CROP EVOLUTION AND TAXONOMY (PBS 503)

Coordinate BY

DR. I. O. Daniel

LECTURE 1

- Definition of Evolution

* Is the scientific idea of the gradual development of the various types of plants,

animals etc from fewer & simpler form

- * Is the gradual change and development
- * Is the modeling force, which is more specifically natural selection.

 \ast If all the above definitions are applied to crop, it is called CROP EVOLUTION

- Theory of Evolution (Darwinian Concept)
 - * The basic tenets are:
 - The number of individuals in any population tends to increase geometrically

when the condition permits the survival of all progenies

- Potential for rapidly increase is seldomly realized in the case of every species
- Competition of struggle for survival occurs in which many individuals are eliminated.
- Variation in the form of individual differences exist in every species or

population.

- Evolution is a gradual change in the hereditary make-up of the species.
- Modern ideas of evolution
 - * Modern synthesis
 - * The Neo-Darwinism synthesis
 - * Neo-Darwinism
- Evolution can be seen as 2 part processes
 - 1) The Origin of variation
 - 2) The modification of the variation of natural selection

LECTURE 2

- Mechanisms of Evolution
 - * Evolution of crop plants
 - * De-Candole thought about Agriculture
 - * Contributions of N.I. Vavilov to crop plant origins
- Genetic basis for evolution of cultivated plants
 - * Mendelian variation by mutation of genes
 - * Interspecific hybridization
 - * Polyploidy
 - * Introgression
- Roles of hybridization
 - * Definition of hybridization
 - * High Crop yield
 - * High crop quality
 - * High nutritional levels and wide range of end users
 - * Maintenance or extension of adaptation to soils and climate and as well as varieties for local specific environments
 - * Pest and disease resistant crops
 - * Produce varieties with improved resistance to various abiotic stress conditions.

LECTURE 3

- Selection in Crop Evolution
 - * Natural selection (phyletic & speciation evolution)
 - * Artificial selection
 - * Aesthetic selection
- Origin of cultivated plants
 - * Primary centre of diversity (definition and examples)
 - * Secondary centre of diversity (definition and examples)
- Centre of recombination
- Features of centre of diversity
- Importance of plant genetic diversity
 - Enables farmer to grow crops under a range of varying conditions and adverse environment
 - * Better management of uncertainties
 - * Spread their risks of production

- * Sustain livelihood in marginal production areas
- * Help both farmers and breeders to select and breed for better crops and varieties
- * Satisfy present and future demands in production and consumer preferences
- * Satisfy the diverse demand by households and consumers in different tural settings

cultural

LECTURE 4

- Definition of Plant taxonomy
- Importance of Plant taxonomy
- Aims of Plant taxonomy
- Scope of Taxonomy
 - * Identification
 - * Nomenclature
 - * Classification

LECTURE 5

- Plant Nomenclature
 - * Why do we need such difficult Latin names for plant
- Binomial system and Nomenclature
 - * Generic name and specific epithet
 - * Citation and Authority
- Taxonomic Hierarchy
 - * Definition of Taxonomic hierarchy
 - * Taxon and Description of a taxon
- Ranks of Taxon (12 categories in the hierarchy)

LECTURE 6

- Descriptive features of Plant Taxonomy
- Floral formula
 - * Definition of floral formula
 - * Features of floral formula
- Analyses of floral formula

LECTURE 7

- Practical
 - * Survey of crop species and their relatives
 - * Consideration of crop species and how they fit into a species
 - * Collection of various species within a genus

LECTURE 8

- Revision classes

BOOKS FOR CONSULTATION

- 1. Evans, L. T. Crop Evolution, adaptation and yield. Cambridge University Press, 1993
- 2. Hawkes, J. G. The diversity of Crop Plants. Harvard University Press. 1983
- Plant Breeding Principles and Prospects. Edited by Hayward, M. D., Bosemark,
 N. O. & Romagos, A. T.
- 4. Borojeviv, S.: Principles and methods of Plant Breeding developments in Crop Science. Elsevier Publishers.