MTS 101 LECTURE 4 : MATRICES AND MATRIX ALGEBRA

DEFINITION

A matrix is a rectabgular array of the elements of a field (i.e. on array of numbers). Thus if m, n are two positive integers ≥ 1 and F is a field (\mathbb{R} or \mathbb{C}) then the array:

$$= \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ - & - & - & - \\ - & - & - & - \\ a_{m1} & a_{m2} & - - & a_{mn} \end{pmatrix}$$

is called an *m* x *n* matrix in F (since it contains m rows and n columns)

Its first row is	(a ₁₁	a ₁₂	•••	a_{1n}) and first column is	$\begin{bmatrix} a_{11} \end{bmatrix}$	
					a ₁₂	
					-	
					-	
					a _{m1}	

The numbers that constitute the matrix are called its ELEMENTS.

Let a_{ij} denote the element of the matrix in the ith row an jth column. Then for ease of notation we can denote our *m* x *n* matrix by

(a_{ij}) i = 1, 2, ..., n j=1, 2, ..., m or simply by capital letter $A_{m \times n}$

Order

The order of a matrix is the no of rows and columns e.g (a_{ij}) is of order $m \ge n$.

If m=n, then the matrix is called a SQUARE MATRIX of order n.

Definition 2: Row and Column Matrices

A rectangle matrix consisting of only a single row is called a ROW MATRIX e.g. (1,2,3,4). Similarly, a rectangle matrix consisting of a single column is called a COLUMN MATRIX e.g.

Definition 3: Null Matrix

	[0]	0	[0
This is a matrix having each of its elements $= 0 e.g$	0	0	0
	lo	0	0

Definition 4: Diagonal Element, Diagonal Matrix

The elements a_{ij} of a matrix (a_{ij}) are called its DIAGONAL ELEMENTS (or elements of the main diagonal)

e.g.
$$\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
, $\mathbf{a}_{11} = \mathbf{1}$, $\mathbf{a}_{22} = \mathbf{5}$, $\mathbf{a}_{33} = \mathbf{9}$

A square matrix in which all the elements other than the diagonal elements are zero is called a DIAGONAL MATRIX.

$$Viz = \begin{pmatrix} d_1 & 0 & 0 & 0 & \dots & 0 \\ 0 & d_2 & 0 & 0 & \dots & 0 \\ 0 & 0 & d_3 & 0 & \dots & 0 \\ - & - & - & - & - & 0 \\ 0 & 0 & 0 & 0 & \dots & d_n \end{pmatrix} e.g. \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 6 \end{pmatrix}$$

Such a matrix is denoted $(d_1, d_2, ..., d_n)$ or (d_i, d_{ik}) for I, k = 1, 2, ...n where $d_{ii}=1, d_{ik}=0$ $(i \neq k)$

NB: Its diagonal elements may also be zero

e.g. i.
$$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
 ii. $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ iii. $\begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$

are diagonal matrices.

Definition 5: Scalar and Scalar Matrix

A diagonal matrix where diagonal elements are all equal is called a SCALAR MATRIX.

e.g.	гĘ	0] 5]	`]	1	0	0]	[0	0	[0
	0)	1	0	0	0	0 0 0
	ĽÜ		Lo)	0	1]	lo	0	0

Definition 6: Identity Matrix (or Unit Matrix)

A diagonal matrix whose elements are each equal to 1 is called and IDENTITY MATRIX. It is denoted In (or I_{nxn}).

e.g.
$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Definition 7: Symmetry

A square matrix where elements are arranged symmetrically about the main diagonal is called a SYMMETRIC MATRIX.

e.g.
$$\begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}$$

On the other hand, if for a square matrix, there is no symmetric about the main diagonal but for every element a_{ij} on one side of the main diagonal, there is a corresponding $-a_{ij}$ on the other side, then the matrix is a SKEW-SYMMETRIC MATRIX.

