  

𝑓 =
𝑐

𝜆
=  

(3𝑥108)

(0.3)
= 1 𝑥 109𝐻𝑧. 

 

The new speed of the waves as they pass propagate through the quartz is 

 

𝑐′ =
𝑐

 𝐾
=  

(3 𝑥 108)

 4.3
= 1.4 𝑥 108𝑚/𝑠 

 

The frequency of electromagnetic waves does not change when the medium 

through which the waves are propagating changes.  Since c ′  = f λ for electro- 

magnetic waves propagating through a dielectric medium, we have 

 

𝜆𝑞𝑢𝑎𝑟𝑡𝑧 =
𝑐′

𝑓
=

(1.4 𝑥 108 )

(1 𝑥 109)
= 14𝑐𝑚  
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Example 1.2: Intensity of electromagnetic radiation  

 

Question: Suppose that the intensity of the sunlight falling on the ground on a particular 

day is 140 W m−2 .  What are the peak values of the electric and magnetic fields associated 

with the incident radiation?  

 

Answer: According to Eq. (1.36), the peak electric field is given by 

 

 

                                                                    0
0 8 12

0

2 (2)(140)
324.7 / .

(3 10 )(8.85 10 )

S
E V m

c x x



 
    

                              Likewise, the peak magnetic field is given by 

 

                                                      
7

60
0 8

2 (2)(4 10 )(140)
1.083 10 .

(3 10 )

S x
B x T

c x

  
    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

 

 

2 GEOMETRIC OPTICS 

2 Geometric Optics 
 

2.1 Introduction 

 

Optics deals with the propagation of light through transparent media, and its in- 

teraction with mirrors, lenses, slits, etc.  Optical effects can be divided into two  

broad classes. Firstly, those which can be explained without reference to the fact  

that light is fundamentally a wave phenomenon, and, secondly, those which can  

only be explained on the basis that light is a wave phenomenon. Let us, for the  

moment, consider the former class of effects. It might seem somewhat surprising  

that any optical effects at all can be accounted for without reference to waves.  

After all, as we saw in Sect. 1, light really is a wave phenomenon. It turns out,  

however, that wave effects are only crucially important when the wavelength  

of the wave is either comparable to, or much larger than, the size of the objects  

with which it interacts. When the wavelength of the wave becomes  

much smaller than the size of the objects with which it interacts then the inter- 

actions can be accounted for in a very simple geometric manner, as explained in  

this section.  Since the wavelength of visible light is only of order a micron, it  

is very easy to find situations in which its wavelength is very much smaller than  

the size of the objects with which it interacts. Thus, “wave-less” optics, which is  

usually called geometric optics, has a very wide range of applications.  

In geometric optics, light is treated as a set of rays, emanating from a source,  

which propagate through transparent media according to a set of three simple  

laws.  The first law is the law of rectilinear propagation, which states that light  

rays propagating through a homogeneous transparent medium do so in straight- 

lines.  The second law is the law of reflection, which governs the interaction of  

light rays with conducting surfaces (e.g., metallic mirrors). The third law is the  

law of refraction, which governs the behaviour of light rays as they traverse a  

sharp boundary between two different transparent media (e.g., air and glass).  
 
 
 
 
 
 



 
 

 

 

 

2 GEOMETRIC OPTICS 2.2 History of Geometric Optics 

 

2.2 History of Geometric Optics 

 

Let us first consider the law of rectilinear propagation. The earliest surviving optical treatise, 

Euclid’s Catoptrics1 (280 BC), recognized that light travels in straightlines in homogeneous 

media. However, following the teachings of Plato, Euclid (and all other ancient Greeks) 

thought that light rays emanate from the eye, and intercept external objects, which are 

thereby “seen” by the observer. The ancient Greeks also thought that the speed with which 

light rays emerge from the eye is very high, if not infinite. After all, they argued, an 

observer with his eyes closed can open them and immediately see the distant stars.  

Hero of Alexandria, in his Catoptrics (first century BC), also maintained that  

light travels with infinite speed. His argument was by analogy with the free fall  

of objects.  If we throw an object horizontally with a relatively small velocity  

then it manifestly does not move in a straight-line.  However, if we throw an  

object horizontally with a relatively large velocity then it appears to move in a  

straight-line to begin with, but eventually deviates from this path. The larger the  

velocity with which the object is thrown, the longer the initial period of apparent  

rectilinear motion. Hero reasoned that if an object were thrown with an infinite  

velocity then it would move in a straight-line forever. Thus, light, which travels  

in a straight-line, must move with an infinite velocity.  The erroneous idea that  

light travels with an infinite velocity persisted until 1676, when the Danish as- 

tronomer Olaf Römer demonstrated that light must have a finite velocity, using  

his timings of the successive eclipses of the satellites of Jupiter, as they passed  

into the shadow of the planet.  

The first person to realize that light actually travels from the object seen to the eye was 

the Arab philosopher “Alhazan” (whose real name was Abu’ali al-hasan ibn al-haytham), 

who published a book on optics in about 1000 AD.  

The law of reflection was correctly formulated in Euclid’s book. Hero of Alexandria 

demonstrated that, by adopting the rule that light rays always travel between two points by 

the shortest path (or, more rigorously, the extremal path), it is possible to derive the law of 

reflection using geometry.  

 

1 Catoptrics is the ancient Greek word for reflection.  

 

 



 
 

 

 

 

2 GEOMETRIC OPTICS 2.3 Law of Geometric Propagation 

The law of refraction was studied experimentally by Claudius Ptolemy (100- 

170 AD), and is reported in Book V of his Catoptrics. Ptolemy formulated a very  

inaccurate version of the law of refraction, which only works when the light rays  

are almost normally incident on the interface in question.  Despite its obvious  

inaccuracy, Ptolemy’s theory of refraction persisted for nearly 1500 years.  The  

true law of refraction was discovered empirically by the Dutch mathematician  

Willebrord Snell in 1621. However, the French philosopher René Descartes was  

the first to publish, in his La Dioptrique (1637), the now familiar formulation of  

the law of refraction in terms of sines. Although there was much controversy at  

the time regarding plagiarism, Descartes was apparently unaware of Snell’s work.  

Thus, in English speaking countries the law of refraction is called “Snell’s law”,  

but in French speaking countries it is called “Descartes’ law”.  

In 1658, the French mathematician Pierre de Fermat demonstrated that all  

three of the laws of geometric optics can be accounted for on the assumption that  

light always travels between two points on the path which takes the least time  

(or, more rigorously, the extremal time).  Fermat’s ideas were an extension of  

those of Hero of Alexandria. Fermat’s (correct) derivation of the law of refraction  

depended crucially on his (correct) assumption that light travels more slowly in  

dense media than it does in air. Unfortunately, many famous scientists, including  

Newton, maintained that light travels faster in dense media than it does in air.  

This erroneous idea held up progress in optics for over one hundred years, and  

was not conclusively disproved until the mid-nineteenth century.  Incidentally,  

Fermat’s principle of least time can only be justified using wave theory.  

 

 

2.3  Law of Geometric Propagation  

 

According to geometric optics, an opaque object illuminated by a point source of  

light casts a sharp shadow whose dimensions can be calculated using geometry.  

The method of calculation is very straightforward.  The source emits light-rays  

uniformly in all directions.  These rays can be represented as straight lines ra- 

diating from the source.  The light-rays propagate away from the source until  

they encounter an opaque object, at which point they stop. This is illustrated in  
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Figure 2.1: An opaque object illuminated by a point light source. 

 

For an extended light source, each element of the source emits light-rays, just  

like a point source.  Rays emanating from different elements of the source are  

assumed not to interfere with one another. Figure 2.2 shows how the shadow  

cast by an opaque sphere illuminated by a spherical light source is calculated us- 

ing a small number of critical light-rays. The shadow consists of a perfectly black  

disk called the umbra, surrounded by a ring of gradually diminishing darkness  

called the penumbra.  In the umbra, all of the light-rays emitted by the source  

are blocked by the opaque sphere, whereas in the penumbra only some of the  

rays emitted by the source are blocked by the sphere. As was well-known to the  

ancient Greeks, if the light-source represents the Sun, and the opaque sphere the  

Moon, then at a point on the Earth’s surface which is situated inside the umbra  

the Sun is totally eclipsed, whereas at a point on the Earth’s surface which is  

situated in the penumbra the Sun is only partially eclipsed.  

