
1 
 

Course Code:   CSC 422 

 

 

Course Title:   Database 

 

 

 

Course Developer/Writer: Dr. A.T. Akinwale 

                 & 

Miss A. J. Ikuomola 

Department of Computer Science 

College of Natural Science 

University of Agriculture Abeokuta,  

Ogun State, Nigeria 

 

 

 

 

 

 

 

UNIVERSITY OF AGRICULTURE, ABEOKUTA 

 



2 
 

WEEK – ONE 

DATABASE  DESIGN 
Designing a database is an art process similar to building a house. There are many techniques 
professionals via design databases.  Before proceeding forward on database, there is a need to 
know the basic concepts of database. 

WHAT IS DATABASE? 

A database is a representation of facts, concepts or instruction in a formalized manner suitable 
for communication, interpretation or processing by human or automatic means. 

 A database can be defined as central pool of data which is shared by various user of an 
organization. 

A database system can be defined as a representation of an information system in a computer. A 
database system consists of the data structure, the suite of programs and the base used to put an 
information system on a computer. 

Database management: comprises prises of software, hardware and organizational techniques to 
manage a database. 

Data processing: is the execution of systematic sequence of operations performed upon data. 

By Daniel Martin- He defines database as a collection of  data that obeys three criteria: 

 Exhaustively 
 Non _redundancy 
 Appropriate structure 

 
 Exhaustively means that all the data about the subject are actually present in the database. 
 Non_redundancy means that each individual piece of data exit only once in the database. 
 Appropriate structure means that the data are stored in such a way as to minimized the cost of 

the expected processing and storage. 

Some author says that database is with an “open” structure such database that is open database 
allow for easy change of field dimension (e.g. increasing a given field size from six to seven 
digits) 

 For easy addition of new fields 
 For easy change in data linkage (for example, link a customer record to all transactions 

performed on his account: invoices, payments e.t.c) 



3 
 

The problem with open database is that, it is very costly in terms of processing time, memory 
space and disk storage. 

Customer file                                                                                                   payment_due_file 

Name                                                                                                               vendor number 

Address                                                                                                            vendor name 

Credit balance                                                                                                  vendor address 

Cash payment                                                                                                   invoice amount 

Amount due                            date payment due                                                                            

Current amount 

 

Name Address Credit 
Balance 

Cash 
Payment 

Amount 
Due 

Current 
Amount 

      
 

Vendor no Vendor name Vend 
or address 

Invoice 
amount 

Date 
payment 
due 

     
 

Exhaustively implies the presence within the database of all information pertaining to a given 
customer or to a payment. Non_redundancy exclude the possibility that certain pieces of data 
exist more than once within a database. For example, if the payment _due_ file of the database 
contains the name and the address of each debtor. And this information is already stored in 
“customer file”, it is therefore redundant. 

Pointer: is an arrow to link one record to another in another file. 

A database represent a system to be computerized .Whenever this system is referred to in 
computerized form, it is called a database system. The concept of a database is to solve problem 
of redundancy. This is so because data is stored only once, hence there is no waste of storage. 
When data get updated, there is no question of it being in an in consistence state. 

Another concept of a database is that it is in position of being stored by many users. For this to 
happen, there is separation of data organization and access technique from application programs, 
The user have a view of a database in conformity with the way  they want to see them. 



4 
 

It follows therefore that the concept of a database is potentially capable of solving both 
redundancy and the loss of flexibility problems executed in conventional programming. 

The organ that can perform these task is software package and is called Database Management 
System (DBMS). DBMS is a software that solves the problem of conventional programming.  
Convention is the usual way of doing things. 

 

THE CONCEPTUAL DATA BASE 

Assuming that there is a change in colour of a car from red to black. This change must be 
captured in the conceptual data base in a faithful manner. This means the colour of the car should 
be correctly updated to reflect the current colour.The following operation in computer allow us 
to make change in the conceptual data base. 

 Insert information 
 Delete information 
 Update or modify information 
 Retrieve information 

Let us suppose that at a certain stage in the life of the university, the need for computerization is 
felt. This is because it is found very difficult to keep track of the student in the university vis-à-
vis the department to which they are affiliated. Consequently, a student record is defined 
containing the field of interest. Let these be the name of the student, the department to which he 
is affiliated, his age, the last qualifying exam ination passed by him, and specialization for which 
he is enrolled in the department. 

The Student Record 

NAME 

 

DEPT 

 

AGE 

 

LAST  EXAM 

 

SPECIALIZATION 

 

 

After the record has been defined, a programming language like COBOL, PL/1 OR PASCAL 
which support which supports the notion of a record selected and to program the two stages 
outlined above selected and used to program the two stages outlined above. Later, the university 
decides to computerize information regarding faculty numbers and their affiliation to 
departments. A new record is defined to capture this information and may look as in this figure 
II. 

 



5 
 

Faculty Member Record 

NAME  

 

DEPT 

 

AGE 

 

QUALIFICATION 

 

RESEARCH INTEREST 

 

 

The university also tries to computerize the course offered by the various department and the 
courses taught by the various faculty members respectively.  These records are as follow: 

The course_ offered record  lll     

COURSE_NO DEPT PRE_REQUSITES 

 

The course_taught record    lV 

COURSE_NO MEMBER OF FACULTY      
MEMBER 

ROOM NO IN WHICH LECTURES ARE 
HELD 

  

The field course_no appears in the course_offered and course _taught records. This means that 
all records which contain this field carry information about the course number; clearly, this 
implies that there is a certain amount of information which in term results in a certain amount of 
waste of storage. 

Data base represent a new approach to storing data. In the data   base of any firm, the problem in 
company A may be different from the problem in company B; hence the implementation 
procedure of their data base may vary with each factor. The data base is introduced a new way of 
storing and accessing processed data. The data base represents consolidation of files. once files 
are consolidated, it reduce input and output devices, the rate of update process, the rate of file 
design, it eliminate the copies of backups and it gives cleaner operating environment.  

 

OBJECTIVES OF DATA BASE 

 Data base allow consolidating data entries among files. 
 Data base manages shared files 

e.g.  Mar Daniel has his saving account and checking account at the lst Bank. Assuming, he 
acquired a car loan from  lst Bank when he purchased his car. This means Mr. Daniel’s name and 



6 
 

other personal data appear in files belonging to saving account, checking account and loan 
account any time, Mr Daniel makes deposit, it is certain that his name will appear in several 
accounts. 

 

 

 

 

 

 

 

 

 

 

 Database allows fewer  programs and simpler execution procedures 
 Database occupies all the consequences of an incoming transaction at one time. 
 Database reduces the rate of data redundancy. 
 Database provides the integrity of data. 

 
 
 

  

 

 

 

 

Database system is designed to handle data store in a database. This system is to update and 
retrieve information stored in the database when request are issued. During database operation, 
the operating system would load database system and application program. The application 
program can execute any instruction until it wants data from database. At this point, the database 

Mr Daniel 

Data base 

Saving acc 

file 

Checking 
acc file 

Loan acc file 

This means Data base 
helps to share files. 

SOFTWARE 

Operating System 

Application 

Database System 



7 
 

gains control and handle the database request s. The database system resides in storage with the 
application program when there is a need to use a database. 

Knowledge Know-how on Database system 

DBS – Contains a series of system program 

DBS – Manages its database 

DBS – Interfaces with application program & operating system 

 

Data Base Management – A database is a collection of carefully integrated files. The data in 
these files must be managed. There is a special software packages available to manage a 
database. This software packages is known as Data Base Management System. 

A database management system is the software that manages the database and provides facilities 
for storing, accessing, and maintaining the data. DBMS is developed by computer manufacturers 
or software house. These software packages tend to be referred to by several names, among them 
“data base system”, “data management system”, “DBMS”. The software is in effect an extension 
to the operating system. It acts as an interface between the programs which need to access data in 
the database and the database itself, allowing the data to be retrieved or updated. 

 

HISTORY OF DATABASE MANAGEMENT SYSTEM 

DBMS – have been in use for almost two decades. It was only about a decade ago that this field 
has come to be recognized as a major discipline in computer science. It has been only recently 
that DBMS have been studied systematically both from the user and the system points – of – 
view. The beginning of DBMS development was marked by Database Task Group (DBTG) 
which published a report in 1971, called CODA 71. 

The report stated that 

- Proposal for the development of Network model 
Another group from IBM Research Laboratories at San Jose under the supervision of E.F 
Codd published a report in 1970, called CODD 70. 

The report stated that 

- A proposal for the development of relational model for few years, a great debate raged 
between the proponents of Database Task Group Report and CODD 70 report. Each side claimed 
that their views were the better ones. During this period, the entire area of DBMS was in a state 
of abject turmoil (miserable disorder). There were arguments and counter-arguments. What 



8 
 

CODA 71 claimed as advantages, the CODD 70 group claimed as disadvantages.  The basic 
tenets of each proposal were questioned, examined and re-examined over and over again. 
Finally, one major fact stood out , that was, 
- Network model was shown to be reasonably efficiently implementable because it could 

handle large size of data base for over billion of bytes. 
- Relational  model could only support relatively small database. 

The proposal of CODA 71 of Network model was the basis of the design and implementation of 
Data Base Management System. All the experts began to arrive at a consensus. The great 
database has served the purpose. A new discipline of computer science is born.  

In 1976, a study group called ANSI 76 had a new concept on DBMS. This concept opened up a 
new area of DBMS.  It emphasized the role of a DBMS as a tool for representing in computer, a 
model of real world. This ANSI 76 report considered DBMS as software to manage a large pool 
of data, called data base. The earlier researcher working towards the view of DBMS before 
ANSI 76 group put final approval. 

- The future shape of DBMS had been decided. 
- The structure of DBMS had been put up. 

It is now remained for us to realize this structure not only in a neat and clean form but in 
reasonably efficient manner. 

The ANSI study group recognizes three functions that are necessary in order to support database 
system: 

- The enterprise manager  function performed by the enterprise manager  
- The database administrator function performed by database administrator. 
- The application administrator function performed by application administrator. 

That is,  

The enterprise manager is responsible to ensure that a proper and adequate system analysis is 
done which meet the need of the enterprise. The database administrator exercises control over 
the data structure and the storage methods. He is concerned with overall efficiency of the 
implementation. 

The application administrator is responsible to split up the centralized pool of data among 
various users in such a way that each user; 

- Has access to all databases he or she needs. 
- Has illusion that the logical structure of the data available to him or her is conformity with 

the demand. 



9 
 

ANSI=American National Standard Committee on Computers and Information Processes 

SPARC=Standard Planning and Requirement Committee. 

 

TYPES OF DATA BASE 

There are four types of database: 

- Bibliographic database 
- Knowledge data base 
- Graphics _ oriented data base 
- Decision _making data base 

 
- Bibliographic database: BDB have data which is free of a format. They display little or no 

format. Such database are often used library information system .Data could be composed of 
abstract of books. It could also compose of keywords and key phrases. It is possible using 
these keywords and key phrases to select documents. If desired, the source of the document 
could before original document. 

 
- Knowledge database: KDB are used in artificial intelligent applications. The data in these 

KDB is discrete and formatted .in these KDB, there are many kinds of data with only a very 
few occurrence of each kinds. Clearly, such data bases have the peculiarity that the size of the 
data is almost as large as the definition of the data. 

 
- Graphics database: GDB could possibly be used in computer_aided_design. The data in 

GDB is characterized as being active. This means the data is capable of being executed. For 
examples, we could have store a ‘’triangle’’ in the data base. Upon our retrieving the triangle, 
the computer system could invoke a procedure to draw a triangle or a graphic screen.  In 
these scene, the data namely triangle is an active piece of data. Whereas in bibliography and 
knowledge data base, data cannot be executed in a computer. 

 
- Decision-making database: DMDB are used in corporate management and allied 

administrative tasks. Using DMDB, it is possible to handle the problems like resource 
planning, sales forecasting, profitability of business e.t.c. depending upon the kind of data 
bases handled. Data base management system can be classified as example, bibliography data 
base management system, knowledge data base management system, graphics_oriented data 
base management system and decision-making data base management system. 

 

                                                 



10 
 

Character Fact Record File Database 

HIERARCHY OF DATA 

 

 

Character, fact, record, file and data base form a hierarchy of data. 

The basic building block is a character. The character consist of upper and lower-case, numeric 
digits or symbol. Upper or lower-case of letters are A,a  B ,b,.........Z,z . Numeric digits are 
0,1,2,3......9.Symbols involves commas, question mark, plus division e.t.c. upper and lower-case 
letter are called alphabetic character. Numeric digit are called numeric symbol are character. 
Symbols are called special character. A combination of the three is referred to as alphanumeric 
characters ( 2B,2.50K). A computer can accept both alphanumeric and number and store them 
in memory. Character are put together to form a fact. A fact is also called a field. A fact or field 
is a number, an item, a word, a name or a combination of characters. 

 

TYPES OF FIELD IN DATA BASE 

- Character /text 
- Numeric 
- Data 
- Logical 
- Memo 

A field is an individual item of data within a record. Facts are put together to form a record. A 
record is a related item of data in a file. An employee record in a company would be a collection 
of facts about one employee. These facts would include the employee’s name, address, 
department, phone, position, pay rate, earning made to date, and e.t.c 

Record are combined together to make a file.  A collection of related records is a file e.g.  A 
collection of all employee records for one company would be an employee file.  What is an 
inventory file? It is a collection of all inventory records for a particular company. 

TWO TYPES OF FILE 

- Permanent file or master file 
- Transaction file or detail file 

The file described as employee file is an example of permanent file.  The data stored in a 
permanent file or master file should be accurate and current. A permanent file of all the 
customers who own money to a company is an account receivable master file. An account 
payable master file containing all suppliers to which the organization owes money. 



11 
 

A transaction file is a temporary file which represents the transactions of the organization.  The 
data stored in transaction file can be re –adjusted. 

File are combined together to make a database. The heart of most organization is data.  A data 
base is the collection of integrated and related master files.  An organization uses data as raw 
materials to be stored in database. Once the data have been processed, they are called 
information. 

TYPES OF DATA 

- Numeric data  
- Alphanumeric data 

Numeric data is expressed in number e.g.  age= 35, date of birth is 1970. 
Numeric data contains only numeric character or numbers 

Alphanumeric data is composed of combination of letters numbers, or special punctuation 
characters such as: name –Abeokuta 

                                   Address-17, Ibadan road 

                                  Date -26th October, 1998 

 

DATA STRUCTURE OR STRUCTURE OF DATA. 

Structure of data is the composition of records into files generating information. 

Let us take an example of long-distance telephone data.  When you make a long distance 
telephone call, the following item of data is recorded: 

- Telephone number of the person  to whom the call is to be billed 
- Telephone number of the person   receiving the call 
- Duration of the call in minutes 
- Time that call is placed 
- Type of call e.g. person-to person or station –to station 

These data need processing for generating bill information. 

 

 

 

 



12 
 

 STRUCTURE OF THE DATA 

                                         DESCRIPTION –LONG-DISTANCE  TELEPHONE  CALL  DATA    

    FIELD NAMES  TYPE OF DATA  NUMBER OF CHARACTER 

Phone no to be billed 

Phone  no of call receiver 

Duration of call 

Time call is placed 

Type of call 

Numeric 

Numeric  

Numeric 

Numeric 

Alphanumeric 

10 

10 

4 

4 

1 

                     TOTAL  CHARACTER 29 

     
In data base system, the structure will be like this: 
 
                                                                         

 

 

 

 

                                                       # 

Let assume that we have 5000 call for the month. 
The problem will look as this: 
Record  Phone to be 

billed 
Phone no of 
calls received 

Duration of 
call 

Time call is 
places 

Type of call 

1 
 
2 
 
. 
. 
 
5000 

221 
 
- 
 
 
 
 
- 

132 
 
- 
 
 
 
 
- 

2 min 
 
- 
 
 
 
 
- 

2 p.m 
 
- 
 
 
 
 
- 

P 
 
- 
 
 
 
 
- 

10 character 

10 character 

4 character 

4 character 

1 character 

Phone no to be billed 

Phone no of calls received 

Duration of call 

Time call is placed 

Type of call 



13 
 

Each record has five fields of 29 characters.  With 5000 record the file requires 5000*29 
characters on external storage device. To process these long –distance telephone call date in a 
bill, the record have to be identified through key record. 

The record for this case is the telephone number of the person to whom the call is to be billed. 

STRUCTURE OF CUSTOMER RECORD DATA 

Field name Types of data No of character 
Telephone no 
Name 
Address 
City 
Balance 
date 

Numeric 
Alphanumeric 
‘’ 
‘’ 
Numeric 
Date 

10 
20 
20 
20 
8 
8 

 
Total  

  
66 

 

 

 

 

 

 

 

 

 

Record  Telephone 
no 

Name  Address  City  Balance  Date  

1 
2 

122 
- 

Ade  Ifo rd  Lagos  22.00  2/10/98 

 
Each record is 66 characters. With 200 customers, we need to keep 66X200 character of date. 

 

 

 

Telephone       10 

Name              20 

Address            20 

City                   20 

Balance            8 

Date                   8 



14 
 

WEEK – TWO 

DATABASE APPROACH 
The database is closely associated with Data Base Management System (DBMS) software. A 
database management system (DBMS) is a series of computer programs used to create, store, 
maintain and access a database. The features offered by a particular DBMS depend on its type 
and level of sophistication. For example dBASE is a sophisticated DBMS for microcomputers. 

 

 

 

 

 

 

 

Relationship of DBMS, database and application programs  

As this figure indicates, an application program written in a high level language accesses the 
database through the DBMS software. In other words, DBMS software serves as the gate keeper 
for the database. 

 

 

 

MANUAL DATABASE  

Here we have file management system on flat file environment 

A flat file is a file or series of files that contain records and fields. These fields are called flat 
because they have no repeating groups. 

 

 

 

VC FILE 
STUDENT FILE 
DEAN FILE 
STAFF FILE 

DATA 
BASE 

DBMS 

CPU 
ALU CU 

MAIN MEMORY 



15 
 

Advantage of Database 

 Data and application programs are independent, so the same data can be used by several 
application programs. 

 More information can be generated from the same amount of data. In other words, a given set 
of data can be manipulated in many ways. 

 One-of-a kind requests can be fulfilled easily 
 Data duplication is minimal. This is true because one occurrence of each data item is 

maintained 
 Data management is enhanced and improved. This is possible because there is only one set of 

date for all users. 
 More sophisticated security measures can be implemented. 
 Data is readily shared between applications – this is eliminating duplication and the problems 

of maintaining consistency between duplicate values. 
 New requests or one-of-a kind requests can be more easily implemented, because the logical 

interface with the DBMS is simpler than a set of physical interfaces. 
 The applications programs are independent of the stored data. If the storage format changes, 

there is no need to alter the applications programs since they communicate with the DBMS in 
logical rather than physical terms. 

 It can be argued that a single database management system for an integrated database allows 
for better management of data, since it is effectively in one place under the control of one set 
of people, namely those who implement the database. 

 Finally, the integration or sharing of data between applications puts sophisticated 
programming within reach of all users of the database. 

 

Disadvantage of Database 

 Both DBMS software and extra hardware which might be needed to support the system can 
be expensive 

 A DBMS is much more complex than a file processing system 
 Organization puts all their data in a single basket – if anything happens to the basket that is 

the end of the data in the database. 

 

 

 

 



16 
 

FILE PROCESSING APPROACH 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have there files 

E has three application programs 

Paying the musicians 

Scheduling rehearsals 

Cataloguing music 

Sharing data between applications 

It is possible to share data among the applications  

 If the numbers of files increase and applications are generated which use data from one, two 
or three files the number of interfaces increases rapidly, such situation might be termed as 
interface explosion 

 It should be apparent that allowing different application to share data in a traditional file 
processing environment can cause considerable problems simply because of the number of 
interfaces required 

MUSICIAN 
DATA      
FILE 

PAYROLL 
SYSTEM 

SALARY 
CHEQUE 

PERFORMANCE 
DATA     FILE 

REHEARSAL
SCHEDULE 

REHEARSAL 
TIMETABLE

MUSIC       
DATA     
FILE 

CATALOGUE 
SYSTEM 

CATALOGUE 



17 
 

 

In file processing approach, 

Musician data file 

Performance data file   are three separate physical files 

Music data file 

 

File         Data 

Many interfaces     single interface 

Share data is not possible    share data is possible 

Physical structure     logical structure 

 

DATABASE APPROACH 

 

 

 

 

 

 

 

 

 

 

 

 One of the fundamental feature of the database approach is that it allows data to be shared 
between different applications 

 In database approach, all the data are integrated into one physical file or a set of related files 

MUSICIAN 
DATA 

PERFORMANCE        
DATA 

MUSIC       
DATA 

DATABASE 
MANAGE
MENT 
SYSTEM 

PAYROLL 
SYSTEM 

REHEARSAL 
SCHEDULE 

CATALOGUE 
SYSTEM 

SALARY 

REHEARSAL 
TIMETABLE 

CATALOGUE 



18 
 

 The sets of data are separated only logically within the database 
 All access to the data is performed through a database management system (DBMS) a piece 

of software which understands and manipulates the logical data structures in the file. 
 Since all the application programs interface only with the DBMS, they (application 

programs) require only a single interface to data in database. 
 Interface of application programs to data in database can be at a logical rather than a physical 

level. 
 It is not necessary for any application programs to know how a particular data item is stored 

as long as the DBMS can provide the data in the form required by the application. For 
example the data item is an integer, it matters nothing to the application if the value is 
actively stored in binary or character format as long as it is supplied to the application in the 
format it requires. 

 The property of needing to know nothing about the physical storage of the data is termed as 
data independence. 

