UNIVERSITY OF AGRICULTURE, ABEOKUTA

DEPARTMENT OF PHYSICS

PHS 411...Quantum Mechanics (3 units)

Module	Short-Description	Duration
1	Postulates of Quantum Mechanics	3 lectures
2	Commutator relations in Quantum Mechanics	2 lectures
3	Function spaces and Hermitian Operators	3 lectures
4	Harmonic Oscillator	3 lectures

11 lectures

References:

- 1. E. Merzbacher, Quantum Mechanics
- 2. L.I.Schiff ; Quantum Mechanics
- 3. R. Shankar; Principles of Quantum Mechanics
- 4. A. Ghatak and S.Lokanathan ;Quantum Mechanics

Dr. A.O. Obawole

Module 1 Postulates of Quantum Mechanics (3 Lectures)

1.1 Basic postulates of Quantum Mechanics

There are 4 basic postulates of Quantum Mechanics summarized as follows:

- (1) Observables and operators
- (2) Measurement in Quantum Mechanics
- (3) The state function and expectation values
- (4) Time development of the state function

Tutorial 1

1. The state $\psi(x)$ of a system of electrons of mass m in 1-D is given by

$$\psi(\mathbf{x}) = \mathbf{A} \mathrm{e}^{-2\pi \mathrm{x}^2} \, .$$

- (a) Normalize to determine the value of A.
- (b) What is the normalized state function?
- (c) Calculate the average energy of the electrons in this normalized state.
- 2. The **Dirac delta** function $\delta(x-a)$ may be accurately expressed as an eigenfunction of \hat{x} in the coordinate representation.
 - (a) State any **three** properties of $\delta(x-a)$.
 - (b) If a system is in a state $\psi(x) = \delta(x+2)$, what does the measurement of x give?

(c) Evaluate the following: (i)
$$\int dx \delta(x-2)$$
 (ii) $\int dx(x-4)\delta(x+3)$
(iii) $\int dx(\log_{10} x)\delta(x-0.01)$ (iv) $\int dx(e^{x+2})\delta(x+2)$

(iii)
$$\int dx (\log_{10} x) \delta(x - 0.01)$$
 (iv) $\int dx (e^{x/2}) \delta(x + 2)$
(v) $\int_{0}^{\infty} dx [\cos(3x) + 2e^{ix}] (\delta(x - \pi) + \delta(x))$

3. (a) Given that the identity operator \hat{I} is a 2-D unit matrix; that is, $\hat{I} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

Construct its inverse \hat{I}^{-1} provided it exists.

Module 2 Commutator Relations in Quantum Mechanics (2 Lectures)

2.1 Definition : The commutator between 2 operators A and B is : $\begin{bmatrix} A, B \end{bmatrix} \text{ such that } :$ $\begin{bmatrix} A, B \end{bmatrix} = AB - BA \tag{2.1}$

2.2 Property : If [A, B] = -[B, A], the 2 operators A and B are said to commute with each other. i.e. A and B are *compatible*. Thus AB = BA (2.2) i.e. [A, B] = 0 (2.3) If $[A, B] \neq 0$ (2.4) \Rightarrow A and B are *not compatible*

Tutorial 2

- (1) Prove that for the operators A,B and C, the following identities are valid : (i) [A+B,C]=[A,C]+[B,C] (ii) [A,BC]=[A,B]C+B[A,C](iii) [A,B+C]=[A,B]+[A,C] (iv) [AB,C]=A[B,C]+[A,C]B
- (2) One of the most important *commutators* in physics is that between the coordinate, \hat{x} , and the momentum, \hat{p} .
 - (i) Show that $[\hat{x}, \hat{p}] = i\mathbf{h}$

Hence, or otherwise, deduce that

(ii)
$$[\hat{x}^2, \hat{p}] = 2i\hbar\hat{x}$$
; (iii) $[\hat{x}, \hat{p}^2] = 2i\hbar\hat{p}$; (iv) $[\hat{H}, \hat{x}] = \frac{-i\hbar}{m}\hat{p}$;

(v) If g is an arbitrary function of x, show that $[\hat{p}, g] = -i\hbar \frac{dg}{dx}$

Module 3 Function Spaces and Hermitian operators (3 Lectures)