In the wave picture of light, a wave-front is defined as a surface joining all  

adjacent points on a wave that have the same phase (e.g., all maxima, or minima,  

of the electric field).  A light-ray is simply a line which runs perpendicular to  

the wave-fronts at all points along the path of the wave.  This is illustrated in  
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Figure 2.2: An opaque object illuminated by an extended light source.  
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Figure 2.3: Relationship between wave-fronts and light-rays.  
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Figure 2.4: The law of reflection  

Fig. 2.3. Thus, the law of rectilinear propagation of light-rays also specifies how wave-

fronts propagate through homogeneous media. Of course, this law is only valid in the limit 

where the wavelength of the wave is much smaller than the dimensions of any 

obstacles which it encounters.  

 

 

2.4  Law of Reflection  

 

The law of reflection governs the reflection of light-rays off smooth conducting surfaces, 

such as polished metal or metal-coated glass mirrors.  

Consider a light-ray incident on a plane mirror, as shown in Fig. 2.4. The law of 

reflection states that the incident ray, the reflected ray, and the normal to the surface of the 

mirror all lie in the same plane. Furthermore, the angle of reflection r is equal to the angle of 

incidence i. Both angles are measured with respect to the normal to the mirror.  

The law of reflection also holds for non-plane mirrors, provided that the nor- 

mal at any point on the mirror is understood to be the outward pointing normal  

to the local tangent plane of the mirror at that point.  For rough surfaces, the  

law of reflection remains valid. It predicts that rays incident at slightly different  

points on the surface are reflected in completely different directions, because the  
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normal to a rough surface varies in direction very strongly from point to point on the 

surface. This type of reflection is called diffuse reflection, and is what enables us to see non-

shiny objects.  

 

 

2.5  Law of Refraction  

 

The law of refraction, which is generally known as Snell’s law, governs the behaviour 

of light-rays as they propagate across a sharp interface between two transparent 

dielectric media.  

Consider a light-ray incident on a plane interface between two transparent dielectric 

media, labelled 1 and 2, as shown in Fig. 2.5. The law of refraction states that the 

incident ray, the refracted ray, and the normal to the interface, all lie in the same plane. 

Furthermore,  

n1  sin θ1  = n2  sin θ2 , (2.1) 

where θ1  is the angle subtended between the incident ray and the normal to the 

interface, and θ2  is the angle subtended between the refracted ray and the normal to the 

interface. The quantities n1  and n2  are termed the refractive indices of media 1 and 2, 

respectively. Thus, the law of refraction predicts that a light-ray always deviates more 

towards the normal in the optically denser medium: i.e., the medium with the higher 

refractive index. Note that n2  > n1 in the figure. The law of refraction also holds for non-

planar interfaces, provided that the normal to the interface at any given point is 

understood to be the normal to the local tangent plane of the interface at that point.  

By definition, the refractive index n of a dielectric medium of dielectric con- 

stant K is given by  
n = √K. (2.2) 

Table 2.1 shows the refractive indices of some common materials (for yellow light of 

wavelength λ = 589 nm).  

The law of refraction follows directly from the fact that the speed v with which  

light propagates through a dielectric medium is inversely proportional to the re- 
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Figure 2.5: The law of refraction. 

 

 

 

 

 

 

 

 

Material n 

Air (STP) 1.00029 

Water 1.33 

Ice 1.31 

Glass: 

Light flint 1.58 

Heavy flint 1.65 

Heaviest flint      1.89 

Diamond 2.42  

Table 2.1: Refractive indices of some common materials at λ = 589 nm.  
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fractive index of the medium (see Sect. 1.3). In fact, 
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2.5 Law of Refraction 

 
 

 

(2.3)  

where c is the speed of light in a vacuum. Consider two parallel light-rays, a and  

b, incident at an angle θ1 with respect to the normal to the interface between two  

dielectric media, 1 and 2. Let the refractive indices of the two media be n1  and  

n2 respectively, with n2  > n1 . It is clear from Fig. 2.6 that ray b must move from  

point B to point Q, in medium 1, in the same time interval, Δt, in which ray a  

moves between points A and P, in medium 2. Now, the speed of light in medium  

1 is v1  = c/n1 , whereas the speed of light in medium 2 is v2  = c/n2 . It follows  

that the length BQ is given by v1 Δt, whereas the length AP is given by v2 Δt. By  

trigonometry, 
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                which can be rearranged to give Snell’s law.  Note that the lines AB and PQ represent         

                 wave-fronts in media 1 and 2, respectively, and, therefore, cross rays a and b at right-angles.  

When light passes from one dielectric medium to another its velocity v changes,  

but its frequency f remains unchanged. Since, v = f λ for all waves, where λ is the  

wavelength, it follows that the wavelength of light must also change as it crosses  

an interface between two different media.  Suppose that light propagates from  

medium 1 to medium 2. Let n1  and n2  be the refractive indices of the two media,  

respectively. The ratio of the wave-lengths in the two media is given by  

                   
2

1 2 1

12 1 2

(2.7)
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Thus, as light moves from air to glass its wavelength decreases. 
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Figure 2.6: Derivation of Snell’s law. 

 

2.6 Total Internal Reflection 

 

An interesting effect known as total internal reflection can occur when light attempts to 

move from a medium having a given refractive index to a medium having a lower refractive 

index. Suppose that light crosses an interface from medium 1 to medium 2, where n2  < n1 . 

According to Snell’s law, 

sin θ2  =   n1     sin θ1
 

n2  . 
(2.8)  

Since n1 /n2  > 1, it follows that θ2  > θ1 . For relatively small angles of incidence,  

part of the light is refracted into the less optically dense medium, and part is  

reflected (there is always some reflection at an interface).  When the angle of  

incidence θ1  is such that the angle of refraction θ2  = 90◦ , the refracted ray runs  

along the interface between the two media. This particular angle of incidence is  

called the critical angle, θc . For θ1  > θc , there is no refracted ray. Instead, all of  

the light incident on the interface is reflected—see Fig. 2.7. This effect is called  

total internal reflection, and occurs whenever the angle of incidence exceeds the  

critical angle. Now when θ1  = θc , we have θ2  = 90◦ , and so sin θ2  = 1. It follows  
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Figure 2.7: Total internal reflection.  

 

from Eq. (2.8) that 

                                                                                                  n2

sin θc  =    n1
 

. 
(2.9)  

Consider a fish (or a diver) swimming in a clear pond.  As Fig. 2.8 makes  

clear, if the fish looks upwards it sees the sky, but if it looks at too large an angle  

to the vertical it sees the bottom of the pond reflected on the surface of the water.  

The critical angle to the vertical at which the fish first sees the reflection of the  

bottom of the pond is, of course, equal to the critical angle θc  for total internal  

reflection at an air-water interface.  From Eq. (2.9), this critical angle is given  

by  

θc  = sin−1 (1.00/1.33) = 48.8◦ , (2.10) 

since the refractive index of air is approximately unity, and the refractive index of water 

is 1.33.  

When total internal reflection occurs at an interface the interface in question  

acts as a perfect reflector. This allows 45◦ crown glass prisms to be used, in place  

of mirrors, to reflect light in binoculars. This is illustrated in Fig.  2.9. The angles  
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Figure 2.8: A fish’s eye view.  

of incidence on the sides of the prism are all 45◦ , which is greater than the critical angle 41◦ for 

crown glass (at an air-glass interface).  

45
o  

prism  

 

 

 

 

 

 

prism  
light-ray  

 

Figure 2.9: Arrangement of prisms used in binoculars.  