 

Data Independence 

According to ANSI/SPARC, American National Standards Committee on Computer and 
Information Processing Standard Planning and Requirements Committee 

Every item of data which is used by any application must be present in database 

The information which is stored should not change if some files are re-formatted. 

A logical description of the data is in the database 

 

University of Agriculture  Student Record – Name  Matric Number  GPA 

     Faculty Record 

     Staff Record 

Server   Graphics files 

   Database file 

   Spreadsheet 

   Word Processing Documents 

 



19 
 

Server Types 

File Servers    File Transfer 

Print Servers    File Storage and data migration 

Application Servers   File update synchronization 

Message Servers   File archiving 

Database Servers 

 

File Transfer   users can transfer files between clients and servers 

   Users can transfer files between multiple servers 

File Security  Password 

   Encryption 

 

File Storage and Data Migration – online storage – consists of hard drive storage 

    Offline storage – removable hard disk 

    Nearline storage – tape is mouth to P/C 

The process of moving data from ne line to offline or near-line storage is called data migration 

 

File update ensuring that each user of a file has the latest version 

File archiving the process of backing up files on offline storage devices such as tapes 

DATA 

 The analyst develops an input/output flow and designs data format 
 The programmer/analyst writes a program to create a file. The same program is expanded or 

a separate program is written to allow the file to be maintained. 
 The programmer/analyst writes a program to print the report originally requested. 
 The data are collected and formatted while the programs are tested 
 The file is created and stored on tape or disk 
 The production of the report is accomplished. 



20 
 

 

With a DBMS – the procedure becomes 

 The analyst develops an input/output flow and design data format 
 The data are collected and formatted 
 The file is created and the report generated using the DBMS 

Data collection 

 Source document – originate in form of clerically prepared documents – transferring data 
from secondary storage. 

 Inputting data from machine readable source documents 
 Direct entry (on-line) input via a keyboard 
 Creating machine – readable media (off-line) for subsequent inputting to the computer 

The process of capturing raw data for use within a DBMS involves getting the original data to 
the processing centre, transcribing it, converting it from the one medium to another and finally 
getting it into the computer. 

 Getting the original data to the processing centre 
 Transcribing it – data preparation 
 Converting it from one medium to another 
 Getting it into the computer. 

Problems 

 Source documents – a great deal of data still originate in the form of a clerically prepared 
document 

 Data transmission 
 Data preparation – this is the term given to the transcription of data from the source 

document to a machine – sensible medium 
 Media conversion – data is prepared in a particular medium and converted to another 

medium for faster input to the computer. 

Capturing Raw Data 

Database Server provide  security   

     Database optimization 

     Data distribution 

 Knowing the real data to be put into database 



21 
 

 Organization of raw data in file structure 
 Physical loading of raw data. Once the raw data is loaded, it must be maintained and kept up-

to-date 
 Duplicating raw data 

The demand for data in database to be accurate is growing ever stronger 

Classification of raw data into specific object type object types are described by listing their 
characteristics: 

 Specify the domain of values for the smallest units of logical data e.g. integer or real 
 Specify the units of measurement for logical data e.g. dollars, pound or feet 
 Specify keys for certain logical units of data e.g. record types or relations 
 Specify integrity constraints on the data e.g. an allowable range of values 
 Specify access rules for the data e.g. allow update only if a correct password is supplied 

 

ORGANIZATION OF DATA 

The physical organization of the data in a database is described by physical storage structures 
such as volumes, files or bytes. Physical storage structures are defined by means of a storage 
definition language. 

The storage definition language provides the ability to  

 Select the storage medium and perhaps a specific device 
 Describe a mapping from logical data to a physical representation e.g. record types map to 

files 
 Specify indices for certain logical units of data e.g. data items or attributes 
 Specify a physical ordering for the data 
 Specify type conversion for data e.g. binary to decimal 
 Specify the form of placement of a data selection e.g. buffers 

Data security  data editing  

   Data validation 

   Data protection or integrity 

   Data security 

Logical data 

DBMS 



22 
 

PHYSICAL DATA 

The DBMS serves as the interface between the logical and physical data. Logical data entities 
employed by DBA and the user (the Requestor) are: 

- Data items 
- Logical records 
- And files 

Note that a logical file may contain records of more than one type. The physical data units are 
called  

- Data element 
- Store records 
- Physical records 
- And database 

A physical record is defined as the data unit input from the hardware on a single access 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

WEEK – THREE 

DATABASE MODELS 
TYPES OF DATA MODELS (CALLED DATA STRUCTURES) 

Computer based Information System (CBIS): 

Design and implementation is done by Database Administrators (DBAs). The scope of 
responsibilities of DBA depends on the complexity of the database. In small organizations, one 
person may carry the entire responsibility of database design. 

Responsibility of a Database Administrator (DBA) 

1. Designing and implementing a database. 
2. Establishing security measures. 
3. Establishing recovery procedures. 
4. Documenting the database. 
5. Establishing database performance evaluations. 
6. Adding new database functions. 
7. Fine-tuning existing database functions. 

 

Generating a database increases cost and creates more complexity in a CBIS operation. 
Implementation of an effective CBIS requires an online and comprehensive database regardless 
of its cost and complexity. 

CBIS is designed to provide timely and relevant information by performing data analysis, 
modeling analysis or both. 

Data analysis includes various query operations on a database. 

Modeling analysis applies some types of model to the data available in the database and provides 
additional information that is not directly available within the data. 

Types of file organization 

1. Sequential: All records are stored and accessed one after the other. This method is similar 
to a cassette tape and is slow. If you want to access the seventh song on the tape, you 
must either listen to the first six songs or fast forward through them. 

2. Random: Random organization enables you to access a record directly regardless of its 
storage location. 

3. Indexed Sequential: In this organization, you can access a file either sequentially or 
randomly. 

 

 



24 
 

DATA MODEL 

THE FLAT FILE MODEL: 

This is a file or a series of files that contains records and fields. These files are called flat because 
there are no relationships between them. They have no repeating groups. The model does not 
allow sophisticated database operations. 

Example: 

NAME MAJOR AGE GPA 
May MIS 25 3.00 
Sue CS 21 3.60 
Debra MGT 26 3.50 
Bob MKT 22 3.40 
George MIS 28 3.70 
 

Basic data management operations such as: file creation, file deletion, file update, file single 
data, query can be performed using this model. 

This model is limited in its capacity to support complex CBIS requirements. 

 

THE RELATIONAL MODEL: 

It is a popular model. It uses a mathematical construct called a relation (table). This table is a 
table of rows and columns of data. 

Rows are records (tuples) and Columns are fields (attributes). Different relations can be linked 
on the basis of a common field (key). 

Example: 

Table 3.4 

CUSTOMER NUMBER NAME ADDRESS 
2000 Adams 2020, Broadway 
3000 Baker 119, Jefferson 
9000 Clark 7521, Madison 
 

 

 

 

 



25 
 

Table 3.5 

INVOICE 
NUMBER 

CUSTOMER 
NUMBER 

AMOUNT METHOD OF 
PAYMENT 

111 2000 2000 Cash 
222 3000 4000 Credit 
333 3000 1500 Cash 
444 9000 6400 Cash 
555 9000 7000 Credit 
 

Relation model is flexible; the Network model is not flexible. 

Customer relation using Customer Number 

Table 3.6 

INVOICE 
NUMBER 

CUSTOMER 
NUMBER 

AMOUNT METHOD 
OF 
PAYMENT 

NAME ADDRESS 

111 2000 2000 Cash Adams 2020, 
Broadway 

222 3000 4000 Credit Baker 119, Jefferson 
333 3000 1500 Cash Baker 119, Jefferson 
444 9000 6400 Cash Clark 7521, 

Madison 
555 9000 7000 Credit Clark 7521, 

Madison 
 

To clarify this concept, look at the two relations in Table 3.4 and 3.5. As you can see the 
common field in these two relations is the customer number. 

A relational DBMS can use these two relations to generate a report like in Table 3.6. 

 The relational model is straightforward. 
 Creation and maintenance of this type of database is easy 
 Relational models offer a great degree of flexibility. 

Operations handled by a Relational model include the following: 

 Creation of relation. 
 Updating (insertion, deletion and modification). 
 Selection of a relation or a sub-relation. 
 Join operations (putting two relations side-by-side). 
 Projection (Selection of a subset of a field or a subset of a series of fields). 
 General query operations. 
 Cross operation 



26 
 

Shortcoming of Relational model: 

 It cannot deal with complex database operations. 
 Establishing many relations may use a great deal of disk space. 
 Modification of many relations may be time consuming. 

 

THE HIERARCHICAL MODEL: 

 

 

 

 

 

 

 

  

 

 

 

 

Fig. 3.6 

Like the relational model, a hierarchical data model is made up of records called nodes. Each of 
these nodes can have several fields. 

The presentation is similar to a one-dimensional array (a table with only one column or one row) 
or tree structure. 

The relationships between the records are called branches. The node at the top of the hierarchy is 
called the root. Every node of the tree except the root node has a parent. The nodes with the same 
parent are called twins or siblings. For example, P1 and P2 in fig. 3.6 are twins or siblings. 

The hierarchical model is sometimes called an upside-down tree (a tree with its root up). Fig. 3.6 
illustrates an example of a hierarchical model. It indicates that a supplier may supply three 

Supplier 

Productline Product line Product line 

P1 P2 P3 P4 P5 P6 P7 

A B C D E F G H I J K L M N O P Q R S T U 



27 
 

different families of products. In each family, there may be several different product categories. 
As an example, supplier X may supply soap, shampoo and toothpaste. 

Within each product category, there may be many brands of the same product – for example, 
nine different shampoos or five different toothpastes. Such a relationship is called a one-to-many 
data structure. This means a parent can have many children. Each child has only one parent. 

In the hierarchical model, a search in the parent node can lead you to children nodes and vice-
versa. Any updating in a parent node should automatically update the children nodes. 

The operations associated with the hierarchical model include file creation, file updating 
(insertion, deletion, addition, and modification), file queries, retrieval of the next descendant 
round, and retrieval of the parent record. 

Data hierarchical model is flexible. 

 

THE NETWORK MODEL 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 

 

 

 

2000 3000 9000 

111 222 333 444 555 

Cash Credit 



28 
 

A complex network 

 

 

 

 

 

Fig 3.8 

The network model is similar to the hierarchical model. The records and fields of a network are 
organized differently. Fig 3.7 illustrates customer and invoice relations in a network model. In 
place of related key fields, there is a connection between the invoice number, customer number 
and the method of payment. In this case, the customer number no longer needs to remain in the 
invoice record. As fig 3.7 illustrates, invoice numbers are connected to the customer number in 
the same order in which they were connected in table 3.4. 

Operations associated with a network model include: 

 File creation. 
 File updating (insertion, deletion, addition and modification). 
 File queries. 

The network model can be considered an enhanced version of hierarchical model. 

In these data structure, the relationship can be: 

 One-to-many (simple network) and 
 Many-to-many (complex network) 

One-to-many: Each child (invoice) has two parents (methods of payment and customer number) 

Fig 3.8 illustrates a many-to-many relationship. In a real estate agency, each agent is selling 
several properties. For example, agent A-1 sells properties P-1, P-2 and P-6, while property P-1 
has been listed under agent A-1 and A-2. In a many-to-many relationship; the parent-child 
relationship breaks down because any record can be the parent and any record can be the child. 

Operations any Data model in a CBIS environment 

1. Basic data management operations: The basic data management operations include database 
creation, modification, deletion, addition, insertion, and maintenance. These operations are 
supported even in a flat file management system. 

A-1 A-2 A-3 A-4 A-5 A-6 

P-1
  

P-2 P-3 P-4 P-5 P-6 



29 
 

2. Basic arithmetic operations: These include simple arithmetic operations performed on 
different records and fields in a database including addition, subtraction, multiplication and 
division. These basic operations may be quite useful for simple query operations, such as 
calculating the average salary for both male and female employees or finding the maximum 
and minimum salary for each gender. 

3. Projection operation: This function may be a special case of a general query operation that 
generates a subset of the fields. For example, in a student database that includes each 
student’s name, GPA, age, gender, address and nationality. A projection operation could 
generate a listing of the names and GPA of all these students or a mailing list for mailing the 
students’ transcripts. 

4. Search (Query): This function may include different searches on a database for specific 
conditions. As an example, a triple criteria search on our example student database is as 
follows: 

DISPLAY ALL STUDENTS FOR GPA >=3 AND MAJOR=”CS” AND 
AGE<=22 

Query operations can include as many criteria as the number of fields in the database. The 
search can include an AND search (all criteria specified must be met) an OR search (only one 
of the specified criteria must be met) and a NOT search (opposite criteria must be met or 
supply an alternative) 

AND, OR, NOT are referred to as Boolean operations. 
5. Sort: Sort operations put the database in a specified order. Data can be sorted with one key or 

multiple keys in ascending order. 
6. Summary: The summary operation may be a special case of basic arithmetic operations and 

basic query operations. For example, you could generate a sub-total of all MIS students and 
all accounting students in the student database. 

7. Union (Merge) operation: The union (merge) operation enables a user to combine two files, 
tables or relations thereby generating a third file table or relation that includes all the 
information from the first two file tables or relations. In other words, the union operation 
does concatenation (joining) over the existing data. 

Table 3.4 

File 1 

STUDENT MAJOR 
Bob MIS 
Barry CS 
James MIS 
Sue Accounting 
 



30 
 

File 2 

STUDENT MAJOR 
Mary Marketing 
Sherry MIS 
Suzy Math 
 

File 3 

STUDENT MAJOR 
Bob MIS 
Barry CS 
James MIS 
Sue Accounting 
Mary Marketing 
Sherry MIS 
Suzy Math 
 

Table 3.7 presents the operation on a student database. File 3 is the union of files 1 and 2. 
Remember to perform the union operation; the two databases must be union compatible. This 
means they must include the same number of fields and data types. 

8. Join operation: This operation combines two or more files, tables or relations within a 
database on a common field in order to generate a third file table or generation. Table 3.8 
illustrates one example of this operation in which the common key is the customer name. 

RELATION 1 RELATION 2 

Purchase Number Customer Purchase amount 

112 Barry 2000 

118 James 5000 

129 Susan 1000 

135 Bob 1500 

 

 

 

 



31 
 

RELATION 3 

Joining of RELATION 1 and 2 

CUSTOMER PURCHASE 
NUMBER 

PURCHASE 
AMOUNT 

Barry 112 2000 
James 118 5000 
Susan 129 1000 
Bob 135 1500 
 

9. Intersection operation: The intersection generates the intersection of two relations in a third 
relation containing a common tuple(s) (common rows). The result of the intersection of 
relation 1 and 2 is relation 3which contains only one row (tuple), the one belonging to the 
first two relations. 

An intersection operation 

MAJOR GPA  STUDENT  MAJOR  GPA 

CS 3.60  Tom   ACC   2.90 

MIS 3.80  Jerry   CIS   3.70 

ACC 2.90  Bob   MGT   3.90 

Relation 3 

Intersection of Relations 1 and 2 

STUDENT MAJOR GPA 
Tom ACC 2.90 
 

Union=Set1+Set2 

Intersection=Set1*Set2 

Difference=Set1-Set2 

Difference operation is defined as the set of elements that are in Set A but not in Set B. For 
example, 

[1, 3, 4]- [1, 2, and 4] = [3] 



32 
 

DATA MODEL 

Within a model, there is object type. Example of object type is house. House has characteristics 
such as address (street number and street name), color (red, green etc.), style (bungalow, duplex), 
price etc. 

A set of characteristics that uniquely identifies an object of a house can be used to identify each 
house within its object type is referred to as a key. For example, if the address of a house can be 
used to each house, then the address characteristic is a key of the object type houses. 

Characteristics (attribute) 

For each entity set (house), its attributes have certain values. For example, the color attribute has 
values such as red, green and blue. The set of possible values of an attribute is called the domain 
of the attribute. A set of attribute that uniquely determines an instance of an entity is called a 
key. 

A data model is a pattern according to which data are logically organized. 

Relationships: 

House- Two values of houses; address and color. 

Address       Color 

10, Ibadan road       Red 

21, Akin Street       Blue 

11, Abole way       Green 

House 10, Ibadan road is painted Red. 

House 21, Akin street is painted Blue. 

The two sets of values immediately carry some information. This information is available 
because a relationship has been established between the values of address and color. 

A relationship is a correspondence between the numbers of two sets. 

Equality     [1, 3] = [1, 3] 

Inequality     [1, 3] <> [2, 4] 

Subset     [1, 3] <= [1, 2, 3, 4] 

     Set A is a subset of Set B if  



33 
 

     every element of Set A is also 

     an element of Set B 

Proper subset     [1, 3] < [1, 2, 3, 4] 

     Set A is a proper subset of 

     Set B if A is a subset of B and 

     there is at least one element in 

     B that is not in A 

 

Superset     Set A is a superset of Set B if 

     every element of B is also an 

     element of A 

Proper superset     Set A is a proper superset of 

     Set B if A is a superset of B and 

     there is at least one element of 

     A that is not in B.  

 

 

 

 

 

 

 

 

 

 



34 
 

WEEK – FOUR 

ADVANCED DATABASE MODEL 
stars (name, address) 

film (title, year, length, genre) 

cinemas (name, address) 

 

Movies 

Title  Year  Length  Genre  

Gone with the wind 1939 231 Drama 

Star wars 1977 124 Sci-fi 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

name address title year 

stars film Star-in 

name 

cinema 

address 

length type 

owns 



35 
 

Entity relationship diagram 

Star_in:  is a relationship connecting each film to the stars of that film. 

Owns:  each film is owned by at most one cinema. 

Relationship = 1 : 1 

  m:1 1:m 

  n:m 

 

for a particular star and film, there is only one cinema with which the star has contracted for the 

film. 

A cinema may contract with several stars for a film and a star may contract with one cinema for 

more than one film. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rules in relationship 

Original = role 

Sequel= role 

 Film may have many sequels. 

 Each sequel, there is only one original film. 

Many – one 

Sequel to original 

Cinema 
Owns  

President 

Star  Film 

Cinema 

Contract 

Sequel of film 

original 

sequel 



36 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A relationship with an attribute 

Stars might get different salaries for different films. They may pay different salaries to different 

stars. Different stars in a film may receive different salaries. 

 

We connect an entity set to its subclasses using a relationship is a (an A is a B) 

Notation is triangle 

One side of triangle is attached to the subclass and the opposite point is connected to the super 

class.  

Every is a relationship is one-one 

is a relates a subclass to its super class. 

 

 

 

 

film stars 
contract
s 

cinema 

length type 

title year 
name address 

salary 

name address 



37 
 

 

 

 

 

 

 

 

 

 

  

 

 

 

Representing keys in the E/R model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 keys are indicated by underlines = we underline only primary key when we have different 

types of keys. 

film 

murder 

weapon 

cartoons 

length title year type 

film stars Stars_in 

cinema owns 

name address title year 

name address 

type 

length 



38 
 

Degree constraints 

 

 

 

 

 a film entity cannot be connected by relationship star-in to more than 10 star entities. 

 

Weak Entity Sets 

 It is possible for an entity set’s key to be composed of attributes, some or all of which belong 

to another entity set. Such an entity set is called a weak entity set. 

Causes of weak entity sets 

 Entity sets fall into a hierarchy based on classifications unrelated to the “isa hierarchy” 

If entities of set E are sub units of entities in set F, then it is possible that the names of E-

entities are not unique until we take into account the name of the F-entity to which the E 

entity is subordinate. 

e.g. 

A film cinema might have several film crews.  

 

 

 

 

 

 

 

The crew might be designed by a given cinema as crew1, crew2, and so on. 

 

   Double triangle indicate a weak entity 

 

   

Indicate double diamond = a many-one relationships that helps provide 

key for the weak entity set 

stars film Star_in 

10 

 cinema  

number Crew chief name address 

Crews Units_of 

 
 

  



39 
 

Requirements for weak entity set 

 Zero or more of its own attributes 

 There many-one relationships are called supporting relationships for E, end the entity sets 

reached from E are supporting entity sets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

An association is a set of pairs of objects, one from each of the classes it connects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

film star  

 

name address title year 

type 

length 

cinema 

name address 

Cinema 

Name pic 

address 

Stars 

Name pic 

address 

Film 

 

Title pic 

Year pic 

Length 

type 

0..1 

0..∞ 

0..∞ 

0..∞ 

owns 

Star_in 



40 
 

Two associations = owns, star_in 

Every association has constraint on the number of objects from each of its classes. 

Constraint as m....n 

M.∞ stands for infinity = there is no upper limit 

O.∞ no constraint at all on the number of objects. 

1.1 = exactly one 

* subclasses = UML permit four sub classes 

* an aggregation is a line between two classes that ends in an open diamond at one end 

0....1 = aggregation is a many-one association 

 

UNIFIED MODELLING LANGUAGE (UML) 

UML differs from E/R model with the exception of multi-way relationships. 

UML offers the ability to treat entity set as true classes with methods as well as data. 

 

E/R Model UML 

Entity set Class 

Binary relationship Associations 

Attributes on a relationship Association class 

isa hierarchy subclass 

Many-one relationship Aggregation 

Many-one relationship with referential 

integrity 

Composition 

 

- A class in UML is similar to an entity set in the E/R model. 

It is divided into three parts 

 

 

 

 

 

 

Film 

Title pic 

Year pic 

Length 

Type 

Place for methods 

Name of the class 

Middle has the attributes which are 
like instance variables of a class 

Bottom is the method. Neither E/R 
nor relational model provides 
methods. 



41 
 

A binary relationship between classes is called an association. 

