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STS 414 ANALYSIS OF VARIANCE (ANOVA) 

REVIEW OF SIMPLEREGRESSION 
 
Modeling refers to the development of mathematical expressions thatdescribe in some sense the 

behavior of a random variable of interest. Thisvariable may be the price of wheat in the world 

market, the number ofdeaths from lung cancer, the rate of growth of a particular type of tumor,or 

the tensile strength of metal wire. In all cases, this variable is called thedependent variable and 

denoted with Yi. A subscript on Y identifies theparticular unit from which the observation was 

taken, the time at whichthe price was recorded, the county in which the deaths were recorded, 

theexperimental unit on which the tumor growth was recorded, and so forth.Most commonly the 

modeling is aimed at describing how the mean of thedependent variable E(Y ) changes with 

changing conditions; the varianceof the dependent variable is assumed to be unaffected by the 

changingconditions. 

Other variables which are thought to provide information on the behaviour of the dependent 

variable are incorporated into the model as predictor orexplanatory variables. These variables are 

called the independent variablesand are denoted by X with subscripts as needed to identify 

differentindependent variables. Additional subscripts denote the observational unitfrom which 

the data were taken. The Xs are assumed to be known constants. In addition to the Xs, all models 

involve unknown constants, calledparameters, which control the behavior of the model. These 

parametersare denoted by Greek letters and are to be estimated from the data. 

The mathematical complexity of the model and the degree to whichit is a realistic model depend 

on how much is known about the processbeing studied and on the purpose of the modeling 

exercise. In preliminarystudies of a process or in cases where prediction is the primary 

objective,the models usually fall into the class of models that are linear in theparameters. That 

is, the parameters enter the model as simple coefficientson the independent variables or functions 

of the independent variables.Such models are referred to loosely as linear models. The more 

realisticmodels, on the other hand, are often nonlinear in the parameters. Mostgrowth models, 

for example, are nonlinear models. Nonlinear models fallinto two categories: intrinsically linear 

models, which can be linearizedby an appropriate transformation on the dependent variable, and 

thosethat cannot be so transformed. 
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The Linear Model and Assumptions 
The simplest linear model involves only one independent variable and states that the true mean 

of the dependent variable changes at a constant rateas the value of the independent variable 

increases or decreases. Thus, thefunctional relationship between the true mean of Yi, denoted by 

E(Yi), andXiis the equation of a straight line: 

 
E(Yi) = β0 + β1Xi. 

β0 is the intercept, the value of E(Yi) when X = 0, and β1 is the slope of the line, the rate of 

change in E(Yi) per unit change in X. 

The observations on the dependent variable Yiare assumed to be random observations from 

populations of random variables with the mean of eachpopulation given by E(Yi). The deviation 

of an observation Yifrom itspopulation mean E(Yi) is taken into account by adding a random 

error eito give the statistical model 

 
Yi= β0 + β1Xi+ ei. 
 

The subscript i indicates the particular observational unit, i = 1, 2, . . . , n.The Xiare the n 

observations on the independent variable and are assumedto be measured without error. That is, 

the observed values of X are assumedto be a set of known constants. The Yiand Xiare paired 

observations; bothare measured on every observational unit. 

The random errors eihave zero mean and are assumed to have commonvariance σ2 and to be 

pairwise independent. Since the only random elementin the model is ei, these assumptions imply 

that the Yialso have commonvariance σ2 and are pairwise independent. For purposes of making 

testsof significance, the random errors are assumed to be normally distributed,which implies that 

the Yiare also normally distributed. The random errorassumptions are frequently stated as 

ei∼NID(0, σ2), 

where NID stands for “normally and independently distributed.” The quantitiesin parentheses 

denote the mean and the variance, respectively, of thenormal distribution. 

 
Least Squares Estimation 
 

The simple linear model has two parametersβ0 and β1, which are to beestimated from the 

data. If there were no random error in Yi, any two datapoints could be used to solve explicitly for 
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the values of the parameters.The random variation in Y, however, causes each pair of observed 

datapoints to give different results. (All estimates would be identical only if theobserved data fell 

exactly on the straight line.) A method is needed thatwill combine all the information to give one 

solution which is “best” bysome criterion. 