 

Diamonds, for which n = 2.42, have a critical angle θc which is only 24◦ . The  

facets on a diamond are cut in such a manner that much of the incident light on  

the diamond is reflected many times by successive total internal reflections before  

it escapes. This effect gives rise to the characteristic sparkling of cut diamonds.  
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Total internal reflection enables light to be transmitted inside thin glass fibers.  

The light is internally reflected off the sides of the fiber, and, therefore, follows  

the path of the fiber.  Light can actually be transmitted around corners using a  

glass fiber, provided that the bends in the fiber are not too sharp, so that the  

light always strikes the sides of the fiber at angles greater than the critical angle.  

The whole field of fiber optics, with its many useful applications, is based on this  

effect.  

 

 

2.7 Dispersion 

 

When a wave is refracted into a dielectric medium whose refractive index varies with 

wavelength then the angle of refraction also varies with wavelength. If the incident wave 

is not monochromatic, but is, instead, composed of a mixture of waves of different 

wavelengths, then each component wave is refracted through a different angle. This 

phenomenon is called dispersion.  

Figure 2.10 shows the refractive indices of some common materials as functions of 

wavelength in the visible range. It can be seen that the refractive index always decreases 

with increasing wavelength in the visible range. In other words, violet light is always 

refracted more strongly than red light.  

Suppose that a parallel-sided glass slab is placed in a beam of white light. Dispersion 

takes place inside the slab, but, since the rays which emerge from the slab all run parallel 

to one another, the dispersed colours recombine to form white light again, and no 

dispersion is observed except at the very edges of the beam. This is illustrated in Fig. 2.11. 

It follows that the dispersion of white light through a parallel-sided glass slab is not 

generally a noticeable effect.  

Suppose that a glass prism is placed in a beam of white light.  Dispersion  

takes place inside the prism, and, since the emerging rays are not parallel for  

different colours, the dispersion is clearly noticeable, especially if the emerging  

rays are projected onto a screen which is placed a long way from the prism. This  

is illustrated in Fig. 2.12.  It is clear that a glass prism is far more effective at  

separating white light into its component colours than a parallel-sided glass slab  
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Figure 2.10: Refractive indices of some common materials as functions of wavelength. 
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Figure 2.11: Dispersion of light by a parallel-sided glass slab.  
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Figure 2.12: Dispersion of light by a glass prism.  

 

(which explains why prisms are generally employed to perform this task).  

 

 

2.8 Rainbows 

 

The most well-known, naturally occurring phenomenon which involves the dis- 

persion of light is a rainbow. A rainbow is an arc of light, with an angular radius  

of 42◦ , centred on a direction which is opposite to that of the Sun in the sky (i.e.,  

it is centred on the direction of propagation of the Sun’s rays)—see Fig. 2.13.  

Thus, if the Sun is low in the sky (i.e., close to the horizon) we see almost a  

full semi-circle.  If the Sun is higher in the sky we see a smaller arc, and if the  

Sun is more than 42◦ above the horizon then there is no rainbow (for viewers on  

the Earth’s surface). Observers on a hill may see parts of the rainbow below the  

horizontal: i.e., an arc greater than a semi-circle. Passengers on an airplane can  

sometimes see a full circle.  

The colours of a rainbow vary smoothly from red on the outside of the arc to  

violet on the inside. A rainbow has a diffuse inner edge, and a sharp outer edge.  

Sometimes a secondary arc is observed. This is fainter and larger (with an angular  

radius of 50◦ ) than the primary arc, and the order of the colours is reversed (i.e.,  

red is on the inside, and violet on the outside). The secondary arc has a diffuse  

outer edge, and a sharp inner edge.  The sky between the two arcs sometimes  
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Figure 2.13: A rainbow.  

appears to be less bright than the sky elsewhere. This region is called Alexander’s  

dark band, in honour of Alexander of Aphrodisias who described it some 1800  

years ago.  

Rainbows have been studied since ancient times.  Aristotle wrote extensively on 

rainbows in his De Meteorologica,2  and even speculated that a rainbow is caused by the 

reflection of sunlight from the drops of water in a cloud.  

The first scientific study of rainbows was performed by Theodoric, professor of  

theology at Freiburg, in the fourteenth century. He studied the path of a light-ray  

through a spherical globe of water in his laboratory, and suggested that the globe  

be thought of as a model of a single falling raindrop. A ray, from the Sun, entering  

the drop, is refracted at the air-water interface, undergoes internal reflection from  

the inside surface of the drop, and then leaves the drop in a backward direction,  

after being again refracted at the surface.  Thus, looking away from the Sun,  

towards a cloud of raindrops, one sees an enhancement of light due to these rays.  

Theodoric did not explain why this enhancement is concentrated at a particular  

angle from the direction of the Sun’s rays, or why the light is split into different  

colours.  
2 “On Weather”.  
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The first person to give a full explanation of how a rainbow is formed was René 

Descartes. He showed mathematically that if one traces the path through a spherical raindrop 

of parallel light-rays entering the drop at different points on its surface, each emerges in a 

different direction, but there is a concentration of emerging rays at an angle of 42◦ from the 

reverse direction to the incident rays, in exact agreement with the observed angular size of 

rainbows. Furthermore, since some colours are refracted more than others in a raindrop, the 

“rainbow angle” is slightly different for each colour, so a raindrop disperses the Sun’s light 

into a set of nearly overlapping coloured arcs.  

Figure 2.13 illustrated Descartes’ theory in more detail.  It shows parallel  

light-rays entering a spherical raindrop.  Only rays entering the upper half con- 

tribute to the rainbow effect.  Let us follow the rays, one by one, from the top  

down to the middle of the drop. We observe the following pattern. Rays which  

enter near the top of the drop emerge going in almost the reverse direction, but  

a few degrees below the horizontal. Rays entering a little further below the top  

emerge at a greater angle below the horizontal.  Eventually, we reach a critical  

ray, called the rainbow ray, which emerges in an angle 42 ◦ below the horizontal.  

Rays entering the drop lower than the rainbow ray emerge at an angle less than  

42◦ .  Thus, the rainbow ray is the one which deviates most from the reverse di- 

rection to the incident rays.  This variation, with 42◦  being the maximum angle  

of deviation from the reverse direction, leads to a bunching of rays at that angle,  

and, hence, to an unusually bright arc of reflected light centred around 42 ◦ from  

the reverse direction. The arc has a sharp outer edge, since reflected light cannot  

deviate by more than 42◦  from the reverse direction, and a diffuse inner edge,  

since light can deviate by less than 42◦  from the reverse direction: 42◦  is just  

the most likely angle of deviation. Finally, since the rainbow angle varies slightly with 

wavelength (because the refractive index of water varies slightly with wavelength), the arcs 

corresponding to each colour appear at slightly different angles relative to the reverse 

direction to the incident rays. We expect violet light to be refracted more strongly than 

red light in a raindrop. It is, therefore, clear, from Fig. 2.14, that the red arc deviates 

slightly more from the reverse direction to the incident rays than the violet arc. In other 

words, violet is concentrated on the inside of the rainbow, and red is concentrated on the 

outside.  
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Figure 2.14: Descarte’s theory of the rainbow.  

Descartes was also able to show that light-rays which are internally reflected  

twice inside a raindrop emerge concentrated at an angle of 50 ◦  from the reverse  

direction to the incident rays.  Of course, this angle corresponds exactly to the  

angular size of the secondary rainbow sometimes seen outside the first.  This  

rainbow is naturally less intense than the primary rainbow, since a light-ray loses  

some of its intensity at each reflection or refraction event.  Note that 50 ◦  repre- 

sents the angle of maximum deviation of doubly reflected light from the reverse  

direction (i.e., doubly reflected light can deviate by more than this angle, but not  

by less).  Thus, we expect the secondary rainbow to have a diffuse outer edge,  

and a sharp inner edge.  We also expect doubly reflected violet light to be re- 

fracted more strongly in a raindrop than doubly reflected red light.  It follows,  

from Fig. 2.15, that the red secondary arc deviates slightly less from the reverse  

direction to the incident rays than the violet secondary arc. In other words, red  

is concentrated on the inside of the secondary rainbow, and violet on the outside.  