 

From UML diagram to Relations 

Film (title, year, length, type) 

Stars  (name, address) 

Cinema (name, address) 

 

Star_in(filmTitle, filmYear, starName) 

Own(filmTitle, filmYear, cinemaName) 

 

Declaration of keys 

Class film (key (title, year)) { 

 Attribute string title; 

 Attribute integer year; 

 Attribute integer length; 

 Attribute enum FilmType 

  {drama, horror, comedy} 

  Film_Type 

 }; 

 

Relationships in ODL 

 Relationship is declared inside a class declaration by the keyword = relationship 

=  a type 

= name of the relationship 

Relationship set <star> stars 

Inverse star:: starred in; 

Inverse Relationship 

To access the stars of a given film we might like to know 

the film in which a given star acted. 

Relationship set<film> starred in 

Inverse film::stars 

star film 

Star_in 



42 
 

Object Definition Language ODL 

Like UML, the class is the central concept in ODL. 

A declaration of a class in ODL in its simplest form is 

 Class <name> { 

  <list of properties> 

    -attribute 

    -relationship 

    -method 

ODL has structural type 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



43 
 

APPLICATIONS THAT USES XML 

 Cell phones 

 File converter  PDF to XML converter 

 Voice XML 

 

XML code 

<?XML version = “1.0” encoding = “ISO-8859-15”?> 

 <class_list> 

  <student> 

   <name>Robert</name> 

   <grade>A+</grade> 

  </student> 

   <name>Leonard</name> 

   <grade>-A</grade> 

  </student> 

 </class_list> 

XML declaration, version of XML, type of encoding you are using. 

XML element =  <student> 

 

<?XML version =”1.0”  is an XML document 

Encoding = “utf-8” Unicode transformation format is a common choice of encoding for 

characters in documents because it is compatible with ASCII and uses only one byte for the 

ASCII characters. 

Standalone = “yes”?>  indicates that there is no document type definition for this document. 

 

XPath 

In XPath, there are seven kinds of nodes: 

 Element 

 Attribute 

 Text 

 Name space 



44 
 

 Processing_instruction 

 Comment 

 Document 

XML documents are treated as tress of nodes. The topmost element of the tee is called the root 

element. 

 XML document. 

<?XML version = “1.0” encoding = “ISO-8859-1”?> 

<bookstore> 

 <book> 

  <title lang = “en”>Harry Potter </title> 

  <author>J.K. Rowling </author> 

  <year>2005</year> 

  <price>29.99 </price> 

  </book> 

</bookstore> 

Example of nodes in the XML document above 

<bookstore> (root element node) 

<author> J.K. Rowling </author> (element node) 

Lang = “en” (attribute node) 

 

Atomic values are nodes with no children or parent. 

e.g. J.K. Rowling 

 “en” 

<?xml version = “1.0” encoding = “ISO-8859-1”?> 

<bookstore> 

 <book> 

  <title lang = “eng”> Harry Potter </title> 

  <price>29.99 </price> 

 </book> 

  

 



45 
 

<book> 

  <title lang = “eng”>learning XML</title> 

   <price>39.99</price> 

 </book> 

</bookstore> 

The most useful path expressions are listed below: 

Expression  Description 

Nodename Selects all child nodes of the named node 

/ Selects from the root node 

// Selects nodes in the documents from the current node that match the 

selection no matter where they are 

. Selects the current node 

.. Selects the parent of the current node 

@ Selects attributes 

      

See listed path expression and the result of the expressions 

Path expression Result  

Bookstore Selects all the child nodes of the bookstore element 

/bookstore Selects the root elements bookstore 

 

NOTE: if the path starts with a slash (/) it always represents an absolute path to the element. 

 

<?xml version =  “1.0” encoding = “ISO-8859-1”?> 

 <bookstore> 

  <book category = “cooking”> 

   <title lang = “en”> Everyday Italian </title> 

   <author> Giada De Laurent </author> 

   <year> 2005 </year> 

   <price>30.00</price> 

  </book> 

  <book category = “children”> 



46 
 

   <title lang = “en”> Harry Potter </title> 

   <author> J.K. Rowling </author> 

   <year> 2005 </year> 

   <price>29.99</price> 

  </book> 

 

  <book category = “WEB”> 

   <title lang = “en”>Query kick start </title> 

   <author> James Mchovern </author> 

   <year> 2003 </year> 

   <price>39.95</price> 

  </book> 

 </bookstore> 

1. 

Everyday Italian 

Harry Potter 

Learning XML 

2. Everyday Italian 

3. 30.00, 29.99, 39.95 

4. 39.95 

5. Query Kick Start 

 

Bookstore/book/title/ //price = selects all the title elements of the book element of the bookstore 

element AND all the price element in the document. 

 

C prog. lang != not equal 

 

 

 

 

 



47 
 

Query one =  1. Selects all the titles 

  /bookstore/book/title 

   

2. Selects the title of the first book 

  /bookstore/book[1]/title 

   

3. Selects all the prices 

  /bookstore/book/price/text() 

   

4. Select price nodes with price >35 

  /bookstore/book[price>35]/price 

   

5. Select title nodes with price > 35 

  /bookstore/book [price > 35]/title 

  

Each step is evaluated against thue nodes in the current node-set. 

A step consists of  

 An axis (defines the tree_relationship between the selected nodes and the current node) 

 A node_test (identifies a node within an axis) 

 Zero or more predicates 

The syntax for a location step is: 

axisname: nodetext [predicate] 

Example: 

Example  Result  

child:book Selects all book nodes that are children of the current node 

attribute:lang Selects the lang attribute of the current node 

child:* Selects all children of the current node 

attribute:* Selects all attributes of the current node 

child:*/child:price Selects all price grandchildren of the current node 

bookstore/book[price > 

35.00]/title 

Selects all the elements of the book elements of the bookstore 

element that have a price element with a value greater than 35.00 



48 
 

Selecting unknown nodes 

XPath wildcards can be used to select unknown XML elements. 

Wildcards Description  

* Matches any element node 

@* Matches any attribute node 

Node() Matches any node of any kind 

 

Path expression Result  

/bookstore/* Selects all the child nodes of the bookstore element 

//* Selects all elements in the document 

//title[@*] Selects all title elements which have any attributes 

 

Selecting several paths 

By using the | operator in an Xpath expression, you can select several paths. 

Path expression Result  

///book|title|//book|price Selects all the title and price elements of all book elements 

bookstore|book Selects all book elements that are children of bookstore 

//book Selects all book elements no matter where they are in the document 

bookstore//book Selects all book elements that are descendant of the bookstore 

element no matter where they are under the bookstore element. 

//@lang Selects all attributes that are named lang. 

 

Predicates 

Predicates are used to find a specific node or a node that controls a specific value. Predicates are 

always embedded in square brackets. 

Path expression Result  

/bookstore/book[1] Selects the first book element that is the child of the 

bookstore element 

/bookstore/book[last()] Selects the last book element that is the child of the bookstore 

element 



49 
 

/bookstore/book[last() – 1] Selects the last but one book element that is the child of the 

bookstore element 

/bookstore/book[position() <3] Selects the first two book elements that are children of the 

bookstore element 

//title[@lang] Selects all the title elements that have an attribute named lang 

//title[@lang=”eng” Selects all the title elements that have an attribute named lang 

with a value of “eng” 

//bookstore/book[price > 35.00] Selects all the book elements of the bookstore element that 

have a price element with a value greater than 35.00 

 

XSLT, XQuery 

XPath Axis 

An axis defines a node-set relative to the current node 

 

Axis Name Result 

ancestor =  Selects all ancestors (parent, grandparent, etc) of the current node 

Attribute =  Selects all attributes of the current node 

Child = Selects all children of the current node 

Descendant =  Selects all descendants (children, grandchildren, etc) of current node 

Following =  Selects everything in the document after the closing tag of the current node 

Parent =  Selects the parent of the current node 

Self = Selects the current node 

 

Location Path Expression 

A location path can be absolute or relative. 

 An absolute location path starts with a slash (/) and a relative location path does not 

 An absolute location path 

/step/step/... 

 A relative location path 

step/step/... 

 



50 
 

WEEK – FIVE 

DATABASE NORMALIZATION 
There are many relationships 

-A relationship may be a 1:1, 1: N, n: m 

1:1 relationship, for example, is the relationship between an employee’s personnel number and 
social insurance number. 

 Each employee has only one personnel number 
 Each employee has only social insurance number 

1: N is the relationship between an employee’s personnel number and salary 

 An employee has one personnel number 
 An employee has or may have different salaries 

N: m relationship is the relationship between house color and house price 

 Houses with certain colour may sell at various prices 
 Houses at the same price may have various colours 

 

NORMALIZATION 

Suppose that the value of the attribute BUILDER determines values for the attribute STYLE and 
PRICE and that the value for the attribute STYLE determines the values for the PRICE. 

Grouping these attributes together in the relation HOMES1 (BUILDER, STYLE, PRICE) has 
several undesirable properties. 

First, the relationship between style and price is repeated in the relationship for each builder who 
builds a particular style of home. This repetition creates difficulties. If a builder who happens to 
be the last builder of a certain style, home is deleted from the relationship, then the relationship 
between the style and its price also disappears from the relation. This is called a deletion 
anomaly. 

 Similarly, if a new builder who happens to be the first builder of a certain style home is 
added, then the relationship between a style of home and its price will also be added, 
even though this was not the purpose of the insertion. This is called an insertion anomaly. 
Such insertions and deletions are anomalous because most such operations will not 
produce these side effects on the style-price relationship. These anomalies are undesirable 
since the user is not likely to realize the consequences of the insertion or deletion. 

 A second problem with the grouping is the effect of updates of the consistency of the 
relation. Suppose that the relationship between a style and its price is changed e.g. the 



51 
 

price is increased. To maintain the consistency of the relation, the new style-price 
relationship should be included for every builder of the style. 

 If the relationship HOMES1 (BUILDER, STYLE, PRICE) is normalized, then the 
consistency and anomaly problems disappear. 

Normalization is a step-by-step reversible process of replacing a given collection of relations by 
successive collections in which the relations have a progressively simpler and more regular 
structure. The reversibility guarantees that the original collection of relations can be recovered 
and therefore no information has been lost. 

The objectives of normalization are 

1. To make it feasible to represent any relation in the database. 
2. To obtain powerful retrieval algorithms based on a simpler collection relational 

operations that would otherwise be necessary. 
3. To free relations from undesirable insertion update and deletion dependencies. 
4. To reduce the need for restructuring the relations as new types of data are introduced. 
5. To make the collection of relations neutral to the query statistics which these statistics are 

liable to change as time goes. 
 The first two objectives apply only to the first step (conversion to first normal form). 
 The last three objectives apply to all normalization steps. 

THE NORMALIZATION PROCESS 

 Unnormalized form: 

Eliminate attributes that have relations as elements 

 1NF 

Eliminate partial dependence of non-prime attributes on keys 

 2NF 

Eliminate transitive dependence of non-prime attributes on key 

 3NF 

Eliminate redundancy in keys 

 BCNF 

 

1NF: FIRST NORMAL FORM 

i. Relates to the structure of the relation. 
ii. It requires that every attribute of a relation be based on a simple domain i.e. a domain 

consisting of single, simple values. 

A relation is in 1NF if every attribute in the relation is based on a simple domain. 



52 
 

Consider the relation; 

HOMES (BUILDER, MODEL) 1NF 

HOMES1 (BUILDER, STYLE, PRICE) 2NF 

HOMES2 (BUILDER, STYLE) COST (STYLE, PRICE) 3NF 

HOUSE3 (BUILDER, SUBDIV, PRICE, STYLE) 

BUILDER, SUBDIV   STYLE 

BUILDER, SUBDIV   PRICE 

PRICE     SUBDIV 

 

2NF: SECOND NORMAL FORM  

If MODEL is the relation MODEL (STYLE, PRICE) and a builder builds several model homes, 
then the HOMES relation violates 1NF, the relation can be represented as the 1NF relation 
HOMES1 (BUILDER, STYLE, PRICE). 

Any relation can be put into 2NF by replacing a non-simple domain by its constituent simple 
domains. The problems in choosing relations from MODEL are strongly tied to the fact that the 
values of some attributes completely determine the values of other attributes in a relation. This 
fact will be formalized as the concept of functional dependency. 

HOUSES (STYLE, BUILDER) 

HOUSES (ID, ADDRESS, LOT, SUBDIV, STYLE, BUILDER) 

HOUSES1 (ID, ADDRESS, LOT, SUBDIV, STYLE) 

  CONTRACTOR (SUBDIV, BUILDER) 

 Let A and B be attribute of a relation 
 Let DOMAIN (A) be the domain of A 

Let DOMAIN (B) be the domain of B 

Let f be a time-varying function 

f: DOMAIN (A) DOMAIN (B) 

In the mathematical sense, f is not a function because it is allowed to change over time in the 
same sense that database relations are allowed to change over time. 

We can say f: A B 

f is a functional dependency 



53 
 

 B is said to be dependent (functional dependent) on A 

 A is said to be determine (functional determine) on B 

A B = means that there is no functional dependency between A and B 

 If both AB and BA hold then at all times A and B are 1:1 correspondence and the 
notation AB is used. 

Let f: A1 A2 A3…AnB 

g: A1  A2  A3…AmB where m<n 

Assume f (a1 a2 a3...an) = g (a1 a2 a3…am) for all ai in Ai, 1 ≤ I ≤ n 

That is the attributes Am+1, Am+2, Am+3…An are extremely in f. 

In this case, B is said to be partially dependent on A1 A2 A3…An. 

If there is no g with the above property, then B is fully dependent on A1 A2 A3…An. 

 Partial dependencies can cause insertion/deletion anomalies and consistency problems. 

The second normalization (2NF) removes partial dependencies of non-prime attributes on keys. 

Second Normal Form (2NF): A relation R is in 2NF if R is in 1NF, and each non-prime attribute 
in R is fully dependent upon every key. 

Given the relation (keys are underlined)  

HOUSES (ID, ADDRESS, SUBDIV, STYLE, BUILDER). 

In the HOUSES relation, the keys are ID, ADDRESS and SUBDIV. 

The non-prime attributes are STYLE and BUILDER. The relation is therefore not in 2NF. To 
place the HOUSES relation into 2NF, it is split into two relations: 

HOUSES1 (ID, ADDRESS, SUBDIV, STYLE) 

CONTRACTOR (SUBDIV, BUILDER) 

 Access to the builder information is still possible from the HOUSES1 relation through 
the SUBDIV attribute common to both relations. 

For example, to determine the builder of a certain house, the SUBDIV attribute value is obtained 
from the appropriate tuple in the HOUSES1relation.This value is then used to search the 
CONTRACTOR relation and determine the corresponding builder. 

Notice that it is possible to keep information about a builder for a sub-division independent of 
the HOUSE1 relation. This capability eliminates one of the insertion anomalies discussed earlier. 



54 
 

The next normalization step converts relations to Third Normal Form or 3NF by eliminating 
transitive dependence of non-prime attributes on keys. 

 

Suppose that A, B and C are three subsets of a relation R. Suppose that the following time-
independent conditions hold: 

A B 

B A 

B C 

A C 

C A 

A 

B 

C 

Transitive dependence of C on A 

NOTE: C B is neither prohibited nor required 

If the above conditions hold, then C is transitively dependent on A under R 

Price is transitively dependent on Builder under HOME1. 

In the special case where CB also holds, both B and C are transitively dependent on A under 
R. 

Transitive dependencies also lead to the insertion/deletion anomalies and consistency problems. 

 

Builder 

 

Style 

 

Price 

                 Transitive dependence 



55 
 

Consider now the problem of changing the style of house that is built by a builder. In this case, 
the value of the price attribute also has to be changed. If it is not, then the database will show an 
inconsistency. 

Consider also the problem of inserting and deleting tuples. If a new HOMES1 tuple is inserted 
for a new style home, then the relationship between style and price is also created. 

Similarly, if a builder is deleted from the HOMES1 relation, and if this is the last or only builder 
of a particular style, then all information about the particular style-price relationship is also 
deleted. 

The transitive dependency of BUILDER on PRICE can be eliminated by splitting the HOMES1 
relation into the two relations. 

HOMES2 (BUILDER, STYLE), COST (STYLE, PRICE) 

HOMES1 (BUILDER    STYLE   PRICE) 

                 CADILLAC  DUPLEX  65000 

                DELZOTO   DUPLEX  65000 

                HOWLETT   BUNGALLOW 45000 

JOINT   RANCH  50000 

               METRO   BUNGALOW  45000 

               MONZA   DUPLEX  65000 

    TEREX   RANCH  50000 

    WIMREY   RANCH  50000 

 These two relations cannot contain any transitive dependencies since they are each only of 
order two. 

 The price now appears only once for each style. 
 No information has been lost since the price of a style of house can be obtained by using the 

style values from the HOMES2 relation to access the COST relation. 

Both the HOMES2 and COST relations are in 3NF 

 

HOMES2 (BUILDER   STYLE) 

        CADILLAC  DUPLEX 

        DELZOTO  DUPLEX 

        HOWLETT  BUNGALOW 



56 
 

        JOINT   RANCH 

       METRO   BUNGALOW 

       MONZA   DUPLEX 

  TEREX   RANCH 

       WIMREY   RANCH 

 

COST (STYLE   PRICE) 

 BUNGALOW  45000 

 DUPLEX  65000 

 RANCH  50000 

WEEK – SIX 

NORMALIZATION / DECOMPOSITION 

 

RELATIONS IN THIRD NORMAL FORM 

Third Normal Form (3NF) – A relation is in 3NF if R is in 2NFand no non-prime attribute of R is 
transitively dependent on any key of R. 

Any relation in 3NF has the property that every non-prime attribute of the relation is neither 
partially dependent nor transitively dependent on any key. This means that the non-prime 
attributes are independent of each other. 

Third Normal Form or 3NF does not exclude prime attributes from exhibiting partial and 
transitive dependencies. It has been found that partial and transitive dependencies among prime 
attributes can also lead to consistency and update problems. 

To eliminate these problems, the statement of 3NF has been reformulated to avoid reference to 
the concepts of prime attribute, full dependency and transitive dependency. 

 

BOYCE CODD NORMAL FORM (BCNF) 

A relation R is in BCNF if it is in 1NFand for every set of attributes C of R, if any attribute not in 
C is functionally dependent on C, then each and every attribute in R is functionally dependent on 
C. 

If a relation is in BCNF, it immediately follows that it is in 3NF. There are examples of relations 
in 3NF, but not in BCNF (Bernstein, 1975). 



57 
 

For example, consider a modified set of functional dependencies describing part of the 
HOUSES2 model shown below. 

HOUSES2 (BUILDER, SUBDIV, PRICE, STYLE) 

Suppose that contracts are awarded to builders in various subdivisions. Within any subdivision, a 
builder’s contract specifies that only one style of house be built by the builder. Suppose further 
that for each subdivision in which a builder has a contract, the builder charges a fixed price per 
house. Also, the price charged determines the subdivision. That is, a builder charges different 
prices for the same style house for each subdivision in which the builder has a contract. 

The attribute SUBDIV is now transively dependent on the key BUILDER. This transitive 
dependency does not create certain problems. 

Suppose the price a builder charged in an old subdivision is also to be charged in a new 
subdivision i.e. the PRICESUBDIV dependency is modified. 

In a BCNF relation R, every functional dependency in R must be of the form KA where K is a 
key and A is any attribute. The following can be asserted: 

1. All non-prime attributes must be fully dependent on each key. 
2. All prime attributes must be fully dependent on all keys of which they are not a part. 
3. No attribute (prime or not) can be fully dependent on any set of attributes that is not a 

key. 

Factors – To link relationship of network data mobile, object types, characteristics, and 
relationships. 

Value of the attribute BUILDER determines values for the attribute STYLE and PRICE. 

Value of the attribute STYLE determines the value for PRICE.  

Unlike mathematical relations, database relations are time-varying since tuples may be inserted, 
deleted or updated. 

An index implies a selection mechanism or a pointer structure to desired data. 

 

DESIGN OF RELATIONAL DATABASE SCHEME 
Conversion from ODL or E/R to relational database cause redundancy (mean where a fact is 
repeated in more than one tuple) 
Decomposition = breaking a relation schema (set of attributes) into two smaller schema 
INF = a relation is in INF if every attribute in the relation is based on a simple domain 
        = relational model requires that each component of each tuple be atomic 
Atomic means = data type should be integer or storing not struct or record that can reasonably 
have its value broken into smaller components 
House (Builder model)     House (Builder, style, price) 
 



58 
 

2NF = the second normalization removes partial dependencies of non prime attribute on key. 
Houses (ID, Address, Sub-div, Style, Builder)   
- The keys are ID , Address, Sub-div 
- the non prime attributes are style and builder 
House 1 (ID, Address, Sub-div, Style) 
Constructor (sub-div, Builder) 
 
3NF = eliminating transitive dependences of non prime attributes on keys. 
A relation R is in 3NF if and only for every nontrivial FD X→ A 

1. X is a super key r 
2. A is prime = member of at least one key. 

Suppose that A, B, C are those subsets of attributes of a relation R 

A → B   B ↛ A 

B → C   C ↛A 

A → C  

C is transitively dependent on A under R; price is transitively dependent on builder under home 
1. 

Transitive dependences lead to the insertion and deletion anomalies and consistency problems. 

The transitive dependency of builder on price can be eliminated by splitting the Home 1relation 
into the two relations. 

