UNIVERSITY OF AGRICULTURE, ABEOKUTA

DEPARTMENT OF PHYSICS

PHS 352...Quantum Physics (3 units)

Module	Short-Description	Duration
1	Genesis of Quantum Physics	2 lectures
2	wave-particle duality	2 lectures
3	Basic principles of Quantum Physics	4 lectures
4	Commutator Relations in Quantum Physics	2 lectures

10 lectures

References:

- 1. Mathews, P.T.: Introduction to Quantum Mechanics
- 2. Pauling, L and Wilson, E.B. : Introduction to Quantum Mechanics
- 3. R. Shankar; Principles of Quantum Mechanics
- 4. A. Ghatak and S.Lokanathan ;Quantum Mechanics

Dr. A.O. Obawole

Module 1(Genesis of Quantum Physics)

(2 lectures)

1.1 Genesis of Quantum Physics

Brief description of experiments and theories of Quantum Physics summarized as follows:

- (a) Blackbody radiation....Planck
- (b) The photoelectric effect...Einstein
- (c) Quantum theory of atomic states...Bohr
- (d) The Davisson-Germer experiment...de Broglie hypothesis
- (e) The uncertainty principle....Heisenberg
- (f) Probability waves..Born
- (g) wave equation...Schrodinger
- (h) Exclusion principle...Pauli

Module 2(Wave-Particle Duality) (2 lectures)

2.1 Wave-particle duality of electromagnetic radiation

(a) Particle characteristics to explain:

(i) photoelectric effect,

(ii) Compton scattering

(b) Wave characteristics to explain:

(i) Interference

(ii) diffraction experiments.

2.2 Wave-particle duality of matter

De-Broglie hypothesis

Module 3(Basic principles of Quantum Physics) (4 lectures)

3.1 Basic Principles of Quantum Physics

There are 4 basic princples of Quantum Physics summarized as follows:

- (1) Observables and operators
- (2) Measurement in Quantum Physics
- (3) The state function and expectation values
- (4) Time development of the state function

Tutorial 1

1. Consider the operators $\hat{D}, \hat{I}, \hat{B}, \hat{P}, \hat{\Theta}$ defined below as :

$$\hat{D}\psi(x) = \frac{\partial}{\partial x}, \hat{I}\psi(x) = \psi(x), \hat{B}\psi(x) = \frac{1}{3}\psi(x), \hat{P}\psi(x) = 3\psi^2 - 2\psi, \hat{\Theta}(x) = 0$$

For each of the operators listed above, construct the square, that is \hat{D}^2 .

- 2. Let X be the one-dimensional position operator, $X\psi = x\psi$, and let D be the derivative operator: $D\psi = \frac{d\psi}{dx}$. Calculate DX
- 3. The state $\psi(x)$ of a system of electrons of mass m in 1-D is given by

 $\psi(\mathbf{x}) = \mathrm{A}\mathrm{e}^{-2\pi \mathrm{x}^2} \,.$

- (a) Normalize to determine the value of A.
- (b) What is the normalized state function?
- (c) Calculate the average energy of the electrons in this normalized state.
- 4. The **Dirac delta** function $\delta(x-a)$ may be accurately expressed as an eigenfunction of \hat{x} in the coordinate representation.

Evaluate the following: (i) $\int dx \delta(x-2)$ (ii) $\int dx(x-4)\delta(x+3)$ (iii) $\int dx(\log_{10} x)\delta(x-0.01)$ (iv) $\int dx(e^{x+2})\delta(x+2)$ (v) $\int_{0}^{\infty} dx[\cos(3x)+2e^{ix}](\delta(x-\pi)+\delta(x))$

- 5. Consider a free particle moving in 1-D space such that the states are given by $\phi_1(x) = Ae^{-ikx}$ and $\phi_2(x) = B\cos kx$, where A,B and k are constants.
 - (a) What **momentum** is associated with the particle when in state $\phi_1(x)$?
 - (b) What **energy** is associated with the particle when in state $\phi_1(x)$?

- (c) What **momentum** is associated with the particle when in state $\phi_2(x)$?
- (d) What **energy** is associated with the particle when in state $\phi_2(x)$?
- (e) How do the states $\phi_1(x)$ and $\phi_2(x)$ differ with regard to measurements of **momentum** and **energy**?

6. The time-dependent state $\psi(x,t)$ of a 1-D system is given by:

 $\psi(x,t) = e^{i\beta t} (A\sin\alpha x + Bi\cos\alpha x)$.

If the potential energy is given by V_0 ,

- (a) determine whether $\psi(x,t)$ is an energy eigenfunction. (5 marks)
- (b) If so, calculate the measurable energy value in terms of α .(10 marks)
- (c) What is the measurable energy value in terms of β ? (10 marks)

Module 4 Commutator Relations in Quantum Physics (2 Lectures)

Definition : The commutator between 2 operators A and B is :

$$[A, B] \text{ such that :}$$

$$[A, B] = AB - BA$$
(2.1)

4.2 Property : If [A, B] = -[B, A], the 2 operators A and B are said to commute with each other. i.e. A and B are *compatible*. Thus AB = BA (2.2) i.e. [A, B] = 0 (2.3) If $[A, B] \neq 0$ (2.4) \Rightarrow A and B are *not compatible*

Tutorial 2

- 1. Prove that for the operators A,B and C, the following identities are valid :(i) [A+B,C] = [A,C] + [B,C](ii) [A,BC] = [A,B]C + B[A,C](iii) [A,B+C] = [A,B] + [A,C](iv) [AB,C] = A[B,C] + [A,C]B
- 2. One of the most important *commutators* in physics is that between the coordinate, \hat{x} , and the momentum, \hat{p} .
 - (i) Show that $[\hat{x}, \hat{p}] = i\mathbf{h}$

Hence, or otherwise, deduce that

(ii) $[\hat{x}^2, \hat{p}] = 2ih\hat{x}$; (iii) $[\hat{x}, \hat{p}^2] = 2ih\hat{p}$; (iv) $[\hat{H}, \hat{x}] = \frac{-ih}{m}\hat{p}$;

(v) If g is an arbitrary function of x, show that $[\hat{p}, g] = -i\hbar \frac{dg}{dx}$