UNIVERSITY OF AGRICULTURE, ABEOKUTA
 DEPARTMENT OF PHYSICS

PHS 411...Quantum Mechanics (3 units)

Module	Short-Description	Duration
1	Postulates of Quantum Mechanics	3 lectures
2	Commutator relations in Quantum Mechanics	2 lectures
3	Function spaces and Hermitian Operators	3 lectures
4	Harmonic Oscillator	3 lectures

		11 lectures

References:

1. E. Merzbacher, Quantum Mechanics
2. L.I.Schiff ; Quantum Mechanics
3. R. Shankar ; Principles of Quantum Mechanics
4. A. Ghatak and S.Lokanathan ;Quantum Mechanics

Dr. A.O. Obawole

Module 1 Postulates of Quantum Mechanics

(3 Lectures)

1.1 Basic postulates of Quantum Mechanics

There are 4 basic postulates of Quantum Mechanics summarized as follows:
(1) Observables and operators
(2) Measurement in Quantum Mechanics
(3) The state function and expectation values
(4) Time development of the state function

Tutorial 1

1. The state $\psi(x)$ of a system of electrons of mass m in 1-D is given by

$$
\psi(\mathrm{x})=\mathrm{Ae}^{-2 \pi \mathrm{x}^{2}} .
$$

(a) Normalize to determine the value of A .
(b) What is the normalized state function?
(c) Calculate the average energy of the electrons in this normalized state.
2. The Dirac delta function $\delta(x-a)$ may be accurately expressed as an eigenfunction of \hat{x} in the coordinate representation.
(a) State any three properties of $\delta(x-a)$.
(b) If a system is in a state $\psi(x)=\delta(x+2)$, what does the measurement of x give?
(c) Evaluate the following: (i) $\int d x \delta(x-2)$ (ii) $\int d x(x-4) \delta(x+3)$
(iii) $\int d x\left(\log _{10} x\right) \delta(x-0.01) \quad$ (iv) $\int d x\left(e^{x+2}\right) \delta(x+2)$
(v) $\int_{0}^{\infty} d x\left[\cos (3 x)+2 e^{i x}\right](\delta(x-\pi)+\delta(x))$
3. (a) Given that the identity operator \hat{I} is a 2-D unit matrix; that is, $\hat{I}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ Construct its inverse \hat{I}^{-1} provided it exists.

Module 2 Commutator Relations in Quantum Mechanics (2 Lectures)

2.1 Definition : The commutator between 2 operators A and B is :

$$
\begin{align*}
& {[A, B] \text { such that : }} \\
& {[A, B]=A B-B A} \tag{2.1}
\end{align*}
$$

2.2 Property : If $[A, B]=-[B, A]$, the 2 operators A and B are said to commute with each other. i.e. A and B are compatible.
Thus $A B=B A$
i.e. $[A, B]=0$

If $[A, B] \neq 0$
$\Rightarrow \mathrm{A}$ and B are not compatible

Tutorial 2

(1) Prove that for the operators A, B and C , the following identities are valid:
(i) $[A+B, C]=[A, C]+[B, C]$
(ii) $[A, B C]=[A, B] C+B[A, C]$
(iii) $[A, B+C]=[A, B]+[A, C]$
(iv) $[A B, C]=A[B, C]+[A, C] B$
(2) One of the most important commutators in physics is that between the coordinate, \hat{x}, and the momentum, \hat{p}.
(i) Show that $[\hat{x}, \hat{p}]=i h$

Hence, or otherwise, deduce that
(ii) $\left[\hat{x}^{2}, \hat{p}\right]=2 i \mathrm{~h} \hat{x}$; (iii) $\left[\hat{x}, \hat{p}^{2}\right]=2 i \mathrm{~h} \hat{p}$; (iv) $[\hat{H}, \hat{x}]=\frac{-i \mathrm{~h}}{m} \hat{p}$;
(v) If g is an arbitrary function of x , show that $[\hat{p}, g]=-i \mathrm{~h} \frac{d g}{d x}$

Module 3 Function Spaces and Hermitian operators (3 Lectures)

3.1 Solution of a Particle-in-a-box problem : Consider a point mass m constrained to move on an infinitely thin,frictionless wire which is strung tightly between two impenetrable walls a distance L apart. This simply is a onedimensional box to be solved as follows:
3.11 Potential: $v(x)=\infty$..... $(x \leq 0, x \geq L)$

$$
\begin{equation*}
v(x)=0 \ldots \ldots \ldots .(0<x<L) \tag{3.11}
\end{equation*}
$$