Home 1 (Builder,  style,   Price) 

   Cad  duplex  65,000 

  Del  duplex  65,000 

   How   bungalow 45,000 

 Joint   story building 50,000 

  Metro  bungalow 45,000 

 Moon  duplex  65,000 

  Tear  story building 50,000 

 Wimp  story building 50,000 

 



59 
 

Home 2 (Builder, style)   cost (style,  price) 

 Cad  duplex    duplex  65,000 

 Del  duplex    bungalow 45,000 

 How  bungalow   story building 50,000 

Joint  story building 

Metro   bungalow 

Moon  duplex 

Tear  story building 

Wimp  story building 

Boyce coddy norm form 

- eliminate redundancy 

- eliminate anomalies 

Kind of anomalies 

Redundancy = occurrence of tuples 

Insertion anomalies 

Deletion anomalies 

Update anomalies 

 

Decomposition Relations 

Given a relation R with schema {A1, A2, …., An} we may decompose R into two relations S 
and T with schema {B1,B2,…, Bm } and {C1, C2,…..,Ck} 

R (A1,A2,…..,An) = S (B1, B2,…..Bm) ∪ T (C1, C2,……,Ck) 

S ∪ ܶ are projection form 

R = {title, year, length, filmtype, studio name, star name} 

S = {title, year, length, filmtype, studio name} 



60 
 

T = {title, year, Star name} 

S = movie 1 

Title year Length Film type Studio name 
Star wars 1997 124 Colour Fox 
Might 1991 104 Colour Disney 
Ways 1992 95 Colour Paramount 
 

T = movie 2 

Title Year Star name 
Star wars 1997 Carrie 
Star wars 1997 Mark 
Star wars 1997 Ford 
Might 1991 Ester 
Ways 1992 Dana 
Ways 1992 Mike 
 

There is redundancy for film type 

T – Movie 2 = title and year appear several times 

Despite decomposition, anomaly will not occur in BCNF 

BCNF = A relation is in BCNF if and only if whenever there is a nontrivial dependency A1 
A2….. An → B for R, it is the case that {A1, A2,….,An} is a super key for R 

That is the left side of every nontrivial functional dependency must be a super key. 

Thus, an equivalent statement of the BCNF condition is that the left side of every nontrivial 
functional dependency must contain a key 

Decomposition into BCNF 

Title year Film type Studio name Length Studio 
Address 

Star  1997 Color Fox 124 Hollywood 
Might 1991 Color Disney 104 Vick 
Way 1992 Color Paramount 95 Hollywood 
Add  2001 Color Paramount 102 Hollywood 
 

R → S ∪ T 



61 
 

Title year Film type Studio name Length 
Star 1997 Color Fox 124 
Might 1991 Color Disney 104 
Way 1992 Color Paramount 95 
Add  2001 color Paramount 102 
 

Studio name Studio address 
Fox Hollywood 
Disney Vick 
Paramount Hollywood  
 

R is not in BCNF 

S is in BCNF 

T is in BCNF 

3RD Normal form 

It is relaxation of BCNF requirement 

A relation R is in 3rd NF if: 

Whenever A1, A2,…..,An → B is a non trivial dependency either  

1. {A1, A2, ……, An} is a super key or 
2. B is a member of some key 

Note that the different between this 3NF and BCNF condition is the clause or B is a member of 
some key. 

3rd NF allows the right hand side attribute as a member of the key. 

When these relations are not in BCNF, there will be some redundancy left in the schema. 

Projecting functional dependencies 

When we decompose a relation schema, we need to check that the resulting schemas are in 
BCNF. 

Suppose we have a relation R, which is decomposed into relation S and some other relation 

Let F be the set of functional dependencies known to hold for R. 

To compute the functional dependencies that holds in S d the following: 



62 
 

R (S1, S2, S3) 

Consider each set of attribute X that is contained in the set of attributes of S 

Compute X+ 

Then for each attribute B such that  

1. B is an attribute of S 
2. B is in X+ 
3. B is not in X 

The functional dependency X→ B holds in S 

E.g. R (A, B, C, D) 

A → B 

B → C  are given for R 

Let S (A, C) be one of the relations on a decomposition of R  

We shall complete the dependencies that hold in S  

We must compute the closure of each subset of [A, C] which is a set of attributes of S 

A+ = A → B  AB 

        B → C    ABC 

A+ = {A, B, C} A → B  B is not in S [A, C] 

   A → C  C is in S [A, C] 

We do not claim that A → B is a dependency for S 

C is the schema for S 

We assert dependency A → C for S 

C+ = A → B 

        B → C 

   = C 

AC + = ABC for A → B 

     B → C = ABC 



63 
 

  AC → B  B is not in S [A, C] there is no new dependency 

R (A B C D E) 

     S (A, B, C) 

     A → D 

     B → E 

     DE → C 

A+ = 

A → D = AD   A → D 

B → E = AD 

DE → C = AD 

B+ = 

A → D = 

B → E = BE   B → E 

DE → C = 

C+  

A → D = 

B →E = 

DE → C = C 

AB+        the only dependency we need for S is AB → C 

A → D = ABD  AB → D 

B → E = ABDE  AB → E 

DE → C = ABCDE  AB → C 

AC+ =      C is in the schema of S so we get dependency for S 

A → D = ACD  AC→ D 

B → E = 



64 
 

DE → C = 

BC+  

 A → D = 

 B → E = BCE  BC → E 

 DE → C = 

ABC+   

A → D = ABCD  ABC → D 

B → E = ABCDE  ABC → E 

DE → C = ABCDE  

Find the implied FD’s 

Suppose we have a relation ABCD with some FD’s F. If we decide to decompose ABCD into 
ABC and AD, what are the FD’s for ABC and AD 

F = AB → C 

      C→ D 

      D → A 

{A, B, C}   

A+ =      C → A 

B+ =      AB → C 

C+ = CD  C → D    BC → A 

        CDA` C → A 

AB+ = ABC  AB → C 

           ABCD  AB → D 

AC+ = ACD   AC → D 

BC+ = BCD   BC → D 

           ABCD   BC → A 



65 
 

{A, D} 

A+ = 

D+ = AD = D → A 

In ABC with FD’s 

 A → B 

 B → C 

Project at AC 

1. A+ = ABC yields A→ B, A→ C 
2. B+ = BC yields B → C 
3. C+ = C 
4. AB+ = ABC yields AB → C 
5. AC+ = ABC yields AC→ B 
6. BC+ = BC 
7. ABC = ABC 

Resulting FD’s 

A → B 

A → C 

B → C 

Consider the resolution  R(A, B, C, D, E, F) 

FD’s are  AC → B 

    BD → F 

    F → CE 

Find all the key of R 

Find non trivial dependence key 

Computing  the closure of attribute 

1. Let X be a set of attribute that eventually will become the closure 
-first we initialize X to be {A1, A2, ….., An} 

2. We repeatedly search for some functional dependency B1, B2, ….., Bn → C 



66 
 

Such that all B1, B2, …..,Bn are in the set  of attribute X but cc is not .We add C to the set X. 

3. Repeat 2 as many times as necessary until no more attributes can be added to X. 

4. The set X after no more attributes can be added to it is the correct value of {A1, A2,…, An}+  

 

Algorithm for decomposition  

Input; relation schema R and set of FD’s for R 

1. Complete keys for R based on FD 
2. Repeat until no more BCNF violations 

a. Pass any R’ with AA → BB that violates BCNF 
b. Decompose R’ unto R1 (AA, BB) and R2 (AA, CC) where CC is all attribute in R’ except 

(AA, BB) 
c. Compute FD for R1 and R2 
d. Compute key for R1 and R2 based on FD  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



67 
 

WEEK – SIX 

ALGORITHM DERIVING CANDIDATE KEYS 
FROM FDS 

Input: a set S of FDS that contain only subsets of a header H 

Output: the set C of super keys that hold as candidate keys in all relation universes over H in 

which all FDS in S hold  

 begin 

      C :=  ∅   // found candidate keys 

      Q :={H} // super keys that contain candidate keys 

while Q <>∅ do 

let K be some element from Q;Type equation here. 

Q :=  Q – {K}; 

minimal := true; 

for each X→Y in S do 

    K := (K−Y) ∪X ; 

      if  Kʹ in K then 

minimal  := false ; 

Q :=  Q ∪ { Kʹ } ; 

end if. 

end for 

if minimal and there is not a subset of K in C then remove all super keys of K from C ; 

C := C ∪{ K } 

     end if 



68 
 

      end while 

end. 

 

Lossless join property: 

 Can recover any instance of the decomposed relation from corresponding instance of the 
smaller relations. 

  It is required to be reversible. 
 It wants no information loss in the process. 

The decomposition is lossless since it does not lose any information contained in the original 
relation. 

 It does not generate any spurious tuples which leads to false or misleading information 
 It is called non – additive join since it does not add any new tuples 
 It allows to get back exactly what we started with before decomposing. 

Remember we decompose to do away with redundancy and all of the problems associated with 
the duplication data. 

Supplier Parts Project  Supplier Part Part projects    

Bello  2 bks  Bello  2 2 bks 

John   2 ruler  John  2 2 ruler 

  

Project  supplier   Supplier part project 

Bks  Bello   Bello  2 Books 

Ruler  John   Bello  2 Rulers 

     John   2 Books 

     John  2 Rulers 

 

Supplier  Part  projects 

Bello  2 bks 

John  2 rulers 



69 
 

The question is: What conditions must be satisfied in other to guarantee that joining R1 and R2 
back together takes back to original R? 

A decomposition D = {R1, R2} of R has the lossless join property with respect to the set of FD’s 
f if 

 FD(R1 ∩ R2) → (R1 – R2) is in f+  or 
 FD(R1∩ R2) → (R2  –  R1) isin f+ 

 

MULTIVALUE DEPENDENCIES 

4NF 

- A relation R is in 4NF if for every nontrivial MVD X─>─>Y in R, X is a super key. 

- That is all FD’s and MVD’s follow from key ─>other attributes(i.e. no MVD’s and no 

FD’s besides key functional dependencies). 

- 4NF is stronger than BCNF. 

- Because every FD is also a MVD. 

 

Multivalued Dependencies 

A multivalued dependency (MVD) has the form X─>─>Y where X and Y are sets of attributes 

in a relation R. 

X─>─>Ymeans whenever two rows in R agree on all the attributes of X then we can swap their 

Y           components and get new rows that are also in R. 

X  Y  Z 

a  b1  c1 

a  b2  c2 

a  b1  c2must be in R too  

a  b2  c1 

-  -  - 

-  -  - 



70 
 

MVD   student(s1d, c1d, club) 

   sid ─>─> cid 

Given: Relation R and set of MVD’s for R 

Definition: R is in 4NF with respect to its MVD’s if every nontrivial MVD AA─>─>BB, AA 
contains a key. 

Note: Since every FD is also in MVD, 4NF implies BCNF 

 

Trivial M VD 

A trivial MVD is when the RHS is a subset of its LHS. AA─>─>BB where BB is a subset of AA 
or (AA U BB) does not contain all the attributes of R. 

 

Nontrivial MVD 

AA─>─>BB where BB is not a subset of AA and (AA U BB) does not contain all attributes of 
R. 

MVD 

Definition:  

AA ─>─>BB is an MVD for relation R if: 

For all tuples t, u in R, 

If t [AA] = u [AA] then there exists a V in R such that: 

1. v[AA] = t[AA] 
2. v[BB] = t[BB] 
3. v[CC] = u[CC] 

where CC is all attributes in R except (AA U BB). 

MVD is when there are 2 independent 1 : N relationships, A : B and A : C are mixed in the same 
relation. You represent an MVD by X─>─>Y  

1. Y is a subset of X 
2. X U Y = R both attributes together equals the relation. 

Complete MVD + FD rules 

- FD is reflexivity 

 augumentation 
  transitivity 



71 
 

 
- MVD is complementation 

If X─>─>Y then 
  X ─>─> attributes (R) - X – Y 

 
- MVD is augumentation 

If X─>─>Y and  

V  W then 

XW─>─>YV 

 

- MVD is transitivity 

If X─>─>Y and  

Y─>─>Z then 

X─>─>Z – Y 

 

- Replication (FD is MVD) 

If X─>─>Y then  

    X─>─>Y 

- Coalescence 

If X─>─>Y and  

ZY and there is W is disjoint  

from Y such that 

w─>z then 

x─>z. 

 

Algorithm for Decomposing a relation into 4NF relation (same ideas as BCNF) 

Input: Relation schema R and set of FD’s and MVD’s for R 

-1- Compute keys for R based on FD’s 

-2- Repeat until no more 4NF violations 

-2a- Pick any R′ with AA─>─>BB that violates 4NF 



72 
 

 -2b- Decompose R′ into R1(AA, BB) and  

    R2(AA,CC) where is all attributes in R′ except(AA U BB) 

 -2c- Compute FD’s and MVD’s for R1 and R2 

 -2d- Compute keys for R1 and R2 based on FD’s 

 

Algorithm for decomposing a relation into BCNF 

Input: Relation schema R and set of FD’s for R 

-1- Compute keys for R based on FD’s 

-2- Repeat until no more BCNF violations; 

 -2a- pick any R′ with AA ─> BB that violates BCNF 

 -2b- decompose R′ into R1(AA,BB) and 

R2 (AA,CC) where 

   CC is all attributes in R′ except (AA U BB). 

 -2c- compute FD’s for R1 and R2 

 -2d- compute keys for R1  and R2 based on FD’s 

5NF 

L has no join dependency 

If a relation is already in 3NF and each of its keys consists of a single attribute, it is also in 5NF. 

5NF is also called project-join normal form. 

L it is the highest normal form. 

L there may be some relations that are in 4NF, but still have some redundant information. 

However, there are no violating MVD’s and/or FD’s so we cannot use either of these 

dependencies to decompose the relation. 

- Consider each of the following proposed rules regarding dependencies 

- For each, if it is false give a counter example 



73 
 

   If it is true, give a brief argument. 

- Why it is true e.g. by applying the closure to desire FD’s. 

- You may assume the relation to which they apply is R(A, B, C, D) 

a) If A─>─>B then A─>B 

   If A─>B then A─>─>B false.    A─>B 

       A─>─>B 

       BC─> D 

 

b) If A─>B and BC─>D then AC─>D true 

Applying closure to AC+ = ABCD 

ABCD = contains D 

        The transitive rule also works. 

         Note that you can’t reduce ABC─> BD to AC─>D by receiving B from both sides. 

c) If A─>B and  

  B─>─>C then 

  A─>─>BD 

Applying the transitive rule to A─>B and B─>C yields A─>C 

Applying the promotion rule to A─>C the yields A─>─>C 

Applying complementation rule to A─>─>C then yields A─>─>BD 

 

Algorithm Testing for the Lossless Join Property 

1) Create a matrix S with one row i for each relation Ri in the decomposition D, and one column 

j, for each attribute Aj in R. 

2) Set S(i, j ) i=bij for all matrix entries 

 (* each bij is a distinct symbol associated with indices (i, j) * ) . 

3) For each row i representing relation schema Ri for each column j representing attribute Aj. 

If Ri includes attributes Aj then set S (i, j) i=aj 

(* each aj is a distinct symbol associated with index j *) 

4) Repeat the following until a loop execution results in no changes to S. 



74 
 

For each functional dependency X─>Y in f, for all rows in S which have the same symbol  

in the columns corresponding to attributes in X 

Make the symbols in each column that correspond to an attribute inY be the same in all these 

rows as follows: 

If any of the rows has an “a” symbol for the column, set the other rows to that same “a” 

symbol in the column. If no “a” symbol exist for the attribute in any of the rows, choose one 

of the “b” symbols that appear in one of the rows for the attribute and set the other rows to 

that “b” symbol in the column. 

5) If a row is made up entirely of “a” symbol then the decomposition has the lossless join 

property – otherwise, it does not. 

 

Decomposition and Lossless (non additive) Joins 

A decomposition D= (R1, R2,...,Rm) of R has the lossless (non additive) join property with 

respect to set of dependencies F on R if for every relation instance r of R that satisfies f, 

the following holds (* is the natural join operation) 

*(∏<R1>(r), …,∏<Rm>(r))  = r 

Lossless join refers to loss of information not loss of tuples. 

Additional tuples represent erroneous information and hence add more information. 

 

Properties of Lossless Join Decomposition. 

1) A decomposition D = {R1, R2} of R has the lossless join property with respect to a set of 

functional dependencies f on R if and only if either  

 The FD ((R1 ∩  R2) ─> (R1 - R2)) is in f+or 

 The FD ((R1 ∩  R2) ─> (R2 – R1)) is in f+ 

2) If a decomposition D = {R1,R2, …,  Rm} of R has the lossless join property with respect to a 

set of functional dependencies f on R and if a decomposition D1 = {Q1, Q 2,…, Qk} of R1 has 

the lossless join property with respect to the projection of f on R1, then the decomposition 



75 
 

 D2 = {R1, R2,…, Ri-1, Q1, Q2,…,Qk, Ri+1,…, Rm } of R has the lossless join property with 

respect to f. 

Decomposition to have Lossless join Operation and Preserve Dependencies 

1) Find a minimal cover G for F 

F* is the set of functional dependencies specified in R*) 

2) For each left- hand side X that appears in G 

Create a relation schema {X U A1 U A2 UAm} where X  A1,   X       A2,X       A3,…,X       

Am,are all dependencies in G with X as left hand side. 

3) Place all the remaining (unplaced)  attributes in a single relation schema  

4) If none of the relation schemas contains a key of R, create one or more  relation schema 

that contains a key of R, create one more relation schema that contains attributes that form a 

key for R 

R= {SSN, EName, Pnumber, PName , Plocation, Hours } 

R1== {EName, Plocation} 

R2={SSN, PNumber, Hours, PName, Plocation } 

FD   SSN EName, 

  PNumber  PName, PLocation. 

  SSN, PNumber  Hours 

 

 SSN EName         PNumber PName  Plocation `Hours 

R1  b11  a2              b13   b14  a5       b16 

R2 a1 b22                   a3      a4        a5       a6 

Employee( ENo       eName       Mgr       Dept       Salary) 

R = {SSN, EName, Pnumber, Pname, Plocation, Hours} 

R1 = {SSN, EName} 

R2 = {PNumber, PName, PLocation} 



76 
 

R3 = {SSN, PNumber, Hours} 

FD = SSN     EName 

         PNumber  PName, PLocation 

         SSN, Pnumber  Hours 

 

           SSN    EName PNumber  PName        PLocation  Hours 

R1         a1              a2                               b13                            b14                              b15                                             b16 

R2             b21            b22                            a3                                               a4a5                                                b26 

R3 a1              b32 a3   b34           b35      a6 

 

Original matrix S at start of algorithm 

          SSN   EName    PNumber  PName  PLocation  Hours 

R1         a1              a2                                  b13                            b14                              b15                                             

b16 

R2             b21            b22                                  a3                                               a4                                                 a5                                                

b26 

R3 a1      a2 a3  a4                            a5a6 

 

Matrix S after applying the first two functional dependencies = last row is all “a” symbols 

So we stop. 

 

 

 

 

b32 b34 b35 



77 
 

WEEK - SEVEN 

MULTIVALUED DEPENDENCIES 
 4th = fourth normal form 
 Join dependencies  
 5th = fifth normal form 
 Inclusion dependencies 
 Template dependencies  
 Domain key norm form 

Multivalue dependencies and Fourth Normal form 

Multivalued dependencies are a consequence of first normal form which disallowed an attribute 
in a tuple from having a set of values or a list of values or a combination of both. 

 Whenever two independent 1: N relationship A : B and A:C are mixed in the same 
relation by representing all possible combination an MVD may arise. 

Definition: 

A multivalued dependency (MVD) X   Y specify on relation schema R, where X and Y are 
both subsets of R, specifies the following constraint on any relation instance r of R: if two tuples 
t1 and t2 exist in r such that t1[X] = t2[X], then two tuples t3 and t4 should also exist in r with the 
following properties. 

 t3[X] = t4[X] = t1[X]  = t2[X] 

 t3[Y] = t1[Y] and t4[Y] = t2 [Y] 

 t3[R-X-Y] = t2[R-X-Y] and  

t4[R-X-Y] = t1[R-X-Y]    

whenever X Y holds, we say X multi determines Y. 

Note that because of the symmetry in the definition whenever X Y holds in R, so does   

X    (R-X-Y) 

Note also that (R-X-Y) is the same as R – (X U Y) = Z 

Hence  X─>─>Y implies  X─>─>Z and therefore it is sometimes written as X─>─>Y/Z 



78 
 

EName─>─> DName 

EName─>─> DName      or 

EName─>─> DName/ DName 

 

EMP 

EName DName  DName 

Smith     X  John 

Smith     Y  Anna 

Smith     X  Anna 

Smith     Y  John 

 

Emp-Projects    emp-Dependents 

EName DName   EName DName 

Smith       X   Smith  John 

Smith      Y   Smith  Anna 

 

Smith works on project with PName X, Y. Has two dependent with DName John and Anna 

 If we stored only the first two tuples in Emp 
<Smith     X,      John> 
<Smith     Y,      Anna> 
We would incorrectly show association between project X and John and between project 
Y and Anna 
 
We must store the other two tuples 
<Smith  X,  Anna> 
<Smith  Y, John> 
to show that {X, Y} and {John, Anna} are associated only with Smith that is, there is no 
association between PName and DName in Emp. 
 



79 
 

An MVD X─>─> Y in R is called a trivial MVD if  

a) Y is a subset of X or 
b) X U Y = R 

       Enp-Project has the trivial MVD EName─>─> PName 

An MVD that satisfies neither a) or b) is called a nontrivial MVD 

Emp = is a nontrivial MVD 

     the values of X, Y of  PName are repeated with each value of DName. 

This redundancy is clearly undesirable. 

Emp is in BCNF because no FD holds in Emp. We need to define a fourth normal form that is 
stronger than BCNF. 