Since no reflected light emerges between the primary and secondary rainbows  

(i.e., in the angular range 42◦  to 50◦ , relative to the reverse direction), we nat- 

urally expect this region of the sky to look slightly less bright than the other  
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Figure 2.15: Rainbow rays for the primary and secondary arcs of a rainbow.  

surrounding regions of the sky, which explains Alexander’s dark band.  

 

2.9  Worked Examples  

 

Example 2.1: The corner-cube reflector  

 

Question:  Two mirrors are placed at right-angles to one another.  Show that a light-ray 

incident from any direction in the plane perpendicular to both mirrors is reflected 

through 180◦ .  

Answer:  Consider the diagram.  We are effectively being asked to prove that α = i1 , 

for any value of i1 . Now, from trigonometry,  

i2  = 90◦ − r1 .  

But, from the law of reflection, r1  = i1  and i2  = r2 , so  

 r2  = 90◦ − i1 .  
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Trigonometry also yields 

α = 90◦ − r2 . 

It follows from the previous two equations that  

α = 90◦ − (90◦ − i1 ) = i1 .  

Hence, α = i1 , for all values of i1 .  

It can easily be appreciated that a combination of three mutually perpendic- 

ular mirrors would reflect a light-ray incident from any direction through 180◦ .  

Such a combination of mirrors is called a corner-cube reflector. Astronauts on the  

Apollo 11 mission (1969) left a panel of corner-cube reflectors on the surface of  

the Moon. These reflectors have been used ever since to measure the Earth-Moon  

distance via laser range finding (basically, a laser beam is fired from the Earth,  

reflects off the corner-cube reflectors on the Moon, and then returns to the Earth.  

The time of travel of the beam can easily be converted into the Earth-Moon dis- 

tance). The Earth-Moon distance can be measured to within an accuracy of 3 cm  

using this method.  
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Example 2,2: Refraction  

 

Question:  A light-ray of wavelength λ1  =  589 nm traveling through air is inci- 

dent on a smooth, flat slab of crown glass (refractive index 1.52) at an angle of  

θ1  =  30.0◦  to the normal.  What is the angle of refraction?  What is the wave- 

length λ2  of the light inside the glass? What is the frequency f of the light inside  

the glass?  

 

Answer: Snell’s law can be written  

sin θ2  =   n1      sin θ1 

n2  .  

In this case, θ1  =  30◦ , n1  ≃  1.00 (here, we neglect the slight deviation of the refractive 

index of air from that of a vacuum), and n2  = 1.52. Thus,  

 

sin θ2  = (1.00)  (0.5) = 0.329,  
(1.52)  

giving  

θ2  = 19.2◦  

as the angle of refraction (measured with respect to the normal).  

The wavelength λ2  of the light inside the glass is given by 

  
                                                     1

2 1

2

(1.00)
(589) 387.5

(1.52)

n
nm

n
     

The frequency f of the light inside the glass is exactly the same as the frequency outside the 

glass, and is given by 

          c 

f =    
n1 λ1  = 

(3 × 108 ) 

(1.00) (589 × 10−9 )              = 5.09 × 1014 Hz. 
 
 
 
 
 
 



 
 

 

 

 

3 PARAXIAL OPTICS 

3 Paraxial Optics 
 

3.1 Spherical Mirrors 

 

A spherical mirror is a mirror which has the shape of a piece cut out of a spherical  

surface.  There are two types of spherical mirrors:  concave, and convex.  These  

are illustrated in Fig. 3.1. The most commonly occurring examples of concave  

mirrors are shaving mirrors and makeup mirrors. As is well-known, these types  

of mirrors magnify objects placed close to them. The most commonly occurring  

examples of convex mirrors are the passenger-side wing mirrors of cars.  These  

type of mirrors have wider fields of view than equivalent flat mirrors, but objects  

which appear in them generally look smaller (and, therefore, farther away) than  

they actually are.  

reflecting surface reflecting surface 

 

 

 

 

light light 
 
 
 
 
 
Figure 3.1: A concave (left) and a convex (right) mirror  

 

 

Let us now introduce a few key concepts which are needed to study image  

formation by a concave spherical mirror. As illustrated in Fig. 3.2, the normal  

to the centre of the mirror is called the principal axis.  The mirror is assumed  

to be rotationally symmetric about this axis.  Hence, we can represent a three- 

dimensional mirror in a two-dimensional diagram, without loss of generality. The  

point V at which the principal axis touches the surface of the mirror is called the  
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vertex. The point C, on the principal axis, which is equidistant from all points on  

the reflecting surface of the mirror is called the centre of curvature. The distance  

along the principal axis from point C to point V is called the radius of curvature  

of the mirror, and is denoted R.  It is found experimentally that rays striking a  

concave mirror parallel to its principal axis, and not too far away from this axis,  

are reflected by the mirror such that they all pass through the same point F on  

the principal axis. This point, which is lies between the centre of curvature and  

the vertex, is called the focal point, or focus, of the mirror. The distance along the  

principal axis from the focus to the vertex is called the focal length of the mirror,  

and is denoted f.  

reflecting surface 
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R 

Figure 3.2: Image formation by a concave mirror. 
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In our study of concave mirrors, we are going to assume that all light-rays  

which strike a mirror parallel to its principal axis (e.g., all rays emanating from a  

distant object) are brought to a focus at the same point F. Of course, as mentioned  

above, this is only an approximation.  It turns out that as rays from a distant  

object depart further from the principal axis of a concave mirror they are brought  

to a focus ever closer to the mirror, as shown in Fig. 3.3.  This lack of perfect  

focusing of a spherical mirror is called spherical aberration.  The approximation  

in which we neglect spherical aberration is called the paraxial approximation.3  

3 “Paraxial” is derived from ancient Greek roots, and means “close to the axis”.  
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Figure 3.3: Spherical aberration in a concave mirror.  

Likewise, the study of image formation under this approximation is known as paraxial 

optics.  This field of optics was first investigated systematically by the famous German 

mathematician Karl Friedrich Gauss in 1841.  

It can be demonstrated, by geometry, that the only type of mirror which does  

not suffer from spherical aberration is a parabolic mirror (i.e., a mirror whose  

reflecting surface is the surface of revolution of a parabola). Thus, a ray traveling  

parallel to the principal axis of a parabolic mirror is brought to a focus at the  

same point F, no matter how far the ray is from the axis.  Since the path of a  

light-ray is completely reversible, it follows that a light source placed at the focus  

F of a parabolic mirror yields a perfectly parallel beam of light, after the light  

has reflected off the surface of the mirror.  Parabolic mirrors are more difficult,  

and, therefore, more expensive, to make than spherical mirrors. Thus, parabolic  

mirrors are only used in situations where the spherical aberration of a conven- 

tional spherical mirror would be a serious problem. The receiving dishes of radio  

telescopes are generally parabolic.  They reflect the incoming radio waves from  

(very) distant astronomical sources, and bring them to a focus at a single point,  

where a detector is placed. In this case, since the sources are extremely faint, it  

is imperative to avoid the signal losses which would be associated with spheri- 

cal aberration.  A car headlight consists of a light-bulb placed at the focus of a  
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parabolic reflector. The use of a parabolic reflector enables the headlight to cast a very 

straight beam of light ahead of the car. The beam would be nowhere near as well-focused 

were a spherical reflector used instead.  

 

3.2  Image Formation by Concave Mirrors  

 

There are two alternative methods of locating the image formed by a concave  

mirror. The first is purely graphical, and the second uses simple algebraic analy- 

sis.  

The graphical method of locating the image produced by a concave mirror consists of 

drawing light-rays emanating from key points on the object, and finding where these rays 

are brought to a focus by the mirror. This task can be accomplished using just four simple 

rules:  

1. An incident ray which is parallel to the principal axis is reflected through the  

 focus F of the mirror.  

