B. I OLAJUWON

MTS 103: VECTOR AND GEOMETRY

Lecture Guide on Elementary Vector Operations

Definition

Scalars and vectors: Scalar is a single real number called magnitude and is not related to any direction in space. The vector is a quantity which has a magnitude as well as a definite direction in space. The speed of a bus is a scalar quantity but the velocity is a vector quantity.

Line vectors: The vector \overline{AB} , A is called the origin and B the terminus. The magnitude of the vector is given by the length AB and its direction is from A to B. These vectors are called line vectors.

Equal vectors: Two vectors are said to be equal when they have the] same length (magnitude) and are parallel having the same sense of direction. The equality of two vectors is written as $\overline{a} = \overline{b}$.

Zero vectors: If the origin and terminal points of a vector are same, then it is said to be a zero vector. Evidently its length is zero and its direction is indeterminate.

Unit vector: A vector is said to be a unit vector if its magnitude be of unit length.

Position vector: The position vector of any point P, with reference to an origin O is the vector \overline{OP} . Thus taking O as origin we can find the position vector of every point in space. Conversely, corresponding to any given vector \overline{r} there is a point P such that $\overline{OP} = \overline{r}$

Addition of two vectors: Let \overline{a} and \overline{b} be two vectors with respect to the origin O. The sum of these two vectors is given by $\overline{a} + \overline{b}$.

The unit vectors \overline{i} , \overline{j} , \overline{k} : The vectors \overline{i} , \overline{j} , \overline{k} have unit magnitude and they lie on the x, y and z axes respectively. We can expresses any vector in terms of these three unit vectors \overline{i} , \overline{j} , \overline{k} .

Collinear vectors: Two vectors \overline{a} and \overline{b} are said to be collinear if $\overline{a} = \lambda \overline{b}$, for some scalar λ , i.e., two vectors are collinear if the coefficient of \overline{i} , \overline{j} and \overline{k} are proportional.

Magnitude of a vector: Let $\overline{a} = a_1 i + a_2 j + a_3 k$. Then the magnitude or length of the vector \overline{a} is denoted by $|\overline{a}|$ or a and is defined as $|\overline{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}$.

Distance between two points: Let P_1 and P_2 be two points whose position vectors are respectively $\overline{a} = a_1 i + a_2 j + a_3 k$ and $\overline{b} = b_1 i + b_2 j + b_3 k$. Then the vector $\overline{P_1 P_2} = 0$ position vector of P_2 - position vector of $P_3 = 0$ and $P_4 = 0$ is the magnitude of the vector $\overline{P_1 P_2} = 0$. Then the distance between two points P_1 and P_2 is the magnitude of the vector $\overline{P_1 P_2}$.

*** The unit vectors in the direction of a vector \overline{a} are given as $\pm \frac{\overline{a}}{|\overline{a}|}$.

Examples:

- 1. Find the value of q if $\bar{a} = 2i + 5j + qk$. If the magnitude of \bar{a} is 9
- 2. Given vectors $\overline{a} = 5i + j + 3k$, $\overline{b} = i 3j + 4k$ and $\overline{c} = 7i + 2j 3k$. find the unit vector in the direction of $\overline{a} \overline{b} + 2\overline{c}$.
- 3. Find the distance between A and B whose-position vectors are $\overline{a} = 5i + j + 3k$, $\overline{b} = i 3j + 4k$ respectively.
- 4. Prove by vector method that the three points A(2, 3, 4), B(1, 2, 3) and C(4, 2, 3) form a right-angled triangle.

5. Show that the three points -3i - 6j + 21k, 9i + 3k and 15i + 3j - 6k are collinear.

Scalar Product or Dot Product

The scalar or dot product between vectors \overline{a} and \overline{b} is denoted by $\overline{a} \bullet \overline{b}$ and defined as $\overline{a} \bullet \overline{b} = |\overline{a}| |\overline{b}| \cos \theta$, where θ is the angle between \overline{a} and \overline{b} . The value of $\overline{a} \bullet \overline{b}$ is a scalar quantity.