Properties of MVD 

Assume that all attribute are included in universal relation schema 

R = { A1, A2,…….An} and that 

X, Y, Z and W are subset of R 

1. Reflexive rule for FD if X ≥ Y, then X ─>Y. 
2.  Augmentation rule for FD X─> Y ╞ XZ  ─> YZ 
3.  Transitive rule for FD { X  ─>Y, Y ─> Z} ╞  X─>Z 
4. Complementation rule for MVD X ─>─>Y  ╞ 

  X─>─>{R – ( X U Y)} 

5.  Augmentation rue for MVD if X─>─> Y and  

 W ≥ Z then 

 WX ─>─>YZ 

6. Transitive rule for MVD { X─>─>Y, Y─>─>Z}╞ X ─>─>Z – Y  
7.  Replication rule (FD to MVD) X─>Y = X─>─>Y 
8. Coalescence rule for FD as MVDs 

 If  X ─>─>Y and there exist W with the properties that 

(a) W ∩ Y is empty 
(b) W ─> Z 



80 
 

(c) Y≥ Z then X ─>─>Z 
 

Fourth Normal Form 

A relation schema R is in 4NF with respect to a set to dependencies f if for every non trivial 
multivalued dependency X ─>─>Y in f+, X is a super key for R. 

EMP relation is not in 4NF because in the non trivial MVDs  EName ─>─> PName and EName 
─>─>Dname 

EName is not a super key of EMP 

We decompose EMP into EMP-Project and EMP – dependent  

Both EMP – project and EMP – dependent are in 4th NF. Because Ename ─>─> Pname is a 
trivial MVD in EMP – project. 

In fact no non trivial MVDs hold in either EMP – project or EMP – dependent  

Emp 

EName PName DName  emp - project 

Smith X John  EName PName 

Smith  Y Anna  Smith X 

Smith x Anna  Smith Y 

Smith  y John  Brown W 

Brown w Jim  Brown X 

Brown X Jim  Brown Y 

Brown y Jim  Brown Z 

Brown z Jim    

Brown w Joan  emp – project 

Brown x Joan  EName DName 

Brown  y Joan  Smith John 

Brown z Joan  Smith Anna 

Brown w Bob  Brown Jim 



81 
 

Brown x bob  Brown Joan 

Brown y bob  Brown Bob 

Brown z bob  

 Bigger in size   smaller in size 

16 tuples     11 tuples 

48 facts    22 facts 

Update anomalies is avoided  

Input  another project into Brown 

We need to insert into three columns 

EMP is not in 4NF 

 

PROJECTING MVDs 

R (A B C D E)   S (A B C) 

MVDA ─>─> CD 

Chain 

 A ─>─> C holds in S 

 A ─>─> B    by complementation  

Let us verify that A ─>─>C holds in S 

 

A B C D E 

a b1 c d1 e1 

a b c2 d e 
  

 A─>─> CD 

 



82 
 

A B C D E 

a b1 C d1 e1 

a b c2 d e 

a b1 c2 d e1 

a b C d1 e 

 

The last row has un-subscripted symbols in all the attributes of S, that is A, B and C. This is 
enough to conclude that A─>─>C holds in S 

 

We  street   city  title  year 

C. fish  123 Maple str.  Holly  Star wars 1977 

C. Fish  5 locust st.  Malibu  Star wars 1977 

C. fish  123 maple st.  Holly  Empire back 1980 

C. Fish  5 locust st.  Malibu  empire back 1980 

C. Fish  123 maple st  Holly  Return Mecca  1983 

C. Fish  5 locust st.  Malibu  Return Mecca 1983 

name  ─>─> street     city 

Reasoning about multi valued dependencies  

- Trivial MVD 
A1, A2, A3….. An─>─> B1 B2 B3……Bm 

Holds in relation if {B1 B2………Bm} { A1 A2;…..An} 

- Transitive rule A1 A2………An─>─>B1 B2……….Bm and  

   B1 B2………Bm─>─>C1 C2……….CK 

    then 

   A1 A2……..An ─>─>C1 C2,……, CK 

- FD promotion every FD is an MVD = That is, if 



83 
 

A1, A2, A3….. An─>B1 B2……Bm then 

A1, A2, A3….. An─>─> B1 B2……Bm 

- Complementation rule 

If  A1, A2, A3….. An─>─> B1 B2 B3……Bm is an MVD for R then R also satisfies A1, 
A2….. An─>─> C1 C2……CK where the C’s are all attributes of R not among the A’s and 
B’s 

name ─>─> street city compliment for  

name─>─> title  year 

 

Fourth Normal form 

Relation R is in fourth normal form 4NF if whenever  

A1, A2, A3….. An─>─>B1 B2……Bm is a non trivial MVD, 

 { A1 A2 A3,…..An} is a super key. 

name   street,  city 

name   year  title 

R1 ( name, street, city) R2 (name, year, title) 

 

Multivalue dependency  

X─>─>Y tells us that it we find two rows of the tableau that agree in X, then we can form two 
new tuples by swapping all their component in the attributes of Y 

R ( A B C D ) 

A─>B   

B ─>─>C 

Prove that B─>─> C,  A─>─>Cholds in R 

 

 



84 
 

A B C D   A B C D  

a b1 c d1   A─> B a b c d1 

a b c2 d   a b c2 d 

  

A B C D 

a b c d1 

a b c2 d 

a b c2 d1 

a b c d 

A─>─> C 

Given two tuples of R that agree on A, they must also agree in B, A ─>B 

 

MVD 

X ─>─>Y and any FD whose right side is a (not necessarily proper) subset of Y, say Z then X 
─>Z 

R (A B C D)  A B C D 

MVD A ─>─>BC   a b1 c1 d1 A─>─>BC 

     a b2 c2 d2  

FD D ─>C  

We claim that A ──>──> C   

A B C D 

     a b1 c1 d1 

     a b2 c2 d2 

     a b2 c2 d1 D ─>C 

     a b1 c1 d2 



85 
 

A B C D 

a b1 c1 d1 

a b2 c2 d2 

a b2 c2 d1 We have proved A──>C 

a b1 c1 d2 

 

Computing the closure of a set  of Attributes 

Input: A set of Attributes {Aı,A2, A3,...,An} and a set of FDʹs . 

Output : The closure {Aı, A2,A3,…, An}⁺ 

1. If necessary split the FD’s of S so each FD in S has a single attribute on the right  

2. Let X be a set of attributes that eventually will become the closure 

Initialize X to be {Aı ,A2, A3,…,An} 

3. Repeatedly search for some FD 

Bı B2 B3…, Bm → C 

Such that all of Bı, B2,….,Bm are in the set of attributes X, but C is not. Add C to the set X 

and repeat the search. Since X can only grow and the number of attributes of any relation 

scheme must be finite, eventually nothing more can be added to X, and this step ends. 

4. The set X after no more attributes can be added to it, is the correct value 

{Aı, A2, A3, …,An}⁺ 

 

 

 

 

 

 

 

 



86 
 

Algorithm for projecting a set of functional Dependencies 

Input: A relation R and a second relation Rı computed by the projection Rı = ∏2 ( R ). 

Also a set of FDʹs S that hold in R . 

Output : The set of FDʹs that hold in Rı 

method 

1. Let T be the eventual output set of FDʹs.Initially, T is empty . 

2. For each set of attributes X that is a subset of the attributes of Rı , compute X⁺. This 

computation is performed with respect to the set of FDʹs S and may involve attributes that are 

in the schema of R but not Rı. Add to T all nontrivial FDʹs X →A such that A is both in X⁺ 

and an attribute of Rı. 

3. Now, T is a basis for the FDʹs that hold in Rı, but may not be a minimal basis. We may 

construct a minimal basis by modifying T as follows: 

a) If there is an FD F in T that follows from the other FDʹs in T, remove F from T. 

b) Let Y → B be an FD in T with at least two attributes in Y ,and let Z be Y with one of its 

attributes removed. If Z → B follows from the FDʹs in T (including Y → B) ,then replace 

Y → B by Z → B. 

Repeat the above steps in all possible ways until no more changes to T can be made. 

Decomposition Algorithm 

Input: A relation R˳ with a set of functional dependencies S˳. 

Output: A decomposition of R˳ into a collection of relations, all of which are in BCNF 

Method: The following steps can be applied recursively to any relation R and set off FDʹs S.  

Initially, apply them with R = R˳ and S = S˳. 

1. Check whether R is in BCNF. if so nothing more needs to be done. Reduction {R} as the 

answer. 

2. If there are BCNF violations, let one be X → Y.use algorithm closure X⁺.                         

Choose Rı = X⁺as one relation schema and let R2 have attributes of X and those attributes of 

R that are not in X⁺. 



87 
 

3. Use algorithm for projecting a set of functional dependencies to compute the set of FDʹs for 

Rı and R2: let these be Sı and S2 respectively. 

4. Recursively decompose Rı and R2 using this algorithm. Return the union of the results of 

these decompositions. 

 

In database design, to test for lossless decomposition, one may use the following algorithm 

1. Create a matrix S such that  

 a row for each Ri in D and 

 a column for each Aj in R 

2. Each S (i , j) = bij for all i ,j 

3. for i =1 to n 

for j =1 to m 

if Aj an element of Ri , set bij = aj 

4.  repeat for each X→Y in f for all rows where they correspond in X.if there is an a in Y set all 

Yʹs to a 

else 

pick some bij and set all of the Yʹs  that bij 

until 

no change in S. 

5. If there exists a row with all aʹs, then it’s a lossless decomposition  

 

3NF Decomposition algorithm 

Let Fc  be a canonical cover for F,Type equation here. 

i = 0; 

for each functional dependency 

ߙ →   in Fc do ߚ 

if none of the schemas Rj  i≤ ݆ ≤ ݅ 

           contains ߚߙ.then 

begin 



88 
 

         i = i + 1; 

         Ri = ߚߙ 

end 

if none of the schemas Rj 1≤ ݆ ≤ ݅ 

       contains a candidate key for R then 

begin 

i = i + 1; 

Ri = any candidate key for R, 

end 

return ( Rı, R2,R3,…, Ri ) 

 

Canonical Cover algorithm 

Fc computation algorithm 

Fc = F 

   repeat 

            apply union rule  (right side of fd) 

                find fd with extraneous attributes ( left | right side) 

                  and delete these 

                    until Fc does not change. 

 

BCNF Decomposition algorithm 

result := {R} 

done := false; 

compute F⁺ 

while (not done) do 

if (there is a schema Ri in result that is most in BCNF) then 

Begin 

     let ߙ →  be a nontrivial functional dependency that holds on Ri such that  ߚ

ߙ       → ܴ݅ is not in F⁺ and ߙ ∩  ; ø= ߚ



89 
 

       result := (result – Ri ) ∪ (Ri −ߚ) ∪  ,(ߚ,ߙ)

            end 

        else 

done:= true 

 

When we decompose a relation, we have to use natural joins or Cartesian products to put the 

pieces back together .This takes computational time. 

Comparison of BCNF and 3NF 
It is always possible to obtain a 3NF without sacrificing lossless join on dependency 

preservation. 

 If we do not eliminate all transitive dependencies, we may need to use null values to 

represent some of the meaningful relationships. 

 Repetition of information occurs. 

 If we must choose between BCNF and dependency preservation, it is generally better to opt 

for 3NF. 

 If we cannot check for dependency preservation efficiently, we either pay a high price in 

system performance or risk the data. 

 The limited amount of redundancy in 3NF is then a lesser evil. 

 BCNF 

 Loss-less join 

 Dependency preservation 

Are goals of relational design. 

 

Algorithm : 3rd NF with a lossless join and dependency preservation  
Input: A relation R and a set of FD that holds in R . 
Output: A decomposition of R into a collection of relations, each of which is in 3NF. 
             The decomposition has the lossless join and dependency preservation properties. 
Method: perform the following steps 

1. Find a minimal basis for  F, say G 

2. For each functional dependencies X → A in G,use XA as the schema of one of the 

relations in the decomposition. 



90 
 

3. If none of the sets of relations from step 2 is a super key for R, add another relation 

whose schema is a key for R. 

R (A B C D E) 

FDs      

              AB → C 

                C → B 

                 A → D 

Use closure AB for C → B,      A → D 

            A B D = D is included but not C 

We conclude that the first FD AB → C is not implied by the second and third FDʹs. we get a 

similar conclusion if we try to drop the second or third FD. 

 We must also verify that we cannot eliminate any attributes from a left side. 

 We start the 3NF synthesis by taking the attributes of each FD as a relation schema. 

{A,B,C} 

{C, B} 

{A, D} 

It is never necessary to use a relation whose schema is a proper subset of another relations 

schema, so we can drop S2 {A, B,C} and {A,D}. 

R has two keys = {A,B,E}    {A,C,E}.Neither of the keys is a subset of the schema chosen so far. 

We must add one of them R4 {A, B, E} = Final decomposition is Rı {A, B, C}  R2 {A,D}  R3 

{A, B, E} 

 

Relation (Town, street, code) 

FD; town ,street 

Professor (SSN, name, age, rank, specialty) 

Compute canonical cover 

Attribute and Dependency Preservation 

R = {Aı, A2, …, An} is to be decomposed into a set D of relation schemas, 



91 
 

D = {Rı, R2,…,Rn}.The decomposition is said to satisfy the attribute preservation condition if    

R = {Aı,A2, …, An} = Rı∪ R2  ∪ …∪Rn. 

If a decomposition is not dependency preserving, some dependency is lost in the decomposition. 

 

Decomposition and lossless (nonadditive) joins. 

A decomposition is called lossless (nonadditive) when natural joins applied to the relations in the 

decomposition do not generate spurious tuples. Loss is lossless refers to the loss of information 

and not the loss of tuples. Actually the loss of information occurs because of added (spurious) 

tuples in the joins. A decomposition which is not lossless is called lossy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



92 
 

WEEK –EIGHT 

RELATIONAL ALGEBRA 
In the relational data model, attribute relationships are represented by relations. Relational data 
model, unlike, network model, does not provide links to represent associations. Instead, another 
relation is used to represent an association. 

Relations that represent associations can be existing relations in the database or they can be 
generated (created) from existing relations by using relational operators. 

The relational operators can be described using either the relational algebra or relational calculus. 

Relational algebra is a set of operators that constructs the required relation from given relations. 

The relational calculus gives a definition of the desired relation 

Some terminology and definitions 

∃      there exists 

∀     for all 

˄     and 

˅     or 

-      not complement 

∈     belongs to member of   

⊆    subset  

∅     empty 

:      such that 

[ , ]     ( , and )  delimiters 

Definitions that will be needed 

Given the tuples r = <r1, ……,rm> and  

                            S = <s1, ……,sn> 

the concatenation of r with s is the 

  (m+n) tuple defined by 



93 
 

ഥݏݎ  = <r1,…., rm,s1,….,sn > 

for example, if r = <1, 2, x> and 

  s = <a, 2, 3> then 

ഥݏݎ   = <1, 2, x, a, 2, 3 >  

2  Let R be an n-array relation, r∈ ܴ a tuple of R, and {D1, …., Dn} the domains of R; then 

1 r [Di] designate the ith component (value of Di) of r. 

2 If A ⊆ {D1, ….., Dn}, then 

(a) r [A] is a tuple containing only those components specified by A 
e.g if r = <a, 2, f> and 
R is R (D1, D2 , D3) then 
r [D1, D3] = <a, f> 

(b) R [A] = {r[A]: r∈R}, e.g. if R (D1, D2, D3) is 
R[D3, D2] = f 2       R (D1, D2, D3)  then R[D1] =     a 
        g 1   a 2 f   b 
        f 3   b 1 g   c 
        g 3   c 3 f   d 
        f 2   d 3 g   e 
     e  2 f 

Let T (x, y) be a binary relation. The image set of x under T is defined by 

 gT  (x) = {yi <x, y> ∈ ܶ} 
For example, if R is 

   R (D1, D2) 
1 a 
1 b 
2 c 
1 d 

then 
 gR (D1 = 1) = { <a>, <b>, <d>} 
 gR (D1 =2)= {<a>} 
 gR (D1= 3) = {∅} 
4. Given an n-array relation R over a set f domains {D1,….., Dn} and a k-tuple (k≤ ݊) of 

domains A (A ⊆ {D1, …….,Dn} ) then 
 .(ܣ ݊݅ ݐ݊ ݊݅ܽ݉݀ ℎ݁ݐ ݈݈ܽ ݏ݊݅ܽݐ݊ܿ ܣ̅) A – {D1,…., Dn} = ܣ̅  1
2   If r is an n-tuple of R, then  
gR (r [̅ܣ]) = {s:s ∈ > [ܣ] ܴ , ܣ̅] ݎ s] > , ܣ̅] ܴ ߳ A]} 



94 
 

if the relation R is 
R (D1 D2 D3 D4 D5) 
      1 a  x f 2 
      2 a y g 3 
      1 b x f 2 
      2 c y b 3 
      3 a x f 1 
      1 b y f 2 
     2 a x b 3 
And A ={D3, D2, D4}, then ̅ܣ = {D1, D5} 
Let r = <1, a, x, f, 2>; 
Then r [A] = <x, a, f> 
 And  r [̅ܣ] = <2 ,1> 
  And 
gR (r [̅ܣ] =gR (<1, 2>)]) = {<x, a, f>, <x, b, f>, <y, b, f>} 
  

5. Two sets of attributes A and B are compatible if they are of the same degree and the 
corresponding domain are of the same data type. 

 
BUYER ( NAME,     ITEM)   PRODUCT (CODE COST PRICE) 
                SMITH         A             A                 5          8 
                JONES          B             B                 4          4 
                ADAMS       A             C                 6  9 
               SMITH          B 
               JONES          A 
              SMITH          C 
 
The relations deposit the products manufactured by a company (their code, production costs, and 
selling price), and the buyers of those products (their names and the products they buy). 
For each operator, the expression on the left-hand side of the equality sign is the relational 
algebra expression for the operator. The expression on the right-hand side is the relational 
calculus definition of the operator. 
The first three relational operators are required to obtain any subset of a given relation. For 
example, suppose that a user waits those tuples in the PRODUCT relation where the PRICE 
attribute value is less than or equal to 8. 
Restriction operator can express this requirement as 
PRODUCT [PRICE ≤8] = (code,  cost,  price) 
           A  5    8 
           B  4    4 
More finally, restriction is defined as 



95 
 

  R [AߠV] = {r:r ∈R ˄ (r[A]=v)} 
Where A is an attribute of R 
,≥,> is one of the conditional operators (theta)ߠ             >,≥, =, ݎ ≠ 
            V is a literal value 
The restriction operator is equivalent to a qualification, containing a single condition, on a single 
relation. It requires a specific data value (8 in the preceding example) in the condition involving 
two attributes of the same relation. For example, suppose that one would like to know which 
products are being sold at cost. The selection operator can specify this data selection as 
PRODUCT [PRICE = COST] = (CODE, COST,  PRICE) 
       B    4    4 
In this case, the qualification specifies a condition involving the two attributes PRICE and COST 
in the relation PRODUCT. The two attributes must be compatible. That is, they must be of the 
same data type. The result relation contains only those tuples of PRODUCT where the COST 
attribute value is equal to the PRICE attribute value. More formally, selection is defined as 
R [A ܤ ߠ] = {r:r ∈  .{([ܤ] ݎߠ[ܣ]  ݎ)  ܴ
Projection operator can be used to perform this selection. For example, if a user wants to know 
names of all buyers of products, this data selection specified as 
BUYER [NAME] = (NAME) 
   Smith 
   Jones 
   Adams 
In addition, any duplicate tuples are also eliminated. More formally, projection is defined as 
 R [A] = {r [A] : r ∈ ܴ} 
The cross-product operator forms all possible combination of the tuples of two relations. 
For example, the cross product of BUYER and PRODUCT is 
BUYER ⊗ PRODUCT = (NAME, ITEM,  CODE,  COST,  PRICE) 

1. Smith A  A  5  8 
2. Jones  B  A  5  8 
3. Adams A  A  5  8 
4. Smith B  A  5  8 
5. Jones  A  A  5  8 
6. Smith C  A  5  8 
7. Smith  A  B  4  4 
8. Jones  B  B  4  4 
9. Adams A  B  4  4 
10. Smith  B  B  4  4 
11. Jones  A  B  4  4 
12. Smith  C  B  4  4 
13. Smith A  C  6  9 
14. Jones  B  C  6  9 



96 
 

15. Adams A  C  6  9 
16. Smith B  C  6  9 
17. Jones  A  C  6  9 
18. Smith  C   C  6  9 

More formally, cross product is defined as 

  R ⊗ S = {(ݏݎഥ ) : r ∈ ∋ ݏ  ܴ ܵ} 

Suppose that a user wants a list of buyer names, the products they buy and the cost and price of 
each product. The answer to this query is contained in two relations, BUYER and PRODUCT. A 
new relation containing the answer to the query can be constructed by taking the join of BUYER 
and PRODUCT according to a join condition. 

The join condition is expressed on two compatible attributes, one from each of the original 
relations. 

BUYER [ITEM = CODE] PRODUCT = (NAME ITEM    CODE COST 
 PRICE) 

     Smith   A A  5  8 

     Jones   B B  4  4 

     Adams   A A  5 
 8 

     Smith  B B  4  4 

     Jones   A A  5  8 

     Smith   C C  6  9 

More formally, join is defined as 

R [A ߠ] S = {(ݏݎഥ ): r ∈ ݏ   ܴ ∈  {([ܤ] ݏ ߠ[ܣ] ݎ)  ܵ

Where again ߠ is one of < ≤ > ≥ =  ≠ ݎ

The attribute A and B must be compatible. 

Join  

(1) Generalize join forms a new tuple from a BUYER and PRODUCT tuple whenever the 
join condition is satisfied. 