The least squares estimation procedure uses the criterion that the solution must give the 

smallest possible sum of squared deviations of the observed Yi from the estimates of their true 

means provided by the solution. Let β0 and β1 be numerical estimates of the parameters β0 and β1, 

respectively, and let 

iŶ  = 0̂  + 1̂ Xi 

be the estimated mean of Y for each Xi, i = 1, . . . , n. Note that iŶ  is obtained by substituting the 

estimates for the parameters in the functional form of the model relating E(Yi) to Xi. The least 

squares principlechooses 0̂ and 1̂  that minimize the sum of squares of the residuals,SS(Res): 
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whereei= )ˆ( ii YY   is the observed residual for the ith observation. Thesummation indicated by

 is over all observations in the data set as indicated by the index of summation, i = 1 to n. 

(The index of summation is omitted when the limits of summation are clear from the context.) 

The estimators for β0 and β1 are obtained by using calculus to find thevalues that minimize 

SS(Res). The derivatives of SS(Res) with respect to 0̂ and 1̂ in turn are set equal to zero. This 

gives two equations in twounknowns called the normal equations: 
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Solving the normal equations simultaneously for 0̂ and 1̂  gives the estimates 

ofβ0 and β1as 
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Note that xi = (Xi − X ) and yi = (Yi −Y ) denote observations expressedas deviations from their 

sample means X and Y , respectively. The moreconvenient forms for hand computation of sums 

of squares and sums ofproducts are 
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Thus, the computational formula for the slope is  
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These estimates of the parameters give the regression equation 

   ii XY 10
ˆˆˆ    

 

ANALYSIS OF VARIANCE (ANOVA) 

Analysis of Variance (ANOVA) was introduced by Sir Ronald Fisher and is essentially an 

arithmetic process for partitioning a total sum of squares into components associated with 

recognized source of variation. It has been used to advantage in all fields of research where data 

are measured quantitatively.   Suppose in an industrial experiment that an engineer is interested 

in how the mean absorption of moisture in concrete varies among 5 different concrete aggregate. 
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The samples are exposed to moisture for 48 hours. It decided that 6 tested. The data are 

presented in Table 1. 

The model for this situation is considered as follows. There are 6 observations taken from each 

of 5 populations with means ,,...,, 521  respectively. We may wish to test 

   ,...: 5210  H  

   :1H At least two of the means are not equal.   

Aggregate: 1 2 3 4 5  
 551 595 639 417 563  
 457 580 615 449 631  
 450 508 511 517 522  
 731 583 573 438 613  
 499 633 648 415 656  
 632 517 677 555 679  

Total 3320 3416 3663 2791 3664 16,854 
Mean 553.33 569.33 610.50 465.17 610.67 561.80 

 

In addition, we may be interested in making individual comparisons among these 5 population 

means. 

Two Sources of Variability in the Data 

In the ANOVA procedure, it is assumed that whatever variation exist between the aggregate 

average is attributed to (1) variation in absorption among observations within aggregate types, 

and (2) variation due to aggregate type, that  is, dueto differences in the chemical composition of 

the aggregates. The within aggregate variation is, of course, brought about by various causes. 

Perhaps humidity and temperature conditions were kept entirely constant throughout the 

experiment. It is possible that there was a certain amount of heterogeneity in the batches of raw 

materials that were used. At any rate, we shall consider the within sample variation to be chance 

or random variation, and part of the goal of the ANOVA is to determine if the differences among 

the 5 sample means are what we would expect due to random variation alone. 

Many pointed questions appear at this stage concerning the preceding problem. For example, 

how many samples must be tested for each aggregate? This is a question that continually haunts 
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the practitioner. In addition, what if the within sample variation is so large that it is difficult for a 

statistical procedure to detect the systematic differences? Can we systematically control 

extraneous sources of variation and thus remove them from portion we call random variation? 

We shall attempt to answer these and other questions in this course. 

Completely Randomized Design (One-Way ANOVA) 

Random samples of size n are selected from each of kpopulations. The kdifferent populations are 

classified on the basis of a single criterion such as different treatments or groups. Today the term 

treatment is used generally to refer to the various classifications, whether they are different 

aggregates, different analysts, different fertilizers, or different regions of the country. 

Assumptions and Hypotheses in One-Way ANOVA 

It is assumed that the kpopulations are independent and normally distributed with means 

k ,...,, 21 and common variance 2 . These assumptions are made more palatable by 

randomization. We wish to derive appropriate methods for testing the hypothesis 

   kH   ...: 210  

   :1H At least two of the means are not equal. 