3.1 Solution of a Particle-in-a-box problem : Consider a point mass m constrained to move on an infinitely thin, frictionless wire which is strung tightly between two impenetrable walls a distance L apart. This simply is a one-dimensional box to be solved as follows:

3.11 Potential: $v(x) = \infty....(x \le 0, x \ge L)$ (3.11)

$$v(x) = 0.....(0 < x < L) \tag{3.12}$$

3.12 Hamiltonian:
$$\hat{H}_1 = \frac{\hat{p}^2}{2m} + \infty \dots (x \le 0, x \ge L)$$
 (3.13)

$$\hat{H}_2 = \frac{\hat{p}^2}{2m} \dots \dots (0 < x < L) \tag{3.14}$$

The *eigenvalues* can be shown to be : $E_n = n^2 E_1$ (3.15)

Where
$$E_1 = \frac{h^2 \pi^2}{2mL^2}$$
 (3.16)

Also, the *eigenstates* can be shown to be : $\phi_n = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$ (3.17)

3.2 Dirac Notation : gives a monogram to the integral of the product of two state functions, $\psi(x)$ and $\phi(x)$:

i.e.
$$\langle \psi | \phi \rangle = \int_{-\infty}^{\infty} \psi^*(x) \phi(x) dx$$
 (3.21)
N.B.(1) $\langle \psi | \equiv$ 'bra vector'; $| \phi \rangle \equiv$ 'ket vector'

(2) *Rules:* If a is any complex number and the functions ψ and ϕ are such that $\int_{-\infty}^{\infty} \psi^* \phi dx < \infty$ (3.22) the following rules hold: (i) $\langle \psi | a \phi \rangle = a \langle \psi | \phi \rangle$ (ii) $\langle a \psi | \phi \rangle = a^* \langle \psi | \phi \rangle$ (iii) $\langle \psi | \phi \rangle^* = \langle \phi | \psi \rangle$ (iv) $\langle \phi + \psi | = \langle \psi | + \langle \phi |$ (v) $\int_{-\infty}^{\infty} (\psi_1 + \psi_2)^* (\phi_1 + \phi_2) dx = \langle \psi_1 | \phi_1 \rangle + \langle \psi_1 | \phi_2 \rangle + \langle \psi_2 | \phi_1 \rangle + \langle \psi_2 | \phi_2 \rangle$ (3.23)

- 3.3 Hermitian Operator : is an operator that is equal to its adjoint i.e. a self-adjoint operator.
 - 3.31: Properties of Hermitian operators : There are 2 important properties: I^{st} : The eigenvalues of o hermitian operator *real*. 2^{nd} : The eigenfunctions of a Hermitian operator are *orthogonal*.

Tutorial 3

1. Spin Matrices are special matrices that occur in Quantum mechanics.

In 2-D, they are namely :
$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_y = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Show that each of the matrices is **Hermitian**.

- 2. Show that the linear momentum operator is Hermitian.
- 3. The eigenstate of a particle may be represented by each of the following kets :

(i)
$$|\psi_1\rangle = \begin{pmatrix} i \\ -1 \\ 1 \end{pmatrix}$$
; (ii) $|\psi_2\rangle = \begin{pmatrix} 1 \\ -i \\ -1 \end{pmatrix}$; (iii) $|\psi_3\rangle = \begin{pmatrix} 1 \\ -1 \\ i \end{pmatrix}$
Calculate (a) $\langle \psi_1 | \psi_1 \rangle$; (b) $\langle \psi_1 | \psi_2 \rangle$; (c) $\langle \psi_2 | \psi_3 \rangle$; (d) $|\psi_1\rangle \langle \psi_1 |$;
(e) $|\psi_1\rangle \langle \psi_2 |$; (f) $|\psi_2\rangle \langle \psi_3 |$ (18 marks)

Module 4 Harmonic Oscillator (3 Lectures)

Introduction : A brief review of the classical Harmonic Oscillation **Operators :** (1) Annihilation operator \hat{a} is defined as :

$$\hat{a} = \frac{\beta}{\sqrt{2}} \left(\hat{x} + i \frac{\hat{p}}{m\omega} \right), \tag{4.21}$$

(2) creation operator \hat{a}^+ is defined as:

$$\hat{a}^{+} = \frac{\beta}{\sqrt{2}} \left(\hat{x} - i \frac{\hat{p}}{m\omega} \right)$$
(4.22)

where
$$\beta^2 = \frac{m\omega}{h}$$
 (4.23)