(2) A natural join is a join where the conditional operator is equality. 



97 
 

“Find the buyers who buy each type of product” 

Data selection can be represented by a division operator as 

BUYER [ITEM÷  product [ܧܦܱܥ

   = (Name) 

       Smith  

More formally, division is defined as  

R[A÷ ∋ r :[ܣ̅] S = {r [ܤ ܴ ˄ s [B]⊆ gR (r [̅ܣ])} where the attribute A and B are compatible. 

The result relation consists of the projection of  the tuples in the dividend relation on those 
attributes (NAME) not in the dividend attribute that satisfy the division. 

Finally, the projection of PRODUCT on CODE is 

  PRDUCT [CODE] = (CODE) 

     A 

     B 

     C 

Operation of mathematical sets ∪ =Union 

    ∩ = intersection 

    − = difference 

Find those buyers who purchase products whose price is greater than 5 but less than 9 would be 
expressed as  

(BUYER [ITEM = CODE] (PRODUCT [PRICE > 5])) 

  PRODUCT [PRICE < 9] [NAME] 

Operation of any Data model 

 Basic data managemet operations 
 Basic arithmetic operations 
 Sort 
 Summary 
 Union =set1+ set2 ∪ 



98 
 

 Intersection = set1 *set2 ∩ 
 Difference = set1-set2 - =[1, 3, 4]- [1, 2, 4] = [3] 
 Division = set1/set2 
 Equality = [1, 3] = [1,3] = true 
 Inequality = [1, 3] <> [2, 4] 
 Subset =⊆ = [1, 3]<= [1, 2, 3, 4] 
 Proper subset= [1,3]< [1, 2, 3, 4] 
 Super set = [1, 2, 3,4]>= [1, 3] 
 Proper superset =[1, 2, 3, 4] > [1,3] 

Query =search 

Relational operation.operates 

Concatenation of ݏݎഥ  

R (D1 D2 D3 ) r2 <a, 2, f> r [D1 D3] = <a, f>= r [A] 

R (D1 D2 D3)                       R(D1 D3)=              R[A] 

Binary relation = gR (D1 =1) = {<a>, <b>, <c>} 

Many relation = gR r [̅ܣ]  
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



99 
 

WEEK NINE 

RELATIONAL ALGEBRA 

Four broad classes 

Set operations = union, intersection, difference 

R∪ ܵ = the union of R and S 

Is the set of element appears in R and S or both. An element appears only once in the 
union even        if it is present in both R and S. 

R ∩ ܵ = the intersection of R and S is the set of elements that in both R and S 

 

R – S = the difference of R and S is the set of element that are in R but not in S. Note that R-S is 
difference from S-R. The letter is the set of element that are in S but not in R. 

2. Operations that remove part of relation 

Selection = eliminate some row tuples 

Projection = eliminate some column 

R [D1 D2 D3]  R [D1]    R [D3 D2] 

     a 2 f        a          f 2 

     b 1 g        b           g 1 

     c 3 f        c           f 3 

 

R [D1 D2]   gR (D1 = 1) = {<a>, <b>, <d>} 

1 A 
   gR (D1 = 2) ={<c>} 

1 B 
 

2 C   gR (D1 = 3) = {∅} 
1 d 

R (D1 D2 D3 D4 D4)    r = <1, a, x, f, 2> 



100 
 

      1 a x f 2    R [A] = {x, f, a} 

       2 a y g 3    R [A] = {1,2} 

       1 b x f 

       2 c y b 2  

A = {D3 D2 D4}     ̅ܣ = {D1  D5} 

Projection = a new relation that has only some of R column 

 .A1, A2,……, An (R) is a relation that has only the columns attributes A1, A2, ….., An of R ߨ

Movie 

title year length In column Studio Name Producer 
Star war 1977 124 True fox 12345 
Might ducks 1991 104 True Disney 07890 
Wayous 
world 

1992 95 true Paramount 99999 

 

 title, year, length (movie) ߨ

Title year Length 
Star wars 1977 124 
Might ducks 1991 104 
Wagnus world 1992 95 
  

  = in color (movie) ߨ

Incolor 
true 
 

Selection = operator applied to a relation R provides a new relation with a subset of R’s tuples. 
The tuples in the resulting relation are those satisfy some condition C that involves the attributes 
of R. We denote this operation 

 б ∁ (R) or бf (R)   f is formula 

б length ≥ 100 (movie) 

 

 



101 
 

Title Year length Incolor Studio name Producer 
Star wars 1977 124 True Fox 12345 
Might ducks 1991 104 True disney 67890 
 

б length ≥ 100 AND studio name = “fox” (movie) 

Title year length incolor Studio name Producer 
Star war 1977 124 true fox 12345 
 

Operations that combine the tuples of two relation including Cartesian product or cross product 

Join operation = selecting pair tuples from two relations   

Cartesian product, cross product or product of two set R and S is the set of pairs that can be 
formed by choosing the first element of the pair to be any element of R and the second on 
element of S. This product is denoted by R ⊗ S  

The components from R precede the components from S in this order. 

R      

A B 
1 2 
3 4 
    

S 

B C D 
2 5 6 
4 7 8 
9 10 11 
 

B is an attribute of both schemes  

We have used R.B and S.B in the schema for R × S 

A R.B S.B C D 
1 2 2 5 6 
1 2 4 7 8 
1 2 9 10 11 
3 4 2 5 6 
3 4 4 7 8 
3 4 9 10 11 



102 
 

Natural join 

We find a need to join two relations by pairing only those tuples that match in some way. The 
simplest sort of match is the natural join of two relations R and S. 

Natural join is denoted by R ⋈ S 

Let A1, A2, …., An be attribute in both the schema of  R and the schema of  S then a tuple r 
from R and a tuple s from S are successfully paired if and only if r and s agree on each of the 
attribute A1, A2, …., An 

A B C D 
1 2 5 6 
3 4 7 8 
 

B C D 
9 10 11 
 

A tuple that fails to pair with any tuple of other relation in join is sometimes said to be a dangling 
tuple. 

U 

A B C 
1 2 3 
6 7 8 
9 7 8 
 

V 

B C D 
2 3 4 
2 3 5 
7 8 10 
 

U⋈ V  

A B C D 
1 2 3 4 
1 2 3 5 
6 7 8 10 
9 7 8 10 



103 
 

Theta- joins 
The natural join forces us to pair tuples using one specific condition. 
Theta join refers to an arbitrary condition which we shall represent by ∁ 

R ⋈ ∁S 

1. Take the product of R and S 
2. Select from the product only those tuples that satisfy the condition ∁ 

U ⋈A< D V 

A U.B U.C V.B V.C D 
1 2 3 2 3 4 
1 2 3 2 3 5 
1 2 3 7 8 10 
6 7 8 7 8 10 
9 7 8 7 8 10 
 

U ⋈ A < D AND U.B ≠ V.B      V 

A U.B U.C V.B V.C  D 
1 2 3 7 8 10 
 

Combining operations to form queries 

What are the title and years of movies made by fax that are at least 100 minute long ? 

To compute 

1. Select those movies tuples that have length  ≥ 100 
2. Select those movies tuples that have studio name = “fox” 
3. Compute the intersection of 1 and 2 
4. Project the relation 3 onto attributes title and year. 

 title, year ߨ   

          ↓  

          n 

   ↙           ↘ 

 б length ≥ 100             б studio name = “fox” 
  ↓                                ↓ 
        Movie     movie 



104 
 

 title, year (б length ≥ (movie) ∩ б studio name = “fox” (movie) ) ߨ
Movie1 (title, year, length, filmType, studioName) 
Movie2 (title, year, starName) 
Find the stars of movie that at least 100 minute long 
 title, year (б length ≥ 100 (movie1⋈ movie2)  ߨ
Renaming  
 = Ps (R) = change the name to S 
   Payo (bell) = change the name to ayo from bell 
Ps (x, c, d) (S) is a relation named S but its first column has attribute X instead of B 
 
Uncle (x, y)      P 
   ↙  ↘ 
   U   S 
Grandparent (p, y) mother (P, X) 
       Sister (S, X) 
 
G. parent X  grandchild (y, x) is parent (x, z) 
 ↓          parent (z, y) 
Parent Z  sister (x, y) = parent (p, x)  parent (p, y) 
 ↓ 
Chid Y   brother (x, y) = parent (z, x) 
     Parent (z, y) 
     Male (x) x≠ y 
 
Male = {Adam, Bill} 
Female = {Anne, Beth} 
Person = male ∪ female = {Adam, Bill, Anne, Beth} 
 
Male × person  {Adam, Bill}    {Adam, Bill, Anne, Beth} 
   Adam adam bill adam 
   Adam bill bill bill 
   Adam anne bill anne 
   Adam beth bill beth 
 
Father   mother    parent 
C1 C2  C1 C2   C1 C2 
Adam bill  anne bill   adam bill 
Adam beth  anne beth   adam beth 
       Anne bill 
       Anne  beth 



105 
 

As a collection of tuples of feets 
Father <adam, bill> 
Father <adam, beth> 
Mother <anne, bill> 
Mother <anne, beth> 
Parent <adam, bill> 
Parent <adam, beth> 
Parent <anne, bill> 
Parent <anne, beth> 
 
A and B are isomorphic 
 
 
Deductive database 
Parent (X, Y) ← father (X, Y) 
Parent (X, Y) ← mother (X, Y) 
Father (adam, bill) 
Father (adam, beth) 
Mother (anne, bill) 
Mother (anne, beth) 
Grandparent (X, Z) ← parent (X, Y), parent (Y, Z) 
Parent (X, Y) ← father (X, Y) 
Parent (X, Y) ← mother (X, Y) 
 
Father 
X Y 
adam Bill 
Bill cathy 
 a 
 
Parent 
Y Z 
Adam Bill 
Bill Cathy 
Cathy dove 
 b 
 
X F.Y P.Y Z 
Adam Bill adam Bill 
Adam Bill Bill cathy 
Adam Bill Cathy Dove 



106 
 

Bill Cathy Adam Bill 
Bill Cathy Bill Cathy 
Bill cathy Cathy dove 
 
X F.Y P.Y Z 
Adam Bill bill Cathy 
Bill cathy Cathy dove 
 
X F.Y Z 
Adam Bill Cathy 
Bill Cathy Dove 
 
Natural join 
Taking the Cartesian product of the two relations 
Selecting those tuples which have identical attribute on the columns with the same attribute 
Filtering out the super flows columns 
 
F (X, Y) ⋈ P (Y, Z) 
F (X, Y) ⋈ P (Y, Z) is defined as 

ܻ.ܨ б ܼ,ܻ.ܨ,ܺ ߨ = ܲ.ܻ (݂ (ܺ,ܻ) × ܲ (ܻ,ܼ)) 
1. Cartesian product F (X, Y) × P (Y, Z) 
2. Selected the same tuple of the same value F.Y and P.y 

Projection X, F.Y, Z on X and Z 

(ܻ,ܺ) ܨ) ܼ,ܺߨ   ⋈ ܲ (ܻ,ܼ)) 

                                       Or 

Grandfather (X, Y, Z) ← father (X, Y) , parent (Y, Z) 

   Or 

Grandfather (X, Z) ← father (X, Y), parent (Y, Z) 

Consider the domain 

{Sarah, Diane, Pamela, Simon, David, Peter } 

r (X, Z) ←  r (X, Y), r (Y, Z) 

r (a, c)∈ P for which there exist no b (b ≠ a and b ≠ c) such that r (a, b) ∈ P and r (b, c) ∈ P 

 

 



107 
 

a 
b 
c 
d 
 

The relation is position over 

Over (a, b)  over (a, b) 

Over (a, d) over (b, c) 

Over (b, d) over (c, d) 

Deductive database 

Over (X, Z) ← over (X, Y), over (Y, Z) 

Over (a, b) 

Over (b, c) 

Over (c, d) 

Or 

Over (X, Y) ← on (X, Y) 

Over (X, Z) ← on (X, Y), over (Y,Z) 

On (a, b) 

On (b, c) 

On (c, d) 

  (b)   (d)   (f) 

(a)Type equation here. 

  (C)   (e)   (g) 

Edge (a, b)  edge (c, e) 

Edge (a, c) edge (d, f) 

Edge (b, d) edge (e, f) 

Edge (b, e) edge (e, g) 



108 
 

Path (X, X) 

Path (X, Z) ← edge (X, Y) path (Y, Z). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



109 
 

WEEK – TEN 

SQL 
Table   column1 column2    column n 

Tuples or records 

       

 A query issued against a DBS also results in a table  
 Column has data type 
 This data type describes the attribute of the tuples/records  
 

SQL   table   row  column 

    

Relation  tuples  attributes 

 A table can have up to 254 columns with the same or different data types 
 A set of values (domain) 

 

ORACLE BASIC DATA TYPES 

 Char (n)  = fixed_length character data n long 
  = maximum size for n is 255 bytes 

  = e.g. char (40) 

 Varchar 2(n)  = variable_length character data string 
  = maximum size for n is 2000 

  = e.g. varchar (80) 

 Number (o, d)   = numeric data type for integers and reals 
                             o= overall number of digits 

             d= number of digits to the right of the decimal point 

             o= maximum number is 36 

             d= maximum value = -84 to +127 

e.g. number(8) 

Number (5, 2) = this cannot contain any thing larger than 999.99 without resulting in an error. 

 



110 
 

 

Data type derived from number are integer = int 

            Decimal = dec 

            Smallint 

            Real 

 Date – for storing date and time.  
 Date format = DD-MMM-YY 

   23-OCT-94 

   07-JAN-07 

 Long = character up to length 2GB 
 

In Oracle SQL = no data type ‘Boolean’. It can be simulated by using char (1) or number (1).  

It may have value null. Null is different from empty string ‘’ or 0. 

Example database 

EMP (EMPNO,   ENAME,   JOB,   MGR,   HIREDATE,    SAL,    DEPT. NO.) 

  7369       Smith       clerk    7902 17-Dec-80 800        20 

 

Data type = EMPNO: number (4), ENAME: varchar2 (30); 

       JOB: char (10), MGR: number (4), HIREDATE: date, 

       SAL: number (7,2), DEPTNO: number(2) 

 

DEPT  ( DEPTNO DNAME              LOC  ) 

         10     store             Chicago 

         20  research             Dallas 

 

 

 

 



111 
 

 

 

SALGRADE ( GRADE LOWSA         HIGHSAL ) 

         1      700               1200 

         2     1201                 1400 

        3     1401                2000 

QUERIES 

SQL is used to retrieve information from database. 

Form: 

 Select distinct <columns> 

From <table> 

Where<condition> 

Order by<column>asc/desc 

Select is also called projection 

Select loc, DEPTNO 

From DEPT;  

Select* (asterisk symbol * is used to denote all attributes) 

From DEPT; 

Select may contain arithmetic expression 

 Select ENAME, DEPTNO, SAL* 1.55 

 From EMP; 

Operators  

a) for numbers: abs, cos, sin, exp, log, power, mod, sqrt, +,-,*,/ 
b) for strings: char, concat (string1, string2),  

lower, upper,  

replace (string, search_ string,  replacement_string) 

` substr(string, m, n) 

length, to_date, translate 



112 
 

c) for date:     add.month 
       month.between 

                  next.day 
        to.char 

 Distinct = after the keyword select, forces the elimination of duplicates from the query 
result. 

 Order by = works with column. 
 

Select ENAME, DEPTNO, HIREDATE 

From EMP 

Order by DEPTNO asc, HIREDATE desc 

 

ENAME  DEPTNO HIREDATE 

   Ford       10   03-DEC-81 

  Smith       20   17-DEC-80 

  Blake       30  01-MAY-81 

  Ward       30  21-FEB-81 

  Allen       30  20-FEB-81 

 

SELECTION OF TUPLES/RECORDS 

Where  = for records retrieval 

 = simple operator = and, or, not 

 = condition may be pattern matching 

List the job title and the salary of those employees whose manager has the number 7698 or 7566 
and who earn more than 1500 

 Select JOB SAL 

From EMP 

Where (MGR = 7698 or MGR = 7566) 

And SAL > 1500; 

1. Comparison operator =, /= or <>,<= are allowed 



113 
 

Further comparison operators are 

2.     Set condition <column> not, in <list of values> 

select *  

from DEPT 

where DEPTNO in (20, 30) 

3.     NULL value <column> is, not, null 

Select * 

From EMP 

Where MGR is not null 

4.     Domain conditions <column> not between <lower bound > and <upper bound> 

select EMPNO, ENAME, SAL 

from EMP 

where SAL between 1500 and 2500, 

select ENAME  

from EMP  

where HIREDATE between ’02-APR-81’ and ’08-SEP-81’ 

 

String Operations 

Like = uses two operators %, _ (percentage, and underline) 

Percentage = wild card  

Underline = position marker 

If one is interested in all tuples of the table DEPT that contain two C in the name of the 
department, the condition would be 

Where DNAME like %C%C%. 

% sign means that any sub(string) is allowed there even the empty string. Underline stands for 
exactly one character where DNAME like %C_C% would require that exactly one character 
appears between the two Cs. 

 



114 
 

1. upper (string) 
DNAME = UPPER (DNAME) 

2. lower (<string>) converts letters to lower case 
3. initcap(<string>) converts initial letter to upper case 
4. length (<string >) returns the letter of the string  
5. substr(<string>n, m ) 
6. substr(‘DATABASE SYSTEMS’, 10, 7) returns ‘SYSTEMS’ 

 
Aggregate function 

1. count = count rows  
How many tuples are stored in the relation EMP?  

 select count (*) 

 from EMMP 

How many different job titles are stored in the relation EMP? 

 select count (distinct JOB) 

 from EMP 

2. MAX 
3. MIN 

List the minimum and maximum salary   

 Select min (SAL), max(SAL) 

From EMP 

4. SUM = sum of all salaries of employees working in the department 30 
Select sum (SAL) 

From EMP 

Where DEPTNO = 30 

QUERIES 

Join tuples 

Select distinct  [<alias ak>.]<column i>, … 

   [<alias al>.]<column j> 

from<table 1>[<alias a1>], …., <table n >[<alias an>] 

where [<condition>] 

For each salesman, we now want to retrieve the name as well as the number and the name of the 
department where he is working.  



115 
 

select ENAME , E.DEPTNO, DNAME select ENAME , DEPTNO, DNAME 

From EMP E, DEPT D   from EMP, DEPT  

Where E.DEPTNO = D.DEPTNO  Where EMP.DEPTNO = DEPT.DEPTNO 

And JOB = ‘SALESMAN’;   And JOB = ‘SALESMAN’; 

E and D are table aliases for EMP and DEPT respectively. 

 

PROJECT (PNO, PNAME, PMGR, PERSONS, BUDGET, PSTART, PEND) 

EMP (EMPNO, EName, JOB, MGR, HIREDATE, SAL, DEPTNO) 

DEPT (DEPTNO, DNAME, LOCATION) 

SALARYGRADE (GRADE, LOWSAL, HIGHSAL) 

e.g. for each project, retrieve its name, the name of its manager, and the name of the department 
where the manager is working. 

selectEName, DName, PName 

from EMP E, DEPT D, PROJECT P 

where E.EMONO = P.MGR 

and D.DEPTNO  = E. DEPTNO; 

It is even possible to join a table with itself: 

e.g list the names of all the employees together with the name of their managers 

select E1.Ename, E2.Ename 

from EMP E1, EMP E2 

where E1.MGR = E2.EMPNO 

The join columns are MGR for table E1 and EMPNO for table E2 

 

 

 

 

 

 



116 
 

SUBQUERIES 

A respective condition in the where clause can have one of the following forms; 

1. set-valued subqueries 
expression [not] in <subquery> 

expression<comparison operator> any/all <subquery> 

An expression can either be a column or a computed value.  

2. test for (non) existence 
[not] exists <subquery> 

In where clause condition, using subqueries can be combined arbitrarily by using the logical 
connectives and, or 

e.g. list the name and salary of employee of department 20 who are leading a project that started 
before December 31, 190 

selecteName, salary 

from EMP in 

(select PMGR 

from PROJECT 

where PSTART <’31-OCT-90’) 

and DEPTNO = 20; 

The subquery retrieves the set of those employees who manage a project that started before 
December 31, 1990. If the employee working in department 20 is contained in this set (in 
operator), this tuple belongs to the query result set. 

List all employees who are working in a department located in BOSTON 

select * 

from EMP  

where DEPTNO in 

(select DEPTNO 

from DEPT 

where LOC =  ‘BOSTON’); 

 

 



117 
 

A subquery may rise again in a subquery in its where clause  

List all those employees who are working in the same department as their manager  

Select *  

From EMP E1 

Where DEPTNO in  

(select DEPTNO 

from EMP [E] 

where [E.]EMPNO  = E1. MGR); 

The subquery in this example is related to its surrounding query since it refers to the column 
E1.MGR. For Each tuple in the table E1, the subquery is evaluated individually. 

Condition of the form <expression><comparison operator> [any/all] <subquery> are used to 
compare a given <expression> with each value selected by <subquery>. 

Retrieve all employees who are working in department 10 and who earn at least much as any (i.e. 
at least one) employee working in department 30 

Select * 

fromEMP 

where SAL>= any 

(select SAL  

from EMP 

where DEPTNO = 30) 

List all employees who are not working in department 30 and who earn more than all employees 
working in department 30 

Select * 

From EMP 

where SAL> all 

(select SAL  

from EMP 

where DEPTNO = 30) 

and DEPT NO <> 30; 



118 
 

 

For all and any, the following equivalences hold: 

In  = any 

Not in <> all or != all 

Often a query result depends on whether certain rows do (not) exit in (other) tables. Such type of 
queries is formulated using the exits operator.  