Let ijy  denote the thj  observation from the thi treatment and arrange the data as in Table 2. Here,

.iY  is the total of all observations in the sample from the thi treatment, .iy is the mean of all 

observations in the sample from the thi  treatment, ..Y  is the total of all nk observations, and ..y is 
the mean of all nk observations. 

 

Model for One-Way ANOVA 

Each observation may be written in the form  

 ,ijiijY    

where ij measures the deviation of the thj  observation of the thi  sample from the corresponding 

treatment mean. The ij -term represents random error and plays the same role as the error terms 

in the regression models. An alternative and  
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Table  2. kRandom Samples 

Treatment 1 2 . . . i . . . k  
 

11y  21y  . . . 
1iy  . . . 

1ky   
 

12y  22y  . . . 
2iy  . . . 

2ky   

 . .        .  
 . .        .  
 . .        .  
 

ny1  ny2  . . . 
iny  . . . 

kny   

            
Total .1Y  .2Y  . . . .iY  . . . .kY  ..Y  

Mean 
.1y  .2y  . . . 

.iy  . . . 
.ky  ..y  

 

Preferred form of this equationis obtained by substituting ,ii   subject to the constraint 





k

i
i

1

.0 Hence we may write 

     ,ijiijY    

Where   is just the grand mean of all the ;'si that is, 
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and i  is called the effect of the thi  treatment. 

The null hypothesis that the kpopulation means are equal against the alternative that at least two 

of the means are unequal may now be replaced by the equivalent hypothesis. 

,0...: 210  kH    

    :1H At least two of the si '  are not equal zero. 

Resolution of Total Variability into Components 

Our test will be based on a comparison of two independent estimates of the common 

population variance 2 . These estimates will be obtained by partitioning the total variability of 

our data, designated by the double summation 
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into two components. 

Theorem 13.1: Sum-of-squares Identity 

    
    


k

i

n

j

k

i

k

i

n

j
iijiij yyyynyy

1 1 1 1 1

2
.

2
...

2
.. )()()(  

It will be convenient in what follows to identify the terms of the sum-of-squares identify by the 

following notation: 

Three Important Measures of Variability 
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The sum-of squares identity can then be represented symbolically by the equation 

  .SSESSASST   

 

F-Ratio for Testing Equality of Means 

When 0H is true, the ratio 2

2
1

s
sf   is a value of the random variable F having the F-

distribution with k-1 and k(n-1) degrees of freedom. Since 2
1s  overestimates 2  when 0H is false, 

we have a one-tailed test with the critical region entirely in the right tail of the distribution. 

The null hypothesis 0H is rejected at the level of significance when 
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   )].1(,1[  nkkff   

Another approach, the P-value approach, suggests that the evidence in favour of or against 0H is  

   
].)]1(,1[[ fnkkfPP 

 

The computations for ANOVA problem are usually summarized tabular form as shown in Table 

3. 

ANOVA for the One-Way ANOVA 

Source of 

Variation 

Sum of Squares Degrees of Freedom Mean Square Computed f 

Treatments  SSA k-1 
1

2
1 


k
SSAs  

2

2
1

s
s  

Error  SSE k(n-1) 
)1(

2




nk
SSEs  

 

Total SST Kn-1   

 

Example 1. Test the hypothesis 521 ...    at the 0.05 level of significance for the data of 

Table 1 on absorption of moisture by various types of cement aggregates. 

Solution: ,...: 5210  H  

  :1H  At least two of the means are not equal. 

05.0  Critical region: 76.2f  with 41 v  and 252 v  degrees of freedom. The sum 

of squares computations give 

 SST=209,377   SSA=85,356  SSE=124,021. 
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Source of 

Variation 

Sum of Squares Degrees of Freedom Mean Square Computed f 

Treatments  85356.47 4 21339.12 4.30 

Error  124020.33 25 4960.81  

Total 209376.80 29   

 

Decision: Reject H0 and conclude that the aggregates do not have the same mean absorption.  

Randomized Complete Block Designs 

A typical layout for the randomized complete block design (RCB) using 3 measurements in 4 

blocks is as follows: 

       Block 1   Block 2  Block 3        Block 4 

t2 t1 t3 t2 

t1 t3 t2 t1 

t3 t2 t1 T3 

 

The t’s denote the assignment to blocks of each of the 3 treatments. Of course, the true allocation 

of treatments to units within blocks is done at random. Once the experiment has been completed, 

the data can be recorded as in the following  

 

Treatment Block 1 2 3 4 

1 11y  12y  13y  14y  

2 21y  22y  23y  24y  

3 31y  32y  33y  34y  
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where 11y  represents the response obtained by using treatment 1 in block 1, 12y  represents the 

response obtained by using treatment 1 in block 2, . . . and 34y represents the response obtained 

by using treatment 3 in block4. 