2. An incident ray which passes through the focus F of the mirror is reflected  

 parallel to the principal axis.  

3. An incident ray which passes through the centre of curvature C of the mirror  

 is reflected back along its own path (since it is normally incident on the  

 mirror).  

4. An incident ray which strikes the mirror at its vertex V is reflected such that  

 its angle of incidence with respect to the principal axis is equal to its angle  

 of reflection.  

 

The validity of these rules in the paraxial approximation is fairly self-evident.  

Consider an object ST which is placed a distance p from a concave spherical  

mirror, as shown in Fig. 3.4. For the sake of definiteness, let us suppose that the  

object distance p is greater than the focal length f of the mirror. Each point on  

the object is assumed to radiate light-rays in all directions. Consider four light- 

rays emanating from the tip T of the object which strike the mirror, as shown  
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Figure 3.4: Formation of a real image by a concave mirror.  

in the figure. The reflected rays are constructed using rules 1-4 above, and the  

rays are labelled accordingly.  It can be seen that the reflected rays all come  

together at some point T ′ .  Thus, T ′  is the image of T  (i.e., if we were to place  

a small projection screen at T ′  then we would see an image of the tip on the  

screen). As is easily demonstrated, rays emanating from other parts of the object  

are brought into focus in the vicinity of T ′  such that a complete image of the  

object is produced between S ′  and T ′  (obviously, point S ′  is the image of point  

S).  This image could be viewed by projecting it onto a screen placed between points S ′ 

and T ′ . Such an image is termed a real image. Note that the image S  ′T ′ would also be 

directly visible to an observer looking straight at the mirror from a distance greater than 

the image distance q (since the observer’s eyes could not tell that the light-rays diverging 

from the image were in anyway different from those which would emanate from a real 

object).  According to the figure, the image is inverted with respect to the object, and is 

also magnified.  

Figure 3.5 shows what happens when the object distance p is less than the  

focal length f. In this case, the image appears to an observer looking straight at  

the mirror to be located behind the mirror.  For instance, rays emanating from  
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Figure 3.5: Formation of a virtual image by a concave mirror.  

the tip T of the object appear, after reflection from the mirror, to come from a point T ′  

which is behind the mirror. Note that only two rays are used to locate T ′ , for the sake of 

clarity. In fact, two is the minimum number of rays needed to locate a point image. Of 

course, the image behind the mirror cannot be viewed by projecting it onto a screen, 

because there are no real light-rays behind the mirror. This type of image is termed a 

virtual image. The characteristic difference between a real image and a virtual image is 

that, immediately after reflection from the mirror, light-rays emitted by the object 

converge on a real image, but diverge from a virtual image.  According to Fig. 3.5, the 

image is upright with respect to the object, and is also magnified.  

The graphical method described above is fine for developing an intuitive understanding 

of image formation by concave mirrors, or for checking a calculation, but is a bit too 

cumbersome for everyday use. The analytic method described below is far more flexible.  

Consider an object ST placed a distance p in front of a concave mirror of radius  

of curvature R. In order to find the image S ′T ′ produced by the mirror, we draw  

two rays from T to the mirror—see Fig. 3.6. The first, labelled 1, travels from T  

to the vertex V and is reflected such that its angle of incidence θ equals its angle  
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Figure 3.6: Image formation by a concave mirror.  

of reflection. The second ray, labelled 2, passes through the centre of curvature C of the 

mirror, strikes the mirror at point B, and is reflected back along its own path. The two rays 

meet at point T ′ . Thus, S ′T ′ is the image of ST , since point S ′ must lie on the principal axis.  

In the triangle STV , we have tan θ = h/p, and in the triangle S ′T ′V we have tan θ = −h 

′ /q, where p is the object distance, and q is the image distance. Here, h is the height of the 

object, and h ′ is the height of the image. By convention, h ′ is a negative number, since the 

image is inverted (if the image were upright then h ′ would be a positive number). It follows 

that 

                                            
'

tan (3.1)
h h

p q



 

                                              

Thus, the magnification M of the image with respect to the object is given by           
'

(3.2)
h q

M
h p

   

  

By convention, M is negative if the image is inverted with respect to the object,  

and positive if the image is upright. It is clear that the magnification of the image  

is just determined by the ratio of the image and object distances from the vertex.  
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From triangles STC and S ′T ′C, we have tan α  =  h/(p − R) and tan α  = 

−h ′ /(R − q), respectively. These expressions yield
'

tan (3.3)
h h

p R R q
  

 
 

 

                      Equations (3.2) and (3.3) can be combined to give 

 
'

, (3.4)
h R q q

h p R p

 
 


 

which easily reduces to 

 
 

 
This expression relates the object distance, the image distance, and the radius of  

curvature of the mirror.  

For an object which is very far away from the mirror (i.e., p → ∞), so that light-

rays from the object are parallel to the principal axis, we expect the image to form at the 

focal point F of the mirror. Thus, in this case, q = f, where f is the focal length of the 

mirror, and Eq. (3.5) reduces to 
1 2

0 (3.6)
f R

   

The above expression yields 

                                                (3.7)
2

R
f   

                                                                   

 

 

 

In other words, in the paraxial approximation, the focal length of a concave  

spherical mirror is half of its radius of curvature.  Equations (3.5) and (3.7) can be 

combined to give 

                                          1 1 1
(3.8)

p q f
 

The above expression was derived for the case of a real image. However, as is  

easily demonstrated, it also applies to virtual images provided that the following  

sign convention is adopted.  For real images, which always form in front of the  

mirror, the image distance q is positive.  For virtual images, which always form  
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Position of object Position of image Character of image 

At ∞ At F Real, zero size 

Between ∞ and C   Between F and C    Real, inverted, diminished 

At C At C Real, inverted, same size 

Between C and F    Between C and ∞   Real, inverted, magnified 

At F At ∞ 

Between F and V    From −∞ to V Virtual, upright, magnified 

At V At V Virtual, upright, same size 

Table 3.1: Rules for image formation by concave mirrors.  

behind the mirror, the image distance q is negative. It immediately follows, from  

Eq. (3.2), that real images are always inverted, and virtual images are always  

upright. Table 3.1 shows how the location and character of the image formed  

in a concave spherical mirror depend on the location of the object, according to  

Eqs. (3.2) and (3.8). It is clear that the modus operandi of a shaving mirror, or  

a makeup mirror, is to place the object (i.e., a face) between the mirror and the  

focus of the mirror. The image is upright, (apparently) located behind the mirror,  

and magnified.  

 

 

3.3  Image Formation by Convex Mirrors  

 

The definitions of the principal axis, centre of curvature C, radius of curvature R,  

and the vertex V , of a convex mirror are analogous to the corresponding defini- 

tions for a concave mirror. When parallel light-rays strike a convex mirror they  

are reflected such that they appear to emanate from a single point F located be- 

hind the mirror, as shown in Fig. 3.7.  This point is called the virtual focus of  

the mirror. The focal length f of the mirror is simply the distance between V and  

F. As is easily demonstrated, in the paraxial approximation, the focal length of a convex 

mirror is half of its radius of curvature.  

There are, again, two alternative methods of locating the image formed by a convex 

mirror. The first is graphical, and the second analytical.  

According to the graphical method, the image produced by a convex mirror  

can always be located by drawing a ray diagram according to four simple rules:  
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Figure 3.7: The virtual focus of a convex mirror.  

1. An incident ray which is parallel to the principal axis is reflected as if it came  

 from the virtual focus F of the mirror.  

2. An incident ray which is directed towards the virtual focus F of the mirror is  

 reflected parallel to the principal axis.  

3. An incident ray which is directed towards the centre of curvature C of the  

 mirror is reflected back along its own path (since it is normally incident on  

 the mirror).  

4. An incident ray which strikes the mirror at its vertex V is reflected such that   

 its angle of incidence with respect to the principal axis is equal to its angle  

 of reflection.  

The validity of these rules in the paraxial approximation is, again, fairly selfevident.  