3.12 Hamiltonian: $\hat{H}_{1}=\frac{\hat{p}^{2}}{2 m}+\infty \ldots . .(x \leq 0, x \geq L)$

$$
\begin{equation*}
\hat{H}_{2}=\frac{\hat{p}^{2}}{2 m} \ldots \ldots . .(0<x<L) \tag{3.13}
\end{equation*}
$$

The eigenvalues can be shown to be : $E_{n}=n^{2} E_{1}$
Where $E_{1}=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}}$
Also, the eigenstates can be shown to be : $\phi_{n}=\sqrt{\frac{2}{L}} \sin \left(\frac{n \pi x}{L}\right)$
3.2 Dirac Notation : gives a monogram to the integral of the product of two state functions, $\psi(x)$ and $\phi(x)$:
i.e. $\langle\psi \mid \phi\rangle=\int_{-\infty}^{\infty} \psi^{*}(x) \phi(x) d x$
N.B.(1) $\langle\psi| \equiv$ 'bra vector' $;|\phi\rangle \equiv$ 'ket vector'
(2) Rules: If a is any complex number and the functions ψ and ϕ are such that $\int_{-\infty}^{\infty} \psi^{*} \phi d x<\infty$
the following rules hold:
(i) $\langle\psi \mid a \phi\rangle=a\langle\psi \mid \phi\rangle$
(ii) $\langle a \psi \mid \phi\rangle=a^{*}\langle\psi \mid \phi\rangle$
(iii) $\langle\psi \mid \phi\rangle^{*}=\langle\phi \mid \psi\rangle$
(iv) $\langle\phi+\psi|=\langle\psi|+\langle\phi|$
(v) $\int_{-\infty}^{\infty}\left(\psi_{1}+\psi_{2}\right)^{*}\left(\phi_{1}+\phi_{2}\right) d x=\left\langle\psi_{1} \mid \phi_{1}\right\rangle+\left\langle\psi_{1} \mid \phi_{2}\right\rangle+\left\langle\psi_{2} \mid \phi_{1}\right\rangle+\left\langle\psi_{2} \mid \phi_{2}\right\rangle$
3.3 Hermitian Operator : is an operator that is equal to its adjoint i.e. a self-adjoint operator.
3.31: Properties of Hermitian operators : There are 2 important properties: $\boldsymbol{1}^{\text {st }}$: The eigenvalues of o hermitian operator real. $2^{\text {nd }}$: The eigenfunctions of a Hermitian operator are orthogonal.

Tutorial 3

1. Spin Matrices are special matrices that occur in Quantum mechanics.

In 2-D, they are namely : $\sigma_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{y}=\left(\begin{array}{cc}0 & i \\ -i & 0\end{array}\right), \sigma_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
Show that each of the matrices is Hermitian.
2. Show that the linear momentum operator is Hermitian.
3. The eigenstate of a particle may be represented by each of the following kets :
(i) $\left|\psi_{1}\right\rangle=\left(\begin{array}{c}i \\ -1 \\ 1\end{array}\right)$; (ii) $\left|\psi_{2}\right\rangle=\left(\begin{array}{c}1 \\ -i \\ -1\end{array}\right)$; (iii) $\left|\psi_{3}\right\rangle=\left(\begin{array}{c}1 \\ -1 \\ i\end{array}\right)$

Calculate (a) $\left\langle\psi_{1} \mid \psi_{1}\right\rangle$; (b) $\left\langle\psi_{1} \mid \psi_{2}\right\rangle$; (c) $\left\langle\psi_{2} \mid \psi_{3}\right\rangle$; (d) $\left|\psi_{1}\right\rangle\left\langle\psi_{1}\right|$;
(e) $\left|\psi_{1}\right\rangle\left\langle\psi_{2}\right|$; (f) $\left|\psi_{2}\right\rangle\left\langle\psi_{3}\right|$
(18 marks)

Module 4 Harmonic Oscillator (3 Lectures)

Introduction : A brief review of the classical Harmonic Oscillation
Operators : (1) Annihilation operator \hat{a} is defined as:

$$
\begin{equation*}
\hat{a}=\frac{\beta}{\sqrt{2}}\left(\hat{x}+i \frac{\hat{p}}{m \omega}\right), \tag{4.21}
\end{equation*}
$$

(2) creation operator \hat{a}^{+}is defined as:

$$
\begin{equation*}
\hat{a}^{+}=\frac{\beta}{\sqrt{2}}\left(\hat{x}-i \frac{\hat{p}}{m \omega}\right) \tag{4.22}
\end{equation*}
$$

where $\beta^{2}=\frac{m \omega}{\mathrm{~h}}$

Dimensionless transformation : If the non-dimensional displacement ζ is defined as : $\zeta^{2} \equiv \beta^{2} x^{2} \equiv \frac{m \omega}{\hbar} x^{2}$,