Let us now generalize and consider the case of ktreatments assigned to bblocks. The data may 

summarized as shown in the bk   rectangular array of Table 4. It will be assumed that the ijy , 

i=1,2,…,k and j=1,2,…,b, are values of independent random variables having normal 

distributions with means ij and common variance 2 . 

Table 4. bk  Array for the RCB Design 

Block 

Treatment 1 2 . . . j . . . B Total Mean 

1 11y  12y  . . . jy1  . . . by1  .1T  
.1y  

2 21y  22y  . . . jy2  . . . by2  .2T  
.2y  

. . . . . . . . . . . . . 

. . . . . . . . . . . . . 

. . . . . . . . . . . . . 

I 1iy  2iy  . . . ijy  . . . iby  .iT  
.iy  

. . . . . . . . . . . . . 

. . . . . . . . . . . . . 

. . . . . . . . . . . . . 

K 1ky  2ky  . . . kjy  . . . kby  .kT  
.ky  

Total 1.T  2.T  . . . jT.  . . . bT.  ..T   

Mean 
1.y  2.y  . . . 

jy .  . . . 
by .   

..y  

 

Let .i represent the average (rather than the total) of the b population means for the ithtreatment. 

That is, 
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Similarly, the average of the population means for the jth block,  ,. j  is defined by 

    
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
k

i
ijj k 1

. ,1   

and the average of the bkpopulation means  is defined by 

    
 


k

i

b

j
ijbk 1 1

.1   

To determine if part of the variation is our observations is due to differences among the 

treatments, we consider the test 

 ,....2.10  H  

 :1H The si '.  are not all equal 

 

Model for the RCB Design 

Each observation may be written in the form 

   ,ijijijy    

where ij measure the deviation of the observed value ijy from the population mean ij .  The 

preferred form of this equation is obtained by substituting  

   ,jiij    

where i is, as before, the effect of the ith treatment and j is the effect of the jth block. It is 

assumed that the treatment and block effects are additive. Hence we may write 

   .ijjiij  y  
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The basic concept is much like that of the one way classification except that we must account in 

the analysis for the additional effect due to blocks, since we are now systematically controlling 

variation in two directions. 

ANOVA for the Randomized Complete Block Design 

Source of 

Variation 

Sum of Squares Degrees of Freedom Mean Square Computed f 

Treatments  SSA k-1 
1

2
1 


k
SSAs  

2

2
1

1 s
sf   

Blocks SSB b-1 
1

2
2 


b
SSAs

 
 

Error  SSE (k-1)(b-1) 
1)-1)(b-(k

2 SSEs   
 

Total SST kb-1   

 

Example 2.Four different machines, M1, M1, M3 and M4, are being considered for the assembling 

of a particular product. It is decided that 6 different operators are to be used in a randomized 

block experiment to compare the machines. The machines are assigned in a random order to each 

operator. The operation of the machines requires physical dexterity, and it is anticipated that 

there will be a difference among the operators in the speed with which they operate the machines 

(Table 5). The amount of time (seconds) were recorded for assembling the product: 

Test the hypothesis 0H , at the 0.05 level significance, that the machines perform at the same 

mean rate of speed. 

Table 4: Time, in Seconds, to Assemble Product 

     Operator 

Machine 1 2 3 4 5 6 Total 

1 42.5 39.3 39.6 39.9 42.9 43.6 247.8 

2 39.8 40.1 40.5 42.3 42.5 43.1 248.3 
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3 40.2 40.5 41.3 43.4 44.9 45.1 255.4 

4 41.3 42.2 43.5 44.2 45.9 42.3 259.4 

Total 163.8 162.1 164.9 169.8 176.2 174.1 1010.9 

 

Solution: 0: 43210  H  (machine effects are zero), 

  :1H  At least one of the si '  is not equal to zero 

Table5. ANOVA Table for Table 4 

Source of 

variation 

Sum of  

Squares 

Degree of 

Freedom 

 Mean 

square 

Computed        f 

Machines 15.93 3 5.31 3.34 

Operators 42.09 5 8.42  

Error 23.84 15 1.59  

Total 81.86 23   

 

using 5% as at least an approximate yardstick, we conclude that the machines do not perform at 

the same mean rate of speed. 