In the example shown in Fig. 3.8, two rays are used to locate the image S ′T ′ of an object 

ST placed in front of the mirror.  It can be seen that the image is virtual, upright, and 

diminished.  
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Figure 3.8: Image formation by a convex mirror. 

Position of object Position of image    Character of image 

At ∞ At F Virtual, zero size 

Between ∞ and V   Between F and V   Virtual, upright, diminished  

At V At V Virtual, upright, same size 

Table 3.2: Rules for image formation by convex mirrors.  

As is easily demonstrated, application of the analytical method to image for- 

mation by convex mirrors again yields Eq. (3.2) for the magnification of the  

image, and Eq. (3.8) for the location of the image, provided that we adopt the  

following sign convention. The focal length f of a convex mirror is redefined to  

be minus the distance between points V and F. In other words, the focal length  

of a concave mirror, with a real focus, is always positive, and the focal length of a  

convex mirror, with a virtual focus, is always negative. Table 3.2 shows how the  

location and character of the image formed in a convex spherical mirror depend  

on the location of the object, according to Eqs. (3.2) and (3.8) (with f < 0).  

In summary, the formation of an image by a spherical mirror involves the  

crossing of light-rays emitted by the object and reflected off the mirror.  If the  

light-rays actually cross in front of the mirror then the image is real. If the light- 

rays do not actually cross, but appear to cross when projected backwards behind  

the mirror, then the image is virtual. A real image can be projected onto a screen,  
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a virtual image cannot. However, both types of images can be seen by an observer,  

and photographed by a camera.  The magnification of the image is specified by  

Eq. (3.2), and the location of the image is determined by Eq. (3.8).  These  

two formulae can be used to characterize both real and virtual images formed by  

either concave or convex mirrors, provided that the following sign conventions  

are observed:  

 

1. The height h ′ of the image is positive if the image is upright, with respect to  

 the object, and negative if the image is inverted.  

2. The magnification M of the image is positive if the image is upright, with  

 respect to the object, and negative if the image is inverted.  

3. The image distance q is positive if the image is real, and, therefore, located  

 in front of the mirror, and negative if the image is virtual, and, therefore,  

 located behind the mirror.  

4. The focal length f of the mirror is positive if the mirror is concave, so that  

 the focal point F is located in front of the mirror, and negative if the mirror  

 is convex, so that the focal point F is located behind the mirror.  

 

Note that the front side of the mirror is defined to be the side from which the light is 

incident.  

 

 

3.4  Image Formation by Plane Mirrors  

 

Both concave and convex spherical mirrors asymptote to plane mirrors in the limit in 

which their radii of curvature R tend to infinity. In other words, a plane mirror can be 

treated as either a concave or a convex mirror for which R → ∞. Now, if R → ∞, then f 

= ±R/2 → ∞, so 1/f → 0, and Eq. (3.8) yields 

 

 

 

1 1 1
0 (3.9)

p q f
  

                     or                                                                 q = −p. (3.10) 
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Figure 3.9: The optic axis of a lens.  

Thus, for a plane mirror the image is virtual, and is located as far behind the mirror as 

the object is in front of the mirror. According to Eq. (3.2), the magnification of the image 

is given by 

                                                                               1 (3.11)
q

M
p


 

Clearly, the image is upright, since M > 0, and is the same size as the object, since  

|M| = 1. However, an image seen in a plane mirror does differ from the original  

object in one important respect:  i.e., left and right are swapped over.  In other  

words, a right-hand looks like a left-hand in a plane mirror, and vice versa.  

 

 

3.5 Thin Lenses 

 

A lens is a transparent medium  (usually glass) bounded by two curved surfaces 

(generally either spherical, cylindrical, or plane surfaces).  As illustrated in Fig. 3.9, the 

line which passes normally through both bounding surfaces of a lens is called the optic 

axis.  The point O on the optic axis which lies midway between the two bounding 

surfaces is called the optic centre.  

There are two basic kinds of lenses: converging, and diverging. A converging  

lens brings all incident light-rays parallel to its optic axis together at a point F,  

behind the lens, called the focal point, or focus, of the lens.  A diverging lens  

spreads out all incident light-rays parallel to its optic axis so that they appear to  

diverge from a virtual focal point F in front of the lens.  Here, the front side of  

the lens is conventionally defined to be the side from which the light is incident.  
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Figure 3.10: The focii of converging (top) and diverging (bottom) lens.  

The differing effects of a converging and a diverging lens on incident light-rays parallel 

to the optic axis (i.e., emanating from a distant object) are illustrated in Fig. 3.10.  

Lenses, like mirrors, suffer from spherical aberration, which causes light-rays  

parallel to the optic axis, but a relatively long way from the axis, to be brought  

to a focus, or a virtual focus, closer to the lens than light-rays which are relatively  

close to the axis. It turns out that spherical aberration in lenses can be completely  

cured by using lenses whose bounding surfaces are non-spherical. However, such  

lenses are more difficult, and, therefore, more expensive, to manufacture than  

conventional lenses whose bounding surfaces are spherical. Thus, the former sort  

of lens is only employed in situations where the spherical aberration of a conven- 

tional lens would be a serious problem.  The usual method of curing spherical  

aberration is to use combinations of conventional lenses (i.e., compound lenses).  

In the following, we shall make use of the paraxial approximation, in which spher- 

ical aberration is completely ignored, and all light-rays parallel to the optic axis  
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Figure 3.11: A thin lens. 

 

 

 

 

3.5 Thin Lenses 

 

 

C f  

are assumed to be brought to a focus, or a virtual focus, at the same point F. This 

approximation is valid as long as the radius of the lens is small compared to the object 

distance and the image distance.  

The focal length of a lens, which is usually denoted f, is defined as the distance between 

the optic centre O and the focal point F, as shown in Fig. 3.10. However, by convention, 

converging lenses have positive focal lengths, and diverging lenses have negative focal 

lengths. In other words, if the focal point lies behind the lens then the focal length is 

positive, and if the focal point lies in front of the lens then the focal length is negative.  

Consider a conventional lens whose bounding surfaces are spherical.  Let Cf be the 

centre of curvature of the front surface, and Cb the centre of curvature of the back surface. 

The radius of curvature Rf  of the front surface is the distance between the optic centre O 

and the point Cf .  Likewise, the radius of curvature Rb  of the back surface is the distance 

between points O and Cb .  However, by convention, the radius of curvature of a bounding 

surface is positive if its centre of curvature lies behind the lens, and negative if its centre of 

curvature lies in front of the lens. Thus, in Fig. 3.11, Rf is positive and Rb is negative.  

In the paraxial approximation, it is possible to find a simple formula relating  

the focal length f of a lens to the radii of curvature, Rf  and Rb , of its front and  
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back bounding surfaces. This formula is written 

                                                  

                                   
1 1 1

( 1)( ), (3.12)
f b

n
f R R
     

 

 

where n is the refractive index of the lens. The above formula is usually called the  

lens-maker
’s formula, and was discovered by Descartes. Note that the lens-maker’s  

formula is only valid for a thin lens whose thickness is small compared to its focal  

length. What Eq. (3.12) is basically telling us is that light-rays which pass from  

air to glass through a convex surface are focused, whereas light-rays which pass  

from air to glass through a concave surface are defocused.  Furthermore, since  

light-rays are reversible, it follows that rays which pass from glass to air through  

a convex surface are defocused, whereas rays which pass from air to glass through  

a concave surface are focused. Note that the net focusing or defocusing action of a  

lens is due to the difference in the radii of curvature of its two bounding surfaces.  

Suppose that a certain lens has a focal length f.  What happens to the focal  

length if we turn the lens around, so that its front bounding surface becomes  

its back bounding surface, and vice versa?  It is easily seen that when the lens  

is turned around Rf  → −Rb  and Rb  → −Rf .  However, the focal length f of the  

lens is invariant under this transformation, according to Eq. (3.12). Thus, the  

focal length of a lens is the same for light incident from either side. In particular, a  

converging lens remains a converging lens when it is turned around, and likewise  

for a diverging lens.  