List all the departments that have no employees  

Select  * 

from DEPT 

where not exits 

(select * from EMP 

where DEPTNO = DEPT.DEPTNO) 

Operations on result sets 

SQL supports three set operators which have the pattern 

<Query 1><set operator><query 2> 

           union 

        intersect 

           minus 

Assuming that we have a table EMP2 that has the same structure and columns as the table EMP,  

 all employee numbers and names from both tables 
select EMPNO, ENAME 

from EMP 

         union 

select EMPNO, ENAME 

from.EMP2 

 

 

 



119 
 

 Employees who are listed in both EMP and EMP2 
select * 

from EMP 

                  intersect 

select *  

from EMP2 

 Employees who are only listed in EMP 
select * 

from EMP 

         minus 

select *  

from EMP2 

Each operator requires that both tables have the same data type for the columns to which the 
operator is applied. 

Grouping 

Group by<column(s)> 

This clause appears after the where clause and must refer to columns of tables listed in the from 
clause e.g. for each department, we must retrieve the minimum and maximum salary 

                  Select DEPTNO, min (SAL), max (SAL) 

                  From EMP 

                  Group by DEPTNO 

Result 

                    DEPTNO                      min (SAL)                   max(SAL) 

                         10                               1300                            5000 

                         20                                800                             3000 

                         30                                900                             2850 

If a group contains less than three rows, this type of condition is specified using the having 
clause. As for the select clause also in a having clause only<group_column(s)> and aggregation 
can be used  



120 
 

e.g. retrieve the minimum and maximum salary of clerks for each department having more than 
three clerks 

                 select  DEPTNO,Min(SAL), max (SAL) 

                 from EMP 

                 where JOB=’CLERK’ 

                 group by DEPTNO 

                 having count(*)>3; 

1. Select all rows that satisfy the condition specified in the where clause 
2. From these rows form groups according to the group by clause 
3. Discard all groups that do not satisfy the condition in the having clause 
4. Apply aggregate functions to each group 
5. Retrieve values for the columns and aggregations listed in the select clause 

Some comments on tables 

Accessing tables of other users 

                Select* from <user><table>, 

Adding comments to definitions  

 Comment on table 

               Comment on table<table> is ‘<text>’, 

 Comment on column 

               Comment on column<table>.<column> is ‘<text>’ 

Comments on  tables and columns are stored in the data dictionary. They can be accessed using 
the data dictionary views USER.TAB.COMMENTS and  USER. COL. COMMENTS. 

 

Modifying table and column definition 

A column can be added using the alter table comment 

             Alter table<table> 

                           Add <column><datatype>[default<value>] 

                                                             [<column constraint>] 

If more than only one column should be added at one time respectively add clause needs to be 
separated from by colons 



121 
 

A table constraint can be added to a table using 

                Alter table<table> 

                              Add (<table constraints>) 

When the size of strings that can  be stored needs to be increased 

               Alter table<table> 

                             Modify <column><datatype> 

                             Default <value><column constraints> 

It is now possible to rename a table, column and constraint 

Deleting a table 

A table and its row can be deleted by using the commend 

               Drop table<table>[cascade contraint] 

View 

To create a view (virtual table) has the form  

 Create [or replace]view<view name>[<column(s)>] as<select statement>[with check option 
[constraint<name>]] 

Replace recreates the view if it already exists. 

The following view contain the  name, job title  and annual salary of employees working in 
department 20 

              Create view DEPT20 as 

              Select  EName, JOB, sal* 12 ANNUAL_SALARY 

              From EMP 

              Where DEPTNO = 20 

ANNUAL SALARY is specified for the expression SAL*12 and this alias is taken by the view 

Alternative  

              Create view DEPT20(E name, job, ANNUAL_SALARY) as 

              Select ename, JOB, SAL*12 

              From EMP 

              Where DEPTNO = 20; 



122 
 

A view can be used in the same as a table, that is row can be retrieved from a view or rows can 
be modified. 

In Oracle, SQL, no insert, update, or delete modification on views  are allowed that use one of 
the following constraints in the view definition 

 Join 
 Aggregate functions such as sum, min, max, out etc 
 Set-valued subqueries (in, any, all) or test for existence (exits) 
 Group by clause or distinct clause 

A view can be deleted using the command 

Delete <view_name> 

 

DATA DEFINITION IN SQL 

Creating tables 

The SQL command for creating an empty table has the following form: 

Create table<table> ( 

<Column 1><data type> [not null] [unique] [<column constraint>], 

---------------- 

---------------- 

<Column n ><data type> [not null] [unique] [<column constraint>], 

[<Table constraint(s)>] 

); 

 

 For each column, a name and a data type must be specified 
 The column name must be unique within the table definition 
 Column definitions are separated by comma 
 There is no difference between names in lower case letters and names in upper case 

letters 
 In fact the only place where upper and lower case matter are strings comparison 
 A not null constraint is directly specified after the data type of the column and the 

constraint requires defined attribute values for that column different from null. 
 The keyword unique specifies that no two tuples can have the same attribute .value for 

this column 
e.g. the create table statement for our EMP table has the form: 



123 
 

create table EMP( 

empno number(4) not null, 

empName varchar2(30) not null, 

job varchar2(10) 

mgr number (4) 

hiredate date 

salary number(7,2) 

deptNo number(2) 

); 

Note: Except for the columns, empNo and empName null values are allowed. 

Checklist for creating tables 

 What are the attributes of the tuples to be stored? 
 What are the data types of the attributes? 
 Should varchar2 be used instead of char? 
 Which columns build the primary key? 
 Which columns do (not) allow null values? 
 Which columns do (not) allow duplicates? 
 Are there default values for certain columns that allow null values? 

 

DATA MODIFICATIONS IN SQL 

After a table has been created using the create table command, tuples can be inserted into the 
table or tuples can be deleted or modified. 

Insertions 

i. Insert statement 
Form; 

Insert into <table> [(column i,…, column j>] 

Values(<value i, ….,value j>); 

For each of the columns, a corresponding (matching) value must be specified.If a column is 
omitted, the value null is inserted instead. 

e.g. a)Insert into PROJECT(PNO, PNAME, PERSONS, BUDGET, PSTART)values(313.’DBS’, 
7411, NULL, 1500.42,’10-OCT-94’); 

or 



124 
 

b)Insert into PROJECTvalues (313, ’DBS’, 7411, NULL, 1500.42, ’10-OCT-94’,  null); 

If there are already some data in other table; these data can be used for insertions into a new table 

Insert into <table>[(<column i,…,column j>)]<query> 

Create table OLDEMP ( 

ENO number (4) not null, 

HDATE date 

We can now use the table EMP to insert tuples into this new relation: 

Insert into OLDEMP (ENO, HDATE) 

Select EMPNO, HIREDATE 

From EMP 

Where HIREDATE<’31-DEC-60’; 

 

Updates 

For modifying attribute values of (some) tuples in a table, we use the update statement; 

Update<table> set 

<column i> =<expression i>,…. 

<column j> =<expression j>,…. 

Where<condition> 

Note 

 That the new value to assign to <column i> must be matching the data type. 
 An update statement without a where clause results in changing respective attributes of 

all tuples in the specified table. 
e.g.  a) the employee JONES is transferred to the department 20 as a manager and his salary is 
increased by 1000 

update EMP set, 

JOB = ‘MANAGER’, DEPTNO = 20, SAL = SAL+1000 

Where ENAME = ‘JONES’; 

b)All employees working in the departments 10 and 30 get a 15% salary increase: 

Update EMP set  



125 
 

SAL = SAL * 1.5 

Where DEPTNO IN (10,30); 

We can use query instead of expression: 

e.g. all salesmen working in department 20 get the same salary as the manager who has the 
lowest salary among all managers 

update EMP set 

SAL = (select min(SAL) from EMP 

Where JOB = ‘MANAGER’) 

Where JOB = ‘SALESMAN’ and  

DEPTNO = 20; 

 

The query retrieves the minimum salary form all managers. This value is assigned to all 
salesmen working in the department 20. 

 

Deletions 

 

Delete from<table> 

[where<condition>], 

Note if the where clause is omitted, all tuples are deleted from the table. 

e.g. delete all projects (tuples) that have been furnished before the actual date(system date): 

delete from PROJECT 

where PEND<sysdate; 

Note sysdate is a function in SQL that return the system date.Another SQL function is user 
which returns the name of the user logged into the current oracle session. 

 

 

 

 



126 
 

Commit and rollback 

 A sequence of database modifications i.e. a sequence of insert, update, delete statements 
is called a transaction. Modifications of tuples are temporarily stored in the database 
system. They become permanent only after the statement commit has been issued.  

 As long as the user has not issued the commit statement, it is possible to undo all 
modifications since the last commit. To undo modifications, one has to issue the 
statement rollback. 

 Note that any data definition command such as create table results in an internal commit. 
 A commit is also implicitly executed when the user terminates an oracle session. 

Select  

from 

where 

group by 

order by 

inner join   merge rows 

insert rows 

update - rows 

delete - rows 

 

Constraints 

In creating table, two types of constraints are provided:  

 column constraints  
 table constraint. 
 

Column constraints are associated with a single column.Table constraints are associated with 
more that one column. 

Constraint <name> primary key unique not null 

 Constraint can be named in case of violation due to insertion. Two constraints here are 
unique and not null 

 The most important type of integrity constraints in a database are primary key constraints. 
 A primary key constraint enables a unique identification of each tuple in the table. Based 

on the primary key, the database system ensures that no duplicates appear in a table. 
e.g 

create table EMP( 



127 
 

EMPNO number (4) constraint pk_emp 

Primary key; 

) 

 Defines the attribute EMPNO as the primary key for the table. 
 Each value for the attribute EMPNO must appear only once in the table EMP. 

e.g. we want to create a table called PROJECT to store information about projects. For each 
project, we want to store the 

i. number of the project 
ii. name of the project  

iii. the employee number of the project’s manager 
iv. the budget 
v. the number of persons working on the project 

vi. The start date 
vii. The end date of the project  

We have the following conditions  

a. A project is identified by its project number 
b. The name of a project must be unique 
c. The manager and the budget must be defined 
 

Create table PROJECT ( 

PNonumber(3) constraint prj-pk primary key, 

PNamevarchar 2(60) unique 

PMgr number (4) not null, 

Persons number (5) 

Budget number (8.2) not null 

Pstart date 

Pend date 

); 

 

A unique constraint can include more than one attribute: 

unique(<column i>,…,<column j> ) is used. 

If it is required that no two projects have the same start and end date, we have to  add the table 
constraint. 



128 
 

Constraint no-same-dates unique (PEnd, PStart).This constraint has to be defined in the create 
table command after both columns PEnd and PStart have been defined. 

Three types of constraints: 

 not null 
 primary key 
 unique 

Check constraint = to restrict possible attribute values  

Foreign key constraint = to specify interdependences between relations 

 

Check constraint 

syntax 

Constraint<name> check <condition> 

Columns in a table must have values that are within a certain range or that satisfy certain 
conditions. If a check constraint is specified as a column constraint, the condition can only refer 
that column 

e.g 

o The name of employees must consist of upper case letters only 
o The minimum salary of an employee is 500 
o The numbers must range between 10 and 100 
 

Create table EMP 

( 

eName varchar2(30) constraint check_name 

Check (eName = upper(eName)), 

SAL number (5,2) constraint check_sal 

Check (SAL>= 500) 

Deptno NUMBER (3) constraint check_deptno 

Check (DEPTNO betwen10 and 100); 

 

Condition can refer to all columns of the table. Not only simple conditions are allowed. 

A check condition can include a not null constraint 



129 
 

SAL number(5.2) constraint check_sal 

Check (SAL is not null and SAL>=500) 

It is allowed to use and, or, not are allowed in the condition. 

e.g. at least two persons must participate in a project and project’s start date must be before the 
project’s end date. 

Create table PROJECT( 

----- 

Persons number (5)constraint check_person 

check(person>2) 

----- 

Constraint dates_ok check (PEND >PSTART), 

In this task definition, check_person is a column constraint and date_ok is a table constraint. 

The database system automatically checks the specified conditions each time a database 
modification is performed on this relation. 

 

Foreign Key Constraints 

EMP 

  Child_table         parent_table 

 

 

 

 

Foreign key    primary key 

Constraint<name> foreign key <columns> 

       References<table> [(<columns>)] 

       On delete cascade 

 A foreign key constraint or referential integrity constraint can be specified as a column 
constraint or as a table constraint 

DEPTNO 
10 
10 
20 
20 
30 

DEPTNO 
10 
20 
30 
40 



130 
 

 This constraint specifies a columns or a list of columns as a foreign key of the referencing 
table 

 The referencing table is called the child_table and the referenced table is called the parent 
_table  

 The clause foreign key has to be used in addition to the clause references if the foreign 
key includes more than one column 

 The clause references defines which columns of the parent_table are referenced. 
e.g. each employee in the table EMP must work in a department that is contained in the table 
DEPT 

create table EMP( 

EMPNO number (4) constraint pk_emp primary key; 

----- 

DEPTNO number (3) constraint fk_deptno 

References DEPT (DEPTNO)); 

 

 Since in this table definition, the referential integrity constraintincludes onlyone column, 
the clause foreign key is not used. 

 It is very important that a foreign key must refer to the complete primary key of a 
parent_key, not only a subset of the attributes that build the primary key.  

 In order to satisfy a foreign key constraint, each rows in the child_table has to satisfy on 
of the following two conditions 

1. The attribute value (list of attribute values ) of the foreign key must appear as a 
primary key value in the parent_table or 

2. The attribute value of the foreign key is null 
 

According to the above definition for the tableEMP, an employee must not necessarily work in a 
department. 

e.g. each project manager must be an employee 

create table PROJECT( 

PNO number (3) constraint prj_pkpimary key; 

PMGR number(8) not null 

Constraint fk_pmgr reference EMP, 

); 

A constraint can be disabled using the command 

Alter table<table_name> disable 



131 
 

Constraint <name>| primary key |unique <columns> 

         Cascade 

To disable a primary key, one must disable all foreign key constraints that depend on this 
primary key. The clause cascade automatically disables foreign key constraints that depend on 
the (disabled) primary key. 

Triggers 

 Is a procedure 
 Such a procedure is associated with a table and is automatically called by the database 

system whenever a certain modification (event) occurs on that table.Modificationson a 
table may include:  

i. Insert  
ii. Delete 

iii. Update operations 
 

Structure of triggers 

A trigger definition consists of the following components: 

i. Trigger name  
Create or replace trigger<trigger name> 

ii. Trigger time point 
Before/after 

iii. Trigger event(s) 
Insert or update of <columns> 

Or delete on <table> 

iv. Trigger type (optional) 
For each row 

v. Trigger restrictions (only for each row trigger!) 
When <condition> 

vi. Trigger body 
<PL/SQL block> 

 The clause replace re-creates a previous trigger definition having the same <trigger 
name> 

 A trigger can be invoked before or after the triggering event 
 A single event is an insert, an update or a delete. Events can be combined using logical 

connective or 
 In order to program triggers effectively, it is essential to understand the difference 

between a row level trigger and a statement level trigger.A row level trigger is defined 



132 
 

using the clause for each row.A row trigger executes once for each row after (before) the 
event.A statement trigger is executed once after (before) the event.If the update affects 20 
tuples, the trigger is executed 20 times for each row at a time. A statement trigger is only 
executed once. 
 

When combining the different types of triggers, there are twelve possible trigger configurations: 

Event Trigger before Time point 
after 

Trigger 
statement 

Type row 

Insert  
 

   

Update   
 

   

delete   
 

  

 

Only with a row trigger it is possible to access the attribut.values of a tuple before and after the 
modification. 

 For an update trigger, the old attribute value can be accessed using :old<column> 
And the new attribute value can be accessed using: new<column> 

 For an insert trigger only: new<column> can be used 
 For a delete trigger only: old<column> can be used 
 

In these cases:  

:new<column> refers to the attribute values of <column> of the inserted tuple  

:new<column> refers to the attribute value of <column> of the deleted tuple 

In a row trigger thus it is possible to specify comparisons between old and new attribute values 
in the PL/SQL blocks e.g. 

if :old.sal<:new. Sal then 

<Sequence of statement> 

o When clause can be used in combination with a for each row trigger. 
The trigger body consists of a PL/SQL block. Rollbackand commit can be used in this block. 

Three constructs = If inserting 

       If updating                 exit 

       If deleting 

e.g. 



133 
 

create or replace trigger emp.check 

after insert or delete or update on EMP for each row 

begin 

if inserting then 

<PL/SQL block> 

end if 

if updating then  

<PL/SQL block> 

end if  

if deleting then 

<PL/SQL block> 

end if  

end; 

 

 

In the PL/SQL blocks of a trigger, an exception can be raised using the statement:  

raise_application_error( 

Raise_application_error can refer to old/ new values of modified rows: 

raise_application_error(-20010,’salary increase form’ 

|| to_char (:Lold.sal)||`to’ 

to_char (: new.sal)||’ is for high’) 

raise_application_error(-20030,’employee id’|| 

to_char(:new.EMPNO)||’ does not exit’); 

e.g triggers 

Suppose we have to maintain the following integrity constraint: 

i. The salary of an employee different from the president cannot be decreased and must also 
be increased more than 10% 

ii. Depending on the job title, each salary must lie within a certain salary range 



134 
 

We assume a table SALGRADE that stores the minimum (MINSAL) and maximum (MAXSAL) 
salary for each job title (JOB). 

Since the above condition can be checked for each employee individually, we define the 
following row trigger: 

Create or replace trigger check_salary_EMP 

After insert or update of SAL, JOB on EMP for each row 

When (new.job|= ‘PRESIDENT’)------ trigger restriction 

declare 

minsal, maxsal SALGRADE.MAXSAL%TYPE; 

begin 

     ------ retrieve minimum and maximum salary for job 

select MINSAL, MAXSAL into minsal, maxsal 

from SALGRADE 

where JOB = :new. JOB; 

----- if the new salary has been decreased or does not lie within the salary range raise an 
exception. 

 

if (:new.SAL<minsal or 

 :new. SAL>maxsal) then 

 raise_application_error(-20230, ‘salary range exceeded’) 

 

else if (:new. SAL<:old. SAL) then 

 raise_application_error(-20225, ‘salary has been decreased’) 

 

else if (:new. SAL> 1.1 *:old.SAL) then 

raise_application_error(-20235, ‘more than 10% increase’); 

end if  

end: 



135 
 

WEEK – ELEVEN 

PL/SQL 
Procedure language SQL allows users and designers to develop complex database applications 
that require the usage of control structures and procedural elements such as  

 Procedures  
 Functions 
 Modules 

The basic construct in PL/SQL is a block statement in a PL/SQL block include 

 SQL statements 
 Control structures (loops) 
 Condition statement (if-then-else) 
 Exception handling 
 Calls of other PL/SQL blocks 

 

PL/SQL blocks that specify procedures and functions can be grouped into packages. A package 
is similar to a module and has an interface and an implementation part. 

 

PL/SQL offers a mechanism to process query results in a tuple-oriented way, that is, one tuple at 
a time. For this, cursors are used. A cursor is a pointer to a query result and used to read attribute 
values of selected tuples into variables. A cursor is used in combination with a loop construct 
such that each tuple read by the cursor can be processed individually. 

 

STRUCTURES OF A PL/SQL BLOCKS 

1. [ <block header> ] – it specifies whether PL/SQL block is a procedure, function and a 
package. 

 

2. [declare 
 

                  <constants> 

                   <variables> 

                    <cursors> 



136 
 

                    <user defined exceptions> ] 

Begin 

3. <PL/SQL statements> 
4. [ exception 

    <exception handle> ] 

End; 

 

Declarations constants, variables cursors and exceptions must be declared in the decision section 
of that block. 

<variable name> [constant] <data type> [not null] [:= <expression>]; 

Boolean type may be true, false, null. 

The not null clause requires that declared variable must always have a value different from null. 
Expression is used to initialize a variable. 

Constant mean once a value has been assigned to the variable, the value cannot be changed. 

Declare 

           hire_date  date; 

           job_title   varchar2(80) := ‘salesman’; 

           emp_found  Boolean; 

           salary_incr    constant number (3,2) :=1.5; 

           …. 

Begin 

….. 

End; 

 

Two allowed data type 

₋ column 

- many columns 



137 
 

 

a. Emp.empno%TYPE: refers to the data type of a column EMPNO in the relation EMP. 
b. DEPT%ROW TYPE: specifies a record suitable to store all attribute values of a complete 

row from the table DEPT. 

Such records are typically used in combination with a cursor. A field in a record can be accessed 

using 

                     <record name> <column name> 

e.g DEPT, deptno 

A cursor declaration specifies a set of tuples (as a query result) such that the tuples can be 

processed in a tuple-oriented way (i.e one tuple at a time) using the fetch statement. 

 

Format or syntax for cursor 

Cursor <cursor name> [ <list of parameters>] is <select statement>; 

Cursor name should not be any PL/SQL variable. 

List of parameters = <parameter name> <parameter type> 

Examples of a parameter type are char, varchar2, number, date, Boolean, integer. 

Parameters are used to assign values to the variables that are given in the select statement. 

e.g we want to retrieve the following attribute values from the table EMP in a tuple-

oriented way: the job title and name of those employees who have been hired after a 

given date, and who have a manager working in a given department. 

 

Cursor employee_cur (start_date date  

                                       Dno         number) is 

Select JOB, ENAME 



138 
 

From EMP 

Where HIREDATE > start_date 

And exit. 

(Select * from EMP where E.MGR = EMPNO and DEPTNO = DNO) 

Before a declared cursor can be used in PL/SQL statements, the cursor must be opened and after 

processing the selected tuples, the cursor must be closed. We use open statement to open a 

cursor. 