Latin Squares 

The randomized block design is very effective for reducing experimental error by removing one 

source of variation.Another designthat is particular useful in controlling two sources of variation, 

while reducing the required number of treatment combinations, is called the Latin 

square.Suppose that we are interested in the yields of 4 varieties of wheat using 4 different 

fertilizers over a period of 4 years. The total number of treatment combinations for a completely 

randomized design would be 64. By selecting the same number of categories for all three criteria 

of classification, we may select a Latin square design and perform the analysis of variance using 

the results of only 16 treatment combinations. A typical Latin square, selected at random from all 

possible 44 squares, is the following: 

    Column 
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Row  1 2 3 4 

 1  A B C D 

 2  D A B C 

 3  C D A B 

 4  B C D A 

The four letters, A, B,C, and D, represent the 4 varieties of wheat that are referred to as the 

treatments. The rows and columns, represented by the 4 fertilizers and the years, respectively, are 

the two sources of variation that we wish to control. We now see that each treatment occurs 

exactly once in each row and each column. With such a balanced arrangement the analysis of 

variance enables one to separate the variation due to the different fertilizers and different years 

from the error sum of squares and thereby obtain a more accurate test for differences in the 

yielding capabilities of the 4 varieties of wheat. When there is interaction present between any of 

the sources of variation, the f-values in the analysis of variance are no longer valid. In that case, 

the Latin square design would be inappropriate. 

Generalization to the Latin Square 

We now generalized and consider an rr Latin squarewhere ijky  denotes an observation in the 

ith row and thj  column corresponding to kth letter. Note that once i and j  are specified for a 

particular Latin square, we automatically know the letter given by k . For example, when 2i

and 3j  in the 44  Latin square, we have .Bk   Hence k is a function of i and j . If i  and 

j are the effects of the ith row and thj column, k  the effect of the kth treatment, the  the 

grand mean, and ijk  the random error, then we can write 

   ijky  = ijkkji   , 

where we impose the restrictions 

 .0 
k

k
j

i
i

i   
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As before, the ijky are assumed to be values of independent random variables having normal 

distributions with means 

   kjiijk     

And common variance .2 The hypothesis to be tested is as follows: 

   0...: 210  rH   

   :1H  At least one of the si '  is not equal to zero. 

The ANOVA (Table 6) indicates the appropriate F-test for treatments. 

Table 4. ANOVA for an rr  Latin Square  

Source of Sum of  Degrees of  Mean     Computed  

Variation Squares Freedom  Square  f   

Rows  SSR      r-1   1
2
1 


r
SSRs  

Columns SSC      r-1   1
2
2 


r
SSCs  

Treatments SSTr      r-1   1
2
3 


r
SSTrs    2

2
3

s
sf    

Error  SSE   (r-1)(r-2)   )2)(1(
2




rr
SSEs  

Total  SST      r2-1   

 

To illustrate the analysis of a Latin square design, let us return to the experiment where the 

letters A, B, C and D represent 4 represent 4 varieties of wheat; the rows represent 4 different 

fertilizers; and the columns account for 4 different years. The data in Table 5 are the yields for 

the 4 varieties of wheat, measured in kilograms per plot. It is assumed that the various sources 

variation do not interact. Using a 0.05 level of significance, test the hypothesis H0: There is no 

difference in the average yields of the 4 varieties of wheat. 
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Table7. Yields of Wheat (kilograms per plot) 

Fertilizer 

Treatment  

1981 1982 1983 1984 

t1 A:70 B:75 C:68 D:81 

t2 D:66 A:59 B:55 C:63 

t3 C:59 D:66 A:39 B:42 

t4 B:41 C:57 D:39 D:55 

 

Solution: 

  0...: 210  rH   

  :1H  At least one of the si '  is not equal to zero. 

Table 8. ANOVA for the Data of Table 7 

Source of Sum of  Degrees of  Mean     Computed  

Variation Squares Freedom  Square  f   

Fertilizer 1557       3   519.00 

Year  418      3   139.33 

Treatments 264      3   88.00    2.02  

Error  261      6    43.50 

Total  2500      15    

We therefore, conclude that wheat varieties significantly affect wheat yield. 

 