Dimensionless transformation : If the non-dimensional displacement ζ is defined

as:
$$\zeta^2 \equiv \beta^2 x^2 \equiv \frac{m\omega}{\hbar} x^2$$
, (4.31)

It can be shown that \hat{a} in equation (4.21) transforms as :

$$\hat{a} = \frac{1}{\sqrt{2}} \left(\zeta + \frac{\partial}{\partial \zeta} \right) \tag{4.32}$$

Also, \hat{a}^+ in equation (4.22) transforms as:

$$\hat{a}^{+} = \frac{1}{\sqrt{2}} \left(\zeta - \frac{\partial}{\partial \zeta} \right)$$
(4.33)

Hamiltonian for the Harmonic Oscillator :

The Hamiltonian \hat{H} of the 1-D harmonic oscillator is given by

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2$$
(4.41)

It can be shown that equation (4.41) is expressible as

$$\hat{H} = h\omega(\hat{a}\hat{a}^{+} - \frac{1}{2})$$
; (4.42)

Eigenvalues :An algebraic solution of the 1-D harmonic oscillator shows the energy eigenvalues as:

$$E_n = h\omega_0 \left(n + \frac{1}{2} \right)$$
 (4.51)
Where $(n = 0, 1, 2, ...)$

Eigenfunctions ϕ_n are given by:

$$\phi_n = A_n H_n(\zeta) e^{-\frac{\zeta^2}{2}} \tag{4.61}$$

Where the Hermite Polynomials $H_n(\zeta)$ are given by:

$$H_{n}(\zeta) = \left(\zeta - \frac{\partial}{\partial \zeta}\right)^{n}$$
(4.62)

and the normalization constant $A_n = (2^n n! \sqrt{\pi})^{-\frac{1}{2}}$ (4.63)

Tutorial 4

- 1. Annihilation and creation operators \hat{a} and \hat{a}^{+} are defined in the Harmonic Oscillator problem respectively as : $\hat{a} = \frac{\beta}{\sqrt{2}} \left(\hat{x} + i \frac{\hat{p}}{m\omega} \right), \quad \hat{a}^{+} = \frac{\beta}{\sqrt{2}} \left(\hat{x} - i \frac{\hat{p}}{m\omega} \right)$ where $\beta^{2} = \frac{m\omega}{h}$ and other symbols have their usual meanings.
- . If the non-dimensional displacement ζ is defined as : $\zeta^2 \equiv \beta^2 x^2 \equiv \frac{m\omega}{\hbar} x^2$, show that \hat{a} and \hat{a}^+ transform as:

(i)
$$\hat{a} = \frac{1}{\sqrt{2}} \left(\zeta + \frac{\partial}{\partial \zeta} \right)$$
, (ii) $\hat{a}^{+} = \frac{1}{\sqrt{2}} \left(\zeta - \frac{\partial}{\partial \zeta} \right)$, (iii) $\hat{a}^{+} \hat{a} = \frac{1}{2} \left(\zeta^{2} - \frac{\partial^{2}}{\partial \zeta^{2}} - 1 \right)$

- 2. Given that $[\hat{x}, \hat{p}] = ih$, show that $[\hat{a}, \hat{a}^+] = 1$
 - (a) Show that the Hamiltonian \hat{H} of the 1-D harmonic oscillator given by $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2 \hat{x}^2$ is expressible as $\hat{H} = h\omega(\hat{a}\hat{a}^+ - \frac{1}{2})$; (6 marks) (b) Hence, deduce that the ground state energy : $E_0 = \frac{1}{2}h\omega$.
- 3. The n^{th} eigenstate of the simple harmonic oscillator (SHO) Hamiltonian is given by $\psi_n(\xi) = A_n H_n(\xi) e^{-\xi^2/2}$ where the normalization constant $A_n = (2^n n! \sqrt{\pi})^{-\frac{1}{2}}$ and Hermite polynomials are given by : $H_n(\xi) = (\xi - \frac{\partial}{\partial \xi})^n$
 - (a) Deduce expressions for the first three eigenstates (n=0,1,2)
 - (b) Sketch carefully on the same page these eigenstates (i.e. $\psi_0(\xi)$, $\psi_1(\xi)$, and $\psi_2(\xi)$)