It can be shown that \hat{a} in equation (4.21) transforms as :

$$
\begin{equation*}
\hat{a}=\frac{1}{\sqrt{2}}\left(\zeta+\frac{\partial}{\partial \zeta}\right) \tag{4.32}
\end{equation*}
$$

Also, \hat{a}^{+}in equation (4.22) transforms as:

$$
\begin{equation*}
\hat{a}^{+}=\frac{1}{\sqrt{2}}\left(\zeta-\frac{\partial}{\partial \zeta}\right) \tag{4.33}
\end{equation*}
$$

Hamiltonian for the Harmonic Oscillator :

The Hamiltonian \hat{H} of the 1-D harmonic oscillator is given by

$$
\begin{equation*}
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2} \tag{4.41}
\end{equation*}
$$

It can be shown that equation (4.41) is expressible as

$$
\begin{equation*}
\hat{H}=\mathrm{h} \omega\left(\hat{a} \hat{a}^{+}-1 / 2\right) \tag{4.42}
\end{equation*}
$$

Eigenvalues : An algebraic solution of the 1-D harmonic oscillator shows the energy eigenvalues as:

$$
\begin{equation*}
E_{n}=h \omega_{0}\left(n+\frac{1}{2}\right) \tag{4.51}
\end{equation*}
$$

Where $(n=0,1,2, \ldots)$

Eigenfunctions ϕ_{n} are given by:

$$
\begin{equation*}
\phi_{n}=A_{n} H_{n}(\zeta) e^{-\frac{\zeta^{2}}{2}} \tag{4.61}
\end{equation*}
$$

Where the Hermite Polynomials $H_{n}(\zeta)$ are given by:

$$
\begin{equation*}
H_{n}(\zeta)=\left(\zeta-\frac{\partial}{\partial \zeta}\right)^{n} \tag{4.62}
\end{equation*}
$$

and the normalization constant $A_{n}=\left(2^{n} n!\sqrt{\pi}\right)^{-\frac{1}{2}}$

Tutorial 4

1. Annihilation and creation operators \hat{a} and \hat{a}^{+}are defined in the Harmonic Oscillator problem respectively as : $\hat{a}=\frac{\beta}{\sqrt{2}}\left(\hat{x}+i \frac{\hat{p}}{m \omega}\right), \hat{a}^{+}=\frac{\beta}{\sqrt{2}}\left(\hat{x}-i \frac{\hat{p}}{m \omega}\right)$ where $\beta^{2}=\frac{m \omega}{\mathrm{~h}}$ and other symbols have their usual meanings.
. If the non-dimensional displacement ζ is defined as : $\zeta^{2} \equiv \beta^{2} x^{2} \equiv \frac{m \omega}{\hbar} x^{2}$, show that \hat{a} and \hat{a}^{+}transform as:
(i) $\hat{a}=\frac{1}{\sqrt{2}}\left(\zeta+\frac{\partial}{\partial \zeta}\right)$,
(ii) $\hat{a}^{+}=\frac{1}{\sqrt{2}}\left(\zeta-\frac{\partial}{\partial \zeta}\right)$,
(iii) $\hat{a}^{+} \hat{a}=\frac{1}{2}\left(\zeta^{2}-\frac{\partial^{2}}{\partial \zeta^{2}}-1\right)$
2. Given that $[\hat{x}, \hat{p}]=i$ h, show that $\left[\hat{a}, \hat{a}^{+}\right]=1$
(a) Show that the Hamiltonian \hat{H} of the 1-D harmonic oscillator given by

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m \omega^{2} \hat{x}^{2} \quad \text { is expressible as } \quad \hat{H}=\mathrm{h} \omega\left(\hat{a} \hat{a}^{+}-1 / 2\right) \quad ; \quad(\mathbf{6} \text { marks })
$$

(b) Hence, deduce that the ground state energy :

$$
E_{0}=\frac{1}{2} \mathrm{~h} \omega .
$$

3. The $n^{\text {th }}$ eigenstate of the simple harmonic oscillator (SHO) Hamiltonian is given by $\psi_{n}(\xi)=A_{n} H_{n}(\xi) e^{-\xi^{2} / 2}$ where the normalization constant $A_{n}=\left(2^{n} n!\sqrt{\pi}\right)^{-\frac{1}{2}}$ and Hermite polynomials are given by : $H_{n}(\xi)=\left(\xi-\frac{\partial}{\partial \xi}\right)^{n}$
(a) Deduce expressions for the first three eigenstates($\mathrm{n}=0,1,2$)
(b) Sketch carefully on the same page these eigenstates(i.e. $\psi_{0}(\xi), \psi_{1}(\xi)$, and $\left.\psi_{2}(\xi)\right)$
