
B. I OLAJUWON 

MTS 421 (COMPLEX ANALYSIS II): LECTURE GUIDE 

1. Revise the MTS 321 notes. 

2.0 ZEROS AND POLES. 

Suppose 0zz = is an isolated singularity of a complex function f, and that 
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is the Laurent series representation of f valid for the punctured open disk 

Rzz <−< 00 . 

 

The part 

                     k

k
k zza −

∞

=
− −∑ )( 0

1
                                                        (2.2) 

is called the principal part of the Luarent series (2.1) 

NOTE: 

(i)  If the principal part is zero, that is, all the coefficients ka−  in (2.2) are 

zero, then 0zz =  is called a removable singularity. 

(ii) If the principal part contains a finite number of nonzero terms, then 0zz =  is 

called a pole. If, in this case, the last nonzero coefficient in (2.2) is na−  ,n ≥ 1, then 

we say that 0zz =  is a pole of order n. If 0zz =   is pole of order 1, then the principal 

part (2.2) contains exactly one term with coefficient 1−a . A pole of order 1 is 

commonly called a simple pole. 

(iii) If the principal part (2.2) contains an infinitely many nonzero terms, then 0zz = is 

called an essential singularity. 



2.1 MEROMORPHIC FUNCTION 

A function f is meromorphic if it is analytic throughout a domain D, except possibly 

for poles in D. It can be proved that a meromorphic function can have at most a finite 

number of poles in D. For example, the rational function 
)1(
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zf  is 

meromorphic in the complex plane. 

Theorem 2.1:A function f that is analytic in some disk Rzz <− 0  has a zero of order 

n at 0zz =  if and only if f can be written   

                 )()()( 0 zzzzf nφ−=        

where φ is analytic at 0zz =  and 0)( 0 =zφ . 

Proof:  

Theorem 2.2:  A function f analytic in a punctured disk Rzz <−< 00  has a pole of 

order n at 0zz =  if and only if f can be written 

 )()()( 0 zzzzf nφ−−=  

where φ is analytic at 0zz =  and 0)( 0 =zφ . 

Proof: 

Theorem 2.3: If the functions g and h are analytic at 0zz = and h has a zero of order 

n at 0zz =  and 0)( 0 =zg  then the function 
)(
)()(

zh
zgzf =  has a pole of order n at 

0zz = . 

Proof: 

 



Theorem 2.4 : (Argument Principle)   Let C be a simple closed contour lying 

entirely within a domain D. Suppose f is analytic in D except at a finite number of 

poles inside C, and that  0)( ≠zf  on C . Then  
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where 0N  is the total number of zeros of f inside C and PN  is the total number of 

poles of f inside C.  In determining 0N and PN , zeros and poles  are counted 

according to their order or multiplicities. 

Proof: 

 

 

Theorem 2.5 (Rouche’s theorem) : Let C be a simple closed contour lying entirely 

within a domain D. Suppose f and g are analytic in D. If the strict inequality 

|f(z) − g(z)| < |f(z)|   holds for all z on C, then f and g have the same number of zeros 

(counted according to their order or multiplicities) inside C. 

Proof:  

 

2.1 Summation of infinite series 

We shall discuss the Summation of infinite series as one of the consequences of the 

Residue theorem. Hence, the students are advised to revise MTS 321 before the class. 

 

3.0 Analytic continuation 

Suppose we are given an infinite power series or an analytic formula which defines an 

analytic function f in a domain D. It is natural to ask whether one can extend its 

domain of analyticity. More precisely, can we find a function F which is analytic in a 



larger domain and whose values agree with those of f for points in D? Here, F is 

called an analytic continuation of f . For example, the complex exponential function 

ze  is the analytic continuation of the real exponential function  xe defined over the 

real interval (−∞,∞). The complex function ze  is analytic in the finite complex plane 

and xz ee =   when z = x, x being real. More generally, suppose 1f is analytic in a 

domain 1D  and 2f  is analytic in another domain 2D . If φ≠∩ 21 DD  

and )()( 21 zfzf =  in the common intersection 21 DD ∩ , then 2f  is said to be the 

analytic continuation of 1f  to 2D  and  1f  is the analytic continuation of  2f  to 1D . 

Example;   

• For definition of analytic function, revise MTS321. 

4. Conformal Mappings and Applications 

Here, we introduce various techniques for effecting the mappings of regions. Two 

special classes of transformation, the bilinear transformations and the Schwarz–

Christoffel transformations, will be discussed. A bilinear transformation maps the 

class of circles and lines to the same class, and it is conformal at every point except at 

its pole. The Schwarz–Christoffel transformations take half-planes onto polygonal 

regions. These polygonal regions can be unbounded with one or more of their vertices 

at infinity. 

5. BOUNDARY VALUE PROLEMS 

The potential field problems, including potential fluid flows, steady state temperature 

distribution, electrostatics problems and gravitational potential problems are governed 

by the Laplace equation. There is no time variable in these problems, and the 

characterization of individual physical problems is exhibited by the corresponding 

prescribed boundary conditions. The mathematical problem of finding the solution of 

a partial differential equation that satisfies the prescribed boundary conditions is 



called a boundary value problem, of which there are two main types: Dirichlet 

problems where the boundary values of the solution function are prescribed, and 

Neumann problems where the values of the normal derivative of the solution function 

along the boundary are prescribed. In other physical problems, like the heat 

conduction and wave propagation models, the time variable is also involved in the 

model. To describe fully the partial differential equations modelling these problems, 

one needs to prescribe both the associated boundary conditions and the initial 

conditions. The latter class is called an initial-boundary value problem. Here, we 

discuss some of the solution methodologies for solving boundary value problems and 

initial-boundary value problems using complex variables methods. 

The link between analytic functions and harmonic functions is exhibited by the fact 

that both the real and imaginary parts of a complex function that is analytic inside a 

domain satisfy the Laplace equation in the same domain. The Gauss mean value 

theorem states that the value of a harmonic function at the center of any circle inside 

the domain of harmonicity equals the average of the values of the function along the 

boundary of the circle. 

The maximum principle will be used to discuss the solutions of the problems. 
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