The most commonly occurring type of converging lens is a bi-convex, or doubleconvex, 

lens, for which Rf  > 0 and Rb  < 0.  In this type of lens, both bounding surfaces have a 

focusing effect on light-rays passing through the lens.  Another fairly common type of 

converging lens is a plano-convex lens, for which Rf  > 0 and Rb  = ∞.  In this type of lens, 

only the curved bounding surface has a focusing effect on light-rays.  The plane surface 

has no focusing or defocusing effect.  A less common type of converging lens is a convex-

meniscus lens, for which Rf  > 0 and Rb  > 0, with Rf  < Rb . In this type of lens, the front 

bounding surface has a focusing effect on light-rays, whereas the back bounding surface has a 

defocusing effect, but the focusing effect of the front surface wins out.  

The most commonly occurring type of diverging lens is a bi-concave, or double- 
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concave, lens, for which Rf  < 0 and Rb  > 0. In this type of lens, both bounding  

surfaces have a defocusing effect on light-rays passing through the lens. Another  

fairly common type of converging lens is a plano-concave lens, for which Rf  <  

0 and Rb   =  ∞.  In this type of lens, only the curved bounding surface has a  

defocusing effect on light-rays. The plane surface has no focusing or defocusing  

effect.  A less common type of converging lens is a concave-meniscus lens, for  

which Rf  < 0 and Rb  < 0, with Rf  < |Rb |. In this type of lens, the front bounding  

surface has a defocusing effect on light-rays, whereas the back bounding surface  

has a focusing effect, but the defocusing effect of the front surface wins out.  

Figure 3.12 shows the various types of lenses mentioned above.  Note that, as a general 

rule, converging lenses are thicker at the centre than at the edges, whereas diverging lenses 

are thicker at the edges than at the centre.  
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Figure 3.12: Various different types of thin lens.  

 

 

 

 

 

 

 

 



 
 

 

 

 

3 PARAXIAL OPTICS 3.6 Image Formation by Thin Lenses 

 

3.6 Image Formation by Thin Lenses 

 

There are two alternative methods of locating the image formed by a thin lens.  

Just as for spherical mirrors, the first method is graphical, and the second analyt- 

ical.  

The graphical method of locating the image formed by a thin lens involves drawing 

light-rays emanating from key points on the object, and finding where these rays are 

brought to a focus by the lens. This task can be accomplished using a small number of simple 

rules.  

Consider a converging lens. It is helpful to define two focal points for such a  

lens. The first, the so-called image focus, denoted Fi , is defined as the point behind  

the lens to which all incident light-rays parallel to the optic axis converge after  

passing through the lens. This is the same as the focal point F defined previously.  

The second, the so-called object focus, denoted Fo , is defined as the position in  

front of the lens for which rays emitted from a point source of light placed at  

that position would be refracted parallel to the optic axis after passing through  

the lens. It is easily demonstrated that the object focus Fo is as far in front of the  

optic centre O of the lens as the image focus F i  is behind O. The distance from  

the optic centre to either focus is, of course, equal to the focal length f of the lens.  

The image produced by a converging lens can be located using just three simple  

rules:  

 

1. An incident ray which is parallel to the optic axis is refracted through the  

 image focus Fi of the lens.  

2. An incident ray which passes through the object focus Fo  of the lens is re- 

 fracted parallel to the optic axis.  

3. An incident ray which passes through the optic centre O of the lens is not  

 refracted at all.  

 

The last rule is only an approximation.  It turns out that although a light-ray  

which passes through the optic centre of the lens does not change direction, it is  
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displaced slightly to one side. However, this displacement is negligible for a thin  

lens.  

Figure 3.13 illustrates how the image S ′T′ of an object ST placed in front  

of a converging lens is located using the above rules.  In fact, the three rays,  

1-3, emanating from the tip T of the object, are constructed using rules 1-3,  

respectively. Note that the image is real (since light-rays actually cross), inverted,  

and diminished. 
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Figure 3.13: Image formation by a converging lens.  

 

Consider a diverging lens.  It is again helpful to define two focal points for such a 

lens. The image focus Fi  is defined as the point in front of the lens from which all 

incident light-rays parallel to the optic axis appear to diverge after passing through the 

lens.  This is the same as the focal point F defined earlier. The object focus Fo  is defined 

as the point behind the lens to which all incident light-rays which are refracted parallel to 

the optic axis after passing through the lens appear to converge. Both foci are located a 

distance f from the optic centre, where f is the focal length of the lens. The image 

produced by a diverging lens can be located using the following three rules:  

 

1. An incident ray which is parallel to the optic axis is refracted as if it came  

 from the image focus Fi of the lens.  
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Figure 3.14: Image formation by a diverging lens.  

2. An incident ray which is directed towards the object focus Fo  of the lens is  

 refracted parallel to the optic axis.  

3. An incident ray which passes through the optic centre O of the lens is not  

 refracted at all.  

 

Figure 3.14 illustrates how the image S ′T ′  of an object ST placed in front of  

a diverging lens is located using the above rules. In fact, the three rays, 1-3, em- 

anating from the tip T of the object, are constructed using rules 1-3, respectively.  

Note that the image is virtual (since light-rays do not actually cross), upright, and  

diminished.  

Let us now investigate the analytical method. Consider an object of height h placed a 

distance p in front of a converging lens.  Suppose that a real image of height h  ′  is formed 

a distance q behind the lens. As is illustrated in Fig. 3.15, the image can be located using 

rules 1 and 3, discussed above.  

Now, the right-angled triangles SOT and S ′OT ′ are similar, so 

                                                              

' '

, (3.13)
h OS q

h OS p


   

 

 



 
 

 

 

 

3 PARAXIAL OPTICS 

T 1 

h 3 

S 

 

 

 

p 

 
 
 
 

3.6 Image Formation by Thin Lenses 

 

P 

 

O F S' 

h' 

T' 

f 

 

q  
 
Figure 3.15: Image formation by a converging lens.  

Here, we have adopted the convention that the image height h  ′ is negative if the image is 

inverted. The magnification of a thin converging lens is given by 

                                                                                       
'

(3.14)
h q

M
h p

 

  

 

This is the same as the expression (3.2) for the magnification of a spherical mirror. Note 

that we are again adopting the convention that the magnification is negative if the image is 

inverted.  

The right-angled triangles OPF and S ′T ′F are also similar, and so  

 

                                                       

' ' '

'

, (3.15)

. (3.16)

S T FS

OP OF

or

h q q f

h p f



 
 

The above expression can be rearranged to give 
 
 

1 1 1
(3.17)

p q f
    

Note that this is exactly the same as the formula (3.8) relating the image and  

object distances in a spherical mirror.  
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Position of object Position of image 

At +∞  At F 

Between +∞ and Vo     Between F and Vi 

At Vo At Vi 
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Character of image 

Real, zero size 

Real, inverted, diminished 

Real, inverted, same size  

Between Vo  and F Between Vi  and −∞   Real, inverted, magnified 

At F At −∞ 

Between F and O From +∞ to O Virtual, upright, magnified 

At O At O Virtual, upright, same size 

Table 13.3: Rules for image formation by converging lenses. 

Position of object Position of image Character of image 

At ∞ At Fi Virtual, zero size 

Between ∞ and O   Between Fi  and O   Virtual, upright, diminished  

At O At O Virtual, upright, same size 

Table 3.4: Rules for image formation by diverging lenses.  

Although formulae (3.14) and (3.17) were derived for the case of a real image 

formed by a converging lens, they also apply to virtual images, and to images formed by 

diverging lenses, provided that the following sign conventions are adopted.  First of all, as 

we have already mentioned, the focal length f of a converging lens is positive, and the 

focal length of a diverging lens is negative. Secondly, the image distance q is positive if 

the image is real, and, therefore, located behind the lens, and negative if the image is virtual, 

and, therefore, located in front of the lens. It immediately follows, from Eq. (3.14), that real 

images are always inverted, and virtual images are always upright.  