Furthermore, the diagonal elements are all zero

e.g.
$$\begin{pmatrix} 0 & 1 & 2 & 3 \\ & & & & \\ -1 & 0 & -\frac{1}{2} & 2 \\ & & & & \\ -2 & \frac{1}{2} & 0 & 1 \\ -3 & 2 & -1 & 0 \end{pmatrix} \rightarrow \begin{bmatrix} 0 & h & g \\ -h & 0 & f \\ -g & -f & 0 \end{bmatrix}$$

Definition 8: Triangular matrix

A square matrix whose elements a_{ij} are all zero whenever i < j is called a LOWER TRIANGULAR MATRIX.

A square matrix whose elements $a_{ij} = 0$ whenever i > j is called an UPPER TRIANGULAR MATRIX.

Hence, a diagonal matrix is both upper and lower matrix.

e.g.
$$\begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$$
, $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 4 & 0 \\ 3 & 3 & 2 \end{bmatrix}$, \rightarrow Lower Triangular Matrix
 $\begin{bmatrix} 3 & 4 & 2 \\ 0 & 1 & 1/2 \\ 0 & 0 & 3/4 \end{bmatrix}$, $\begin{bmatrix} 0 & 1/2 \\ 0 & 3 \end{bmatrix}$, \rightarrow Upper Triangular Matrix

MATRIX ALGEBRA

Equality of Matrices

A and B are equal if

- i. they are of the same order
- ii. their corresponding elements are the same

Addition of Matrices

If A and B are of the same order, the their sum is a matrix C of the same order whose elements are the sums of the corresponding elements of A and B.

 $\Rightarrow C = A + B$ $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}, B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \end{bmatrix}$ $C_{ik} = a_{ik} + b_{ik} \qquad i = 1, 2, \dots, m, \ k = 1, 2, \dots, n$

* Only matrices of the same order can be added.

Properties of Matrix Addition

i. Matrix addition is commutative
$$\implies$$
 A + B = B + A

- ii. Matrix addition is Associative \Rightarrow (A + B) + C = A + (B + C)
- iii. If 0 is a null matrix of the same order as A, the A + 0 = 0 + A = A
- iv. To each A there exists a matrix B of the same order s.t A + B = 0 = B + A

(i) \rightarrow (iv) \Rightarrow Matrix addition is Abelian

Exercise 1.

Find the sum of these matrices and establish their Commutativity

i.
$$\begin{bmatrix} 1 & 2 \\ -3 & 3 \end{bmatrix}$$
 and $\begin{bmatrix} 4 & -3 \\ 7 & 5 \end{bmatrix}$ ii. $\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} 0 & 1 \\ 2 & 0 \end{bmatrix}$

Exercise 2:

Establish the associativity of the following matrices

i.
$$\begin{bmatrix} 1 & 3 & 5 \\ 7 & 9 & 1 \\ 3 & 5 & 7 \end{bmatrix}$$
, $\begin{bmatrix} 1 & 0 & 3 \\ 0 & 4 & 5 \\ 7 & 0 & 6 \end{bmatrix}$ and $\begin{bmatrix} 2 & 1 & 4 \\ 3 & 0 & 6 \\ 2 & 5 & 4 \end{bmatrix}$

ii.
$$\begin{bmatrix} 0 & 1 & 2 \\ 2 & 3 & 4 \end{bmatrix}$$
, $\begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \end{bmatrix}$ and $\begin{bmatrix} 2 & 3 & 4 \\ 4 & 5 & 6 \end{bmatrix}$

Exercise 3:

Establish the order of each matrix 1,2 and 4 and find the a_{11} , a_{12} , etc what are the diagonal elements.