Open <currsor_name> [<list of parameter>] 

Close statement is used to disable a cursor 

Close <cursor name> 

Open    

 Select statement is processed. 

 The cursor references the first selected tuple 

 Selected tuples can be processed one tuple at a time using the fetch command 

Close 

                  Fetch <cursor_name> 

                  Into <list of variables>; 

 Fetch command assigns the selected attribute values of the current tuple to the list of 

variables. 

 After the fetch command, the cursor advances to the next tuple in the result set. 

 

Note that the variables in the list must have the same datatypes as the selected values. 

After all the tuples have been processed, the close command is used to disable the cursor. 

 



139 
 

 PL/SQL does not permit the use of create table statement way to assign a value to a 

variable. 

1. Declare 

                             Counter integer := 0; 

                            Begin 

                                     Counter = counter + 1; 

                              End 

2. Select statement 

                  Select <columns> 

                  Into <metching list of variables> 

                  From <tables> 

                  Where <condition> 

Here, select retrieves one tuple/record, two records pls use cursor. 

Instead of a list of single variables, a record can be given after the keyword into. Also, in this 

case, select statement must retrieve atmost one tuple. 

                    Declare 

                              Employee_rec EMP%ROW TYPE; 

                              Max_sal EMP.SAL%TYPE; 

                    Begin 

                             Select EMPNO, ENAME, JOB, MGR, SAL, COMM, HIREDATE,              

                                                                                             DEPTNO 

                             Into employee_rec 

                             From  EMP 



140 
 

                            Where EMPNO = 5698; 

                             Select max(SAL) 

                            Into   max_sal 

                            From    EMP; 

                   End; 

Loops 

1. While loops 

2. Two types of for loops 

3. Continous loops: continous loop are used in combination with cursors. 

 

1. Label name: name is used incase of nested loop.  

inner loops are completed unconditionally using the exit. 

Label name 

While <condition> loop 

          <sequence of statements> 

End loop [label name] 

2. Label name 

For <index> in [reverse] lower bound..upper bound loop 

<sequence of statement>  

End loop [label name] 

 Index is declared implicitly 

 Index can be constant or expression 

 Reverse causes the iteration to proceed downwards from the higher bound to the lower 

bound. 



141 
 

Cursor for loops can be used to simplify the usage of a cursor; 

          Label name 

          For <record_name> 

          In <cursor name> 

      <list of parameters> loop 

      <sequence of statements> 

End loop [label name] 

It is possible to specify a query instead of <cursor name> in a for loop. 

For <record name> 

In (select statement) loop 

     <sequence of statements> 

End loop; 

e.g for sal_rec 

      in (select SAL + COMM total from EMP) loop 

      end loop; 

If – then – else 

If <condition> then 

    <sequence of statements> 

Else <sequence of statement> 

End if; 

 



142 
 

Except create a table, other command such as delete, update, insert,  

Commit are used in PL/SQL. 

 If update or delete statements are used in combination with a cursor these commands can be 

restricted to currently fetched tuple. In these cases the clause where current of <cursor name> is 

added as shown in the example. 

The example below illustrates how a cursor is used together with a continous loop. 

Declare 

             Cursor emp_cur is select from EMP; 

             Emp_rec      EMP%RPWTYPE 

             Emp_sal       EMP.SAL%TYPE 

             Begin 

                       Open emp_cur; 

                        Loop 

                                  Fetch emp_cur into emp_rec 

                                   Exit 

                                   When emp_cur %NOT FOUND 

                                    Emp_sal = emp_rec.sal; 

                                    <sequence of statement> 

                           Endloop 

                           Close emp_cur 

               End. 

Each loop can be completed unconditionally using the exit clause. 



143 
 

                     Exit <block label> 

                      When <condition> 

 

 Using exit without a block label causes the completion of the loop that contains the exit 

statement. 

 A condition can be a simple comparison of values. 

 In most cases, the condition refers to a cursor. 

 %NOT FOUND is a predicate that evaluates to false if the most recent fetch command has 

read a tuple. 

 The value of <cursor name> %NOT FOUND is null before the first tuple is fetched. 

 The predicate evaluates to true if the most recent fetch failed to return a tuple and false 

otherwise. 

%found is the logical opposite of %not found. 

  

EX2: the following PL/SQL block performs the following modifications. All employees having 

KING has their manager get a 5% salary increase. 

 Declare 

              Manager EMP.MGR%TYPE; 

              Cursor emp_cur (mgr_no number) is 

                                              Select SAL 

                                               From EMP 

                                               Where MGR = mgr_no 

                            For update of SAL; 

                                   Begin 



144 
 

                                  Select EMPNO 

                                   Into manager 

                                   From EMP 

                                   Where ENAME = ‘KING’; 

                             For emp_rec in emp_cur (manager) loop 

                                       Update EMP 

                                         Set SAL = emp_rec.sal * 1.05 

                                         Where current of emp_cur; 

                              End loop; 

                               Commit; 

                        End; 

Note that the emp_rec is implicitly defined. 

 

EXCEPTION HANDLING 

 Two types of exceptions                                                                                                                                            

o System-defined exceptions 

o User-defined exceptions 

 

System-defined exceptions are always automatically raised e.g  

CURSOR_ALREADY OPEN 

INVALID_CURSOR 

NO_DATA_FOUND 



145 
 

TOO MANY ROWS 

ZERO_DIVIDE 

User defined exceptions: 

1. it uses raise command  

               raise <exception name> 

2. when <exception name> 

then <sequence of statement> 

3. raise_application_error e.g  

declare  

            emp_sal EMP.SAL%TYPE; 

            emp_no EMP.EMPNO%TYPE; 

            too_high_sal exception; 

begin 

                select EMPNO, SAL into emp_no, emp_sal 

                from EMP 

                where ENAME = ‘KING’; 

                         if emp_sal * 1.05 >4000 

                         then raise too_high_sal 

                         else 

                         update EMP 

                          set SQL….. 

                         endif; 



146 
 

                       exception 

                             when NO_DATA_FOUND …no tuple selected 

                      then rollback; 

                      when too_high_sal 

                      then insert into high_sal_emps values (emp-no); 

                       commit; 

            end; 

 raise_application_error = display error or warming messages on the screen. 

It has two parameters: 

<error number> -is a negative number btw -20000 to -20999. 

<message-text> -is a string with < 2048 characters. 

To-char is used to convert chart to numeric. 

e.g if emp_sal * 1.05 > 4000 

      then raise_application_error (-20000, ‘salary increase for employee with id’ // to-char 

(emp.no) // ‘is too high’); 

 

user-defined exception: which must be declared by the user in the declaration part of a 

block where the exception is used/implemented. 

 

o System defined exception are always automatically raised whenever 

corresponding errors or warming occur. 

o User defined exceptions in contrast must be raised explicitly in a sequence of 

statements using raise <exception name> 



147 
 

o After the keyword exception at the end of a block, user defined exception 

handling routines are implemented. 

An implementation has the pattern 

           When <exception name> then <sequence of              statements>; 

Example of system defined exceptions; 

Exception name remark 

1. cursor_already_open You have tried to open a cursor which is already open. 

2. INVALID_CURSOR Invalid cursor operation such as fetching from a closed 

cursor. 

3. NO_DATA_FOUND A select….into or fetch statement returned no tuple. 

4. TOO_MANY_ROWS A select….into statement returned more than one tuple. 

5. ZERO_DIVIDE You have tried to divide a number by 0. 

 

Declare 

           Emp_sal EMP.SAL%TYPE; 

         Emp_no EMP.EMPNO%TYPE; 

         Too_high_sal exception; 

Begin 

           Select EMPNO 



148 
 

                        SAL into emp_no,emp_sal 

            From EMP 

            Where ENAME = ‘KING’; 

 

If  emp_sal * 1.05 > 4000 then 

Raise too_high_sal 

Else 

           Update EMP 

            Set sal…. 

Endif; 

Exception 

              When NO_DATA_FOUND …. No tuple selected 

              Then  rollback; 

               When too_high_sal then 

               Insert into high_sal_emps 

               Values (emp_no); 

      Commit; 

End; 

If a PL/SQL program is executed from the SQL plus shell, exception handling routines may 

contain statements that display error in warning messages on the screen. 

For this, the procedure 



149 
 

                  Raise_application_error can be used. 

This procedure has two parameters <error-number> and <message-text>. 

Error-number is a negative integer defined by the user and must range between -20000 and -

20999. 

Error-message is a string with a length upto 2048 characters. 

// = the concatenate operator can be used to concatenate single strings to one string. 

In order to display numeric variables, these variables must be converted to string using the 

function to_char. e.g 

          If emp_sal * 1.05 > 4000 then 

Raise_application_error (-20010,’salary increase for employee with id’ // to_char (emp_no) // ‘is 

too high’); 

ETHERNET 

 Procedure/language/ SQL ; to implement complex data structure and algorithm 
 The basic construct in  PL/SQL  is a block 
 In block constants and variables can be declared 
 Variables can be used to store query results 
 Statements in a  PL/SQL block include : 

                          SQL  statements 

                            Control structure (loops) 

                            Control statements(if-then-else) 

      Exception handling 

                            Cells of other PL/SQL  blocks 

PL/SQL  blocks that specify procedures and functions can be grouped into packages 

 A package is  similar to  module  and it has an interface  and an implementation part    
 Oracle  offer several predefined  packages  e.g 

                 Input/output  routines 



150 
 

                 File handling 

                 Job scheduling 

One importance of PL/SQL is that it offers a mechanism to process query  results in a triple 
oriented way  i.e one triple at a time. For this, cursors are used.                 – A cursor is a pointer 
to query result.                                                                                                                –A cursor is  
used to read  attribute values  of  selected  turples  into variables.                                                  –
A cursor is used in combination with  a -loop  construct such that each  turple read by the cursor 
can be processed individually. 

Structure of  PL/SQL   blocks.                                                                                                         
– PL /SQL  is  a block  structured language                                                                                                                              
-  each  block builds a program unit                                                                                                                            
-  blocks can be nested.                                                                                                                                
–  a  PL/SQL  block has an  optional declare section 

 A part containing PL/SQL  statement 
 An optional exception handling part    

[<block header>]  specifies procedure, function, package 

       [  declare 

                      <constants> 

                       <variables> 

                        <cursors> 

                         <user defined exceptions>  ] 

  Begin 

          <PL/SQL  statement > 

                [ Exception 

                                 <exception handling>    ] 

    End. 

 Declaration 

-constant, variables,  cursors  and  exceptions used in a PL/SQL blocks must be declared in the 
declare section  of that block.   Eg. 



151 
 

   Variables and constant can be declared as follows: 

     <variable name> [constant] <data type> [not null] 

                                         [:= <expression>  ]; 

Valid data type = char(n )                                           (n=255 bytes and 2000 in oracle) 

 Char(40) 

 

 Varchar2(n)                                     (n=2000 and 4000 in oracle) 
 

Number(o.d)   …integer  or real 

O =overall number of digits 

D= number of digits to the right of the decimal point 

        O=38 

         D= - 84   to  +127       

          Eg.    Number(8) 

                   Number(5.2)     

Date  = DD-MM-YY                                     13-oct-06 

Long  character date up to a length of   2GB. 

   In oracle-SQL   there is no date  type  booleen. 

- Attribute may have the special value  null   (for unknown) 
- This value is different  from 0 
- It is also different from  the empty  string 

 

Boolean date may only be true, false  or null.  The “not null” clause requires that the  declared  
variable  must  always  have  a value  different  from null 

-<expression>  is used  to  initialize  a variable.                                                                                        
–if no  expression is  specified,  the  value  null  is  assigned to the variable.                                 –
the  clause constant states that; once a value  has been assigned to the variable, the value cannot 
be changed – the variable becomes a constant.    Eg. 



152 
 

            Declare 

                             Hire  date        date;  rhg’opo                                                                                                                                                           

Job title           var char 2(80)   I = ”sales man” ; 

Emp-found        Boolean; 

Salary_iner        constant             number(3.2)  =1.5 

………. 

Begin        ….  End; 
 
Instead of specifying a date type, one can also refer to the date type of a table column so called 
anchored declaration. Eg. 
      EMP. empno   %  type  refers to the date type  of the column  empno in the relation EMP. 
    DEPT % ROW TYPE      specifies a record suitable to store all attribute.  Values of a 
complete row from the table DEPT. 
      
CURSOR 
-  A  cursor declaration specifies a set of turples           
- A  turple can  be processed in a turple-oriented way. Eg,   one turple at a time using the  fetch 

statement. 
– A  cursor  declaration has the form; 
      Cursor  <cursor name>  [ ( < list of parameters > ) ] 
                                        Is    < select   statement >;  
 
-cursor name = not the name  of any PL/SQL  variable                                 
-parameters has the form  < parameter  name >   < parameter  type> 
  Parameter type are   char,  var char,  number,  date,  Boolean. 
 
 
E.g.  We want to retrieve the following  attribute values   from   the table  EMP in a turple-
oriented  way. The job title and name of those employees  who have been hired after a given date 
and who have a manager  working in a given  department 
 
 
 Cursor  employee_cur (start_date,  date, dno, number)   is 
          Select job, Ename  
          From EMP   E 
          Where HIREDATE > start_date 
           AND      exits 
               ( 
                   Select 
                   From  EMP 
                   Where E.mgr=Emp no 



153 
 

                   AND DEPT NO =dno); 
-before  a cursor  can be used, it  must be opened  using  the open  statement. 
    Open  < cursor name > [(<list of parameters>)] 
    The associated  select  statement Then is processed and  the cursor reference the first selected 
turple.                                                                                                                                 –selected 
turples then can be processed one turple at a time using the fetch command. 
     Fetch < cursor name >  into  < list  of  variables >; 
 
- fetch command assigns the selected attribute values of the current turple to the list of variables. 
-after the fetch command, the cursor advances to the next turple in the result set 
-note that the variables in the list must have the some date type as the selected values. 
-after all turples have been processed, the close command is used to disable the cursor 
        Close < cursor name > 
 
             Declare 
                        Cursor emp.cur   is  
                         Select  from  emp; 
                     emp-rec     EMP % ROW TYPE; 
                     emp-sal      EMP.SAL %TYPE; 
Begin 
                 Open    emp.cur; 
                      Loop 
                                    Fetch  emp.cur  into  emp-rec; 
                                    Exit 
                                    When   emp.cur  %  NOT FOUND; 
                                     Emp-sal   I =  emp-rec.sal; 
              End  loop 
           Close   emp.cur; 
End; 
 
 
Exceptions are used to process errors . 
   % NOT FOUND   is a predicate that evaluates to false if the most recent FETCH command has  
read a turple. 
The  predicate evaluates to true  if the most recent FETCH  failed to return a turple,and false 
otherwise. 
   % FOUND  is the logical opposite of % NOT FOUND. 
 
 
Language elements 

(1) variable  assignments 
(2) control structures  -  loops  (while and for) 

                                              -if –then- else 

      (3) procedure and function calls 

 



154 
 

1.  variable assignments 

declare 

              counter   integer   i = 0; 

             begin 

                counter  i =counter + i; 

while = 

       while < condition > loop 

                  < sequence of statement >;    

       End  loop 

For  < index >  in [ reverse ] 

           < lower bound > .. <upper bound> loop 

           <sequence of  statements > 

      End  loop 

   Reverse = causes the iteration to proceed downwards from the  higher bound to the 
lower bound. 
      If < condition> then 
          <sequence of statements> 
Else   < sequence of statement> 
 End if; 
 

The following PL/SQL  block performs the following modification. All employees having 
“KING”  as their manager get a 5% salary increase. 

       Declare 

                    Manager   EMP.MGR  % TYPE; 

                    Cursor emp.cur (mgr-no  number ) is  

                          Select SAL 

                           From   EMP 

                          Where   MGR = mgr-no 

     For   update  of  SAL; 



155 
 

         Begin 

                  Select EMPNO  into   manager 

                  From    EMP 

                 Where    ENAME =  “king”; 

          For  emp-rec in emp-cur (manager)  loop 

                       Update  EMP 

                      Set    SAL =emp-rec.sal   # 1.05 

                     Where  current of  emp.cur; 

         End loop; 

     Commit; 

End; 

 

Procedure   syntax 

Create [ or replace ] procedure < procedure name > 

      [ ( list of parameters >)] 

                       Is 

        <declaration>               

Begin 

          < sequence of statement > 

        [exception 

                  < exception  handling routine >] 

End   [ < procedure  name >] 

        Function  syntax 

Create [or replace] function  < function  name > 

           [ (< list of parameters >) ] 



156 
 

       Return < date type >   is 

Deleted procedure or function  by using: 

          Drop procedure   < procedure name > 

          Drop  function  < function  name > 

 

This procedure is used to increase the salary of all employees who work in the department given 
by the procedure’s parameter.  The percentage of the salary increase is given by a parameter too. 

Create  procedure  raise-salary (Dno number, percentage number DEFAULT o.s) 

                                                       Is 

Cursor  emp_cur  (dept-no   number)   is 

            Select    SAL 

            From       EMP 

            Where    DEPTNO  =  dept-no 

               For  update  of  SAL; 

Empsal     number(8); 

 

Begin 

                           Open  emp-cur (dno); ………………here dno is assigned to dept-no 

                             Loop 

                             Fetch  emp-cur  into  empsal;   

                             Exit 

                            When  emp-cur %NOTFOUND; 

                            Update   EMP  

                            Set      SAL = empsal   * ((100 + percentage) /100) 

                            Where   current  of  emp-cur; 



157 
 

             End  loop; 

            close emp-cur; 

             commit; 

end   raise-salary 

 

this procedure  can  be   called  from  the  SQL   plus shell  using the command 

        execute   raise-salary (10,3); 

if a procedure is called from a PL/SQL  block the keyword      execute  is  omitted. 

Functions have the same structure as procedures.   The only difference is that a function returns a 
value whose data type (un constrained) must be specified. 

 

Create function get-dept-salary (dno  number) 

     Return  number      is  

          All-sal   number; 

Begin 

           All-sal  i=0; 

          For  emp-sal    in 

                  (select   SAL 

                   From     EMP 

                   WHERE   DEPTNO  =  DNO 

                   AND    SAL   is   not  NULL)     loop 

        All-sal  :=  all-sal   +   emp-sal.sal; 

       Emp  loop; 

      Return  all-sal; 

End get-dept-salary; 



158 
 

In order  to  call a function from SQL plus shell, it is necessary to first define a variable to which 
the return value can be assigned. 

    Variable  <variable  name >      < date  type >; 

E.g. 

          Variable  salary  number 

        Execute  : salary  i= get-dept-salary (20); 

Note that the colon :  must  be put  in front  of  the  variable. 

We use an after trigger because the inserted and updated row is not changed within the PL/SQL 
block (eg.in case of a constraint violation, it would be possible to restore the old attribute 
values). 

Note that also modification on the table SALGRADE can cause a constraint violation.                                          
In order to maintain the complete condition we define the following trigger on the table 
SALGRADE.    In case of a violation by an update modification however, we do not raise an 
exception, but restore the old attribute values. 

Create or replace trigger check-salary-SALGRADE before update or delete on SALGRADE   for 
each row. 

    When (new.MINSAL  >  old.MINSAL   or  new. MAXSAL < old.MAXSAL ) 

Nly restricting a salary range can cause a constraint violation 

 

Declare 

             Job-emps   number (3) i=0; 

   Begin 

       If deleting then :……….does there exist an employee having the  deleted job? 

           Select count(*) 

            Into   job-emps 

             From    EMP 

             Where  job = iodd.job; 



159 
 

              If   job.emps  !=0  then……..    (  Raise-application-error (-20240,” there still exist 
employee with the job” II :old.job)); 

          End if  

 End if 

      If  updating  then ………….          (are there employees whose salary does not lie within the  
modified salary range? )  

                           Salary count(*) 

                         Into  job-emps 

  From  EMP 

  Where  JOB = : new.JOB 

  AND  SAL  not between : new. MINSAL  and            

             :new .MAXSAL; 

If  job-emps  ! =0   then  ………  (restore old salary ranges) 

    : new .MINSAL i = iold. MINSAL; 

    :new .MAXSAL  i= iold.MAXSAL; 

        End if; 

End  if                                                       (in this case a “before” trigger must be used  

                                                                    to restore the old attribute values of an    

                                                                                                                updated row.) 

             end.  

 

Suppose we furthermore have a column BUDGET in one table DEPT that is used to store the 
budget available for each department. 

Assume the integrity constraint requires that the total of all salaries in a department must not 
exceed the department budget. 

Critical operations on the relation EMP are insertions into EMP and updates on the attributes 
SAL or DEPTNO 



160 
 

   Create or replace trigger check-budget-EMP after insert or update of SAL DEPTNO on EMP 

    Declare 

           Cursor  DEPT-CURR  is 

            Select  DEPTNO  BUDGET 

            From  DEPT, 

            DNO     DEPT.DEPTNO % TYPE; 

            ALL SAL      DEPT.BUDGET % TYPE; 

             DEPT-SAL      number; 

Begin 

               Open   DEPT-CURR; 

               Loop 

                      Fetch  DEPT-CURR  into  DNO,  ALL SAL 

                      Exit  when  DEPT-CURR % NOT FOUND, 

   Select   sum (SAL) 

   INTO   DEPT SAL 

   FROM   EMP 

   WHERE  DEPTNO =DNO; 

If     DEPT-SAL  >  ALL SAL  then  

                                         (  raise-application- error     (-20325, “total of salaries in the      

                                                 department  II to char (DNO)   II ”  exceeds budget) )  

                                end if 

                       end  loop 

              close  DEPT-CURR    

 end.  