Table 3.3 shows how the location and character of the image formed by a converging 

lens depend on the location of the object. Here, the point Vo is located on the optic axis two 

focal lengths in front of the optic centre, and the point Vi is located on the optic axis two 

focal lengths behind the optic centre.  Note the almost exact analogy between the image 

forming properties of a converging lens and those of a concave spherical mirror.  

Table 3.4 shows how the location and character of the image formed by a diverging lens 

depend on the location of the object. Note the almost exact analogy between the image 

forming properties of a diverging lens and those of a convex spherical mirror.  
 

 



 
 

 

 

 

3 PARAXIAL OPTICS 3.7 Chromatic aberration 

Finally, let us reiterate the sign conventions used to determine the positions and 

characters of the images formed by thin lenses:  

 

1. The height h ′ of the image is positive if the image is upright, with respect to  

 the object, and negative if the image is inverted.  

2. The magnification M of the image is positive if the image is upright, with  

 respect to the object, and negative if the image is inverted.  

3. The image distance q is positive if the image is real, and, therefore, located  

 behind the lens, and negative if the image is virtual, and, therefore, located  

 in front of the lens.  

4. The focal length f of the lens is positive if the lens is converging, so that  

 the image focus Fi  is located behind the lens, and negative if the lens is  

 diverging, so that the image focus Fi is located in front of the lens.  

 

Note that the front side of the lens is defined to be the side from which the light is 

incident.  

 

 

3.7  Chromatic aberration  

 

We have seen that both mirrors and lenses suffer from spherical aberration, an ef- 

fect which limits the clarity and sharpness of the images formed by such devices.  

However, lenses also suffer from another type of abberation called chromatic ab- 

beration.  This occurs because the index of refraction of the glass in a lens is  

different for different wavelengths.  We have seen that a prism refracts violet  

light more than red light. The same is true of lenses. As a result, a simple lens  

focuses violet light closer to the lens than it focuses red light. Hence, white light  

produces a slightly blurred image of an object, with coloured edges.  

For many years, chromatic abberation was a sufficiently serious problem for  

lenses that scientists tried to find ways of reducing the number of lenses in scien- 

tific instruments, or even eliminating them all together. For instance, Isaac New- 

ton developed a type of telescope, now called the Newtonian telescope, which  
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uses a mirror instead of a lens to collect light.  However, in 1758, John Dollond, an 

English optician, discovered a way to eliminate chromatic abberation. He combined two 

lenses, one converging, the other diverging, to make an achromatic doublet.  The two lenses 

in an achromatic doublet are made of different type of glass with indices of refraction 

chosen such that the combination brings any two chosen colours to the same sharp focus.  

Modern scientific instruments use compound lenses (i.e., combinations of sim- 

ple lenses) to simultaneously eliminate both chromatic and spherical aberration.  

 

 

3.8  Worked Examples  

 

Example 3.1: Concave mirrors  

 

Question: An object of height h = 4 cm is placed a distance p = 15 cm in front of  

a concave mirror of focal length f = 20 cm. What is the height, location, and na- 

ture of the image? Suppose that the object is moved to a new position a distance  

p = 25 cm in front of the mirror. What now is the height, location, and nature of  

the image?  

 

Answer: According to Eq. (3.8), the image distance q is given by 

 

 

q = 

 

  

        1                          1 

1/f − 1/p  = (1/20 − 1/15)         = −60 cm.  

Thus, the image is virtual (since q < 0), and is located 60 cm behind the mirror. 

According to Eq. (3.2), the magnification M of the image is given by  

   

                                                         
( 60)

4.
(15)

q
M

p


    

 

Thus, the image is upright (since M  >  0), and magnified by a factor of 4.  It follows 

that the height h ′ of the image is given by  

h ′  = M h = (4) (4) = 16 cm.  
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If the object is moved such that p  = 

given by 
1 

q = 
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25 cm then the new image distance is  

 1  

1/f − 1/p =  (1/20 − 1/25)           = 100 cm.  
Thus, the new image is real (since q > 0), and is located 100 cm in front of the  

mirror. The new magnification is given by  

 

                     
(100)

6.67.
(15)

q
M

p
    

Thus, the image is inverted (since M < 0), and magnified by a factor of 6.67. It follows 

that the new height of the image is  

h ′  = M h = −(6.67) (4) = −26.67 cm.  

Note that the height is negative because the image is inverted.  

 

 

Example 3.2: Convex mirrors  

 

Question: How far must an object be placed in front of a convex mirror of radius  

of curvature R = 50 cm in order to ensure that the size of the image is ten times  

less than the size of the object? How far behind the mirror is the image located?  

 

Answer: The focal length f of a convex mirror is minus half of its radius of cur- 

vature (taking the sign convention for the focal lengths of convex mirrors into  

account).  Thus, f = −25 cm.  If the image is ten times smaller than the object  

then the magnification is M = 0.1. We can be sure that M = +0.1, as opposed to  

−0.1, because we know that images formed in convex mirrors are always virtual  

and upright. According to Eq. (3.2), the image distance q is given by  

q = −M p,  

where p is the object distance. This can be combined with Eq. (3.8) to give  

 
1

(1 )p
M

  = −(25) (1 − 10) = 225 cm. 
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Thus, the object must be placed 225 cm in front of the mirror. The image distance is given by  

q = −M p = −(0.1) (225) = −22.5 cm.  

Thus, the image is located 22.5 cm behind the mirror.  

 

 

Example 3.3: Converging lenses  

 

Question: An object of height h = 7 cm is placed a distance p = 25 cm in front of a thin 

converging lens of focal length f = 35 cm. What is the height, location, and nature of the 

image? Suppose that the object is moved to a new location a distance p = 90 cm in front 

of the lens.  What now is the height, location, and nature of the image?  

 

Answer: According to Eq. (3.17), the image distance q is given by 

 

q = 

 

 

1 1 

1/f − 1/p   = (1/35 − 1/25)         = −87.5 cm.  

Thus, the image is virtual (since q < 0), and is located 87.5 cm in front of the lens. 

According to Eq. (10.24), the magnification M of the image is given by 

                  
( 87.5)

3.5
(25)

q
M

p


     

 

Thus, the image is upright (since M > 0), and magnified by a factor of 3.5.  It follows 

that the height h ′ of the image is given by  

h ′  = M h = (3.5) (7) = 24.5 cm. 

 

If the object is moved such that p  = 

given by 
1 

q = 

90 cm then the new image distance is  

1  

1/f − 1/p    =  (1/35 − 1/90)               = 57.27 cm.  
Thus, the new image is real (since q > 0), and is located 57.27 cm behind the  
lens. The new magnification is given by  

 

                        
(57.27)

0.636
(90)

q
M

p
    
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Thus, the image is inverted (since M < 0), and diminished by a 

factor of 0.636. It follows that the new height of the image is  

h ′  = M h = −(9.636) (7) = −4.45 cm.  

Note that the height is negative because the image is inverted.  

 

 

Example 3.4: Diverging lenses  

 

Question: How far must an object be placed in front of a 

diverging lens of focal length 45 cm in order to ensure that the 

size of the image is fifteen times less than the size of the object? 

How far in front of the lens is the image located?  

Answer:  The focal length f of a diverging lens is negative 

by convention, so f  =  −45 cm, in this case.  If the image is 

fifteen times smaller than the object then the magnification 

is M  =  0.0667.  We can be sure that M  =  +0.0667, as 

opposed to −0.0667, because we know that images formed in 

diverging lenses are always virtual and upright. According to 

Eq. (3.14), the image distance q is given by  

                                                    q = −M p,  

where p is the object distance. This can be combined with Eq. (3.17) 

to give  

                               
1

(1 ) (45)(1 15) 630 .p f cm
M

       

Thus, the object must be placed 630 cm in front of the lens. 

The image distance is given by  

q = −M p = −(0.0667) (630) = −42 cm.  

Thus, the image is located 42 cm in front of the lens.  
 
 
 
 



 
 
 
 
 

 