Exercise 4:

Which of the following matrices are (i) Triangular Matrices, (ii) Unit Matrices (iii) null matrices and Scalar matrices.

i.	0 0 0	0 0 0 0 0 0	ii.	$\begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$	0 0 1	iii.	$\begin{bmatrix} 1 & 0 & 0 \\ 5 & 1 & 0 \\ 6 & 2 & 0 \end{bmatrix}$	iv.	[0 0 1	0 0 2	2 1 0
v.	[0 [0	0] 0]	vi.	$\begin{bmatrix} 2 & 0 \\ 0 & 2 \\ 0 & 0 \end{bmatrix}$	0 0 2	vii.	$\begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix}$	viii.	[1 0 0	2 0 0	3 4 5
ix.	[0 [1	1] 0]									

Exercise 5:

i. If $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$ Find a Matrix B such that A + B = 0ii. If $A = \begin{bmatrix} 2 & 5 & 8 \\ 3 & 4 & 6 \end{bmatrix}$ and $B = \begin{bmatrix} -2 & -5 & -8 \\ -3 & -4 & -6 \end{bmatrix}$ Find A + B

Multiplication by Scalar

Let $A = (a_{ij})$ i = 1, 2, 3, ..., m be a matrix, j = 1, 2, 3, ..., n

And Let α be a scalar (i.e. any number), then $\alpha A = C = (C_{ij})$

Where $\alpha a_{ij} = C_{ij}$ i = 1, 2, ..., m, j = 1, 2, ..., n

Example

$$If \begin{bmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{bmatrix} = \begin{bmatrix} 4a_1 & 4a_2 & 4a_3 \\ 4b_1 & 4b_2 & 4b_3 \end{bmatrix}$$

Properties

If A,B are matrices and α , β are scalars, then

i. $\alpha(A + \beta) = \alpha A + \alpha \beta$ ii. $(\alpha + \beta)A = \alpha A + \beta B$ iii. $(\alpha\beta)A = \alpha(\beta A)$ Examples to be given in class

DIFFERENCE OF TWO MATRICES

If two matrices A and B are of the same order, then the difference A - B = A + (-B) = A + (-1)B

Exercise 6:

i. For Exercice (2) above, find
$$(A - B) + C$$

ii. A-B-C iii. 2A+3B iv. $A+2B+\frac{1}{2}C$

Exercise 7:

If
$$A = \begin{bmatrix} 1 & 0 & 2 \\ 2 & 3 & 4 \\ 3 & 1 & 2 \end{bmatrix}$$
 and $B =$

- i. Find a matrix C such that A + C is a diagonal matrix.
- ii. Find a matrix D such that A + B = 2D.
- iii. Find a Matrix E such that (A + B) + E is zero matrix.

MULTIPLICATION OF MATRICES

The product AB of two matrices exist if the number of columns of A = the number of rows of B.

e.g.
$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} x \begin{bmatrix} p & q & r \\ x & y & z \end{bmatrix} = \begin{bmatrix} ap + bx & aq + by & ar + bz \\ cp + dx & cq + dy & cr + dz \end{bmatrix}$$

Since A_{2x2} and B_{2x3} i.e, no. of column of A = no. of rows of B, then AB exist.

Let
$$A = \begin{bmatrix} a_{11} & \dots & a_{1n} \\ a_{m1} & \dots & a_{mn} \end{bmatrix}$$
 of order $m \ge n$ and $B = \begin{bmatrix} b_{11} & \dots & b_{iq} \\ \vdots & & \vdots \\ b_{n1} & \dots & b_{nq} \end{bmatrix}$ of order $n \ge q$

Then AB is the matrix

$$\mathbf{C} = \begin{bmatrix} \mathbf{C}_{\mathrm{ii}} & \mathbf{C}_{\mathrm{iq}} \\ \mathbf{C}_{\mathrm{mi}} & \mathbf{C}_{\mathrm{mq}} \end{bmatrix} \text{ of order } m \ge q$$

in which the element C_{ij} is the sum of products (term by term) of elements of i^{th} row of A and the j^{th} column of B. Thus for the matrices $A = (a_{ik})$, $B = (b_{kj})$, the product AB is matrix $C = (C_{ij})$

where
$$C_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$

* Multiplication is possible if no. of column of the first matrix = no. of rows of the second matrix.

Example:

If
$$A = \begin{bmatrix} 2 & 5 & 3 \\ 0 & 2 & 1 \\ -1 & 0 & 4 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 2 & 1 \\ 3 & -5 & 0 \\ 0 & 2 & 6 \end{bmatrix}$ Find (i). AB, (ii) BA (iii) A^2 (iv) $5B^2$