*** Two vectors \bar{a} and \bar{b} are perpendicular if and only if $\bar{a} \bullet \bar{b} = 0$

Examples:

1. Given vectors $\overline{a} = 5i + j + 3k$, $\overline{b} = i - 3j + 4k$ and $\overline{c} = 7i + 2j - 3k$.

Find (i)
$$\overline{a} \bullet \overline{b}$$
 (ii) $(\overline{a} \bullet \overline{b}) \bullet \overline{c}$ (iii) angle between $\overline{a} - \overline{c} + 2\overline{b}$ and $\overline{a} + \overline{b} + \overline{c}$

2. Find the value of q for which the two vectors $are \overline{a} = 5i + qj + 3k$ and $\overline{b} = i - 3j + 4k$ are perpendicular to each other.

Vector Product or Cross Product

The vector product or cross product between two vectors \overline{a} and \overline{b} is denoted by $\overline{a} \times \overline{b}$ and is defined by $\overline{a} \times \overline{b} = |\overline{a}| |\overline{b}| \sin \theta$, where θ is the angle between \overline{a} and \overline{b} .

NOTE:

(i)
$$\bar{a} \times \bar{b} = -\bar{b} \times \bar{a}$$

(ii) If $a \times \bar{b} = 0$, then \bar{a} and \bar{b} are parallel or collinear

(iii)
$$\overline{a} \times \overline{a} = 0$$

(iv) If \bar{a} and \bar{b} represent the adjacent sides of a parallelogram then its area is $|\bar{a} \times \bar{b}|$.

(v) If
$$\bar{a}$$
 and \bar{b} represent any two sides of a triangle then its area is $\frac{1}{2}|\bar{a}\times\bar{b}|$

(vi) If $\overline{a} \times \overline{b} = \overline{c}$ then \overline{c} is perpendicular to both \overline{a} and \overline{b} .

(vii)
$$\overline{a} \times (\overline{b} \times \overline{c}) = (\overline{a} \bullet \overline{c})\overline{b} - (\overline{a} \bullet \overline{b})\overline{c}$$

(viii) Three vectors \bar{a} , \bar{b} and \bar{c} are said to be coplanar, if $\bar{a} \bullet (\bar{b} \times \bar{c}) = 0$.

Examples

- 1. If $\overline{a} = 5i + j + 3k$ and $\overline{b} = i 3j + 4k$. Find $\overline{a} \times \overline{b}$
- 2. If \overline{a} and \overline{b} are two vectors such that $|\overline{a}| = 16$, $|\overline{b}| = 12$ and $\overline{a} \bullet \overline{b} = 0$ Find $|\overline{a} \times \overline{b}|$.
- 3. Find the area of the triangle two of whose sides are given by the vectors $\bar{a} = 5i + j + 3k$ and $\bar{b} = i 3j + 4k$.
- 4. Find the area of the parallelogram formed by two vectors $\overline{a} = 5i + j + 3k$ and $\overline{b} = i 3j + 4k$.
- 5. Find the unit vector perpendicular to each of the vectors $\overline{a} = 5i + j + 3k$ and $\overline{b} = i 3j + 4k$.
- 6. Find a vector of magnitude 9 perpendicular to both the vectors $\overline{a} = 5i + j + 3k$ and $\overline{b} = i 3j + 4k$.
- 7. Show 'that the vectors $\overline{a} = 4i + 2j + k$, $\overline{b} = 2i j + 3k$ and $\overline{c} = 8i + 7k$ are coplanar.
- 8. If a force given by $\overline{F} = 5i + j + 3k$ displaces a particle from the position B to C whose position vectors are $\overline{b} = i 3j + 4k$ and $\overline{c} = 7i + 2j 3k$ respectively. Find the work done by the force.

• B. I OLAJUWON, 2011