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CHAPTER ONE 

ERRORS 

An error may be defined as the difference between an exact and computed value,  

Suppose the exact value of a solution of a computational problem is 1.023; now when a 
computer or calculator is used, the solution is obtained as 1.022823; hence the error in this 
calculation is (1.023 – 1.022823) 0.000177 

Types of Error  

Round-off error:- This error due to the rounding-off of a quantity due to limitations in the 
digits. 

Truncation error:-Truncation means cutting off the other digits i.e. no rounding –off. For 
instance, 1.8123459 may be truncated to 1.812345 due to a preset allowable number of digits. 

Absolute Error:- The absolute value of an error is called the absolute error; that is;  

 Absolute error = |݁ݎݎݎ| 

Relative error:- Relative error is the ratio of the absolute error to the absolute value of the exact 
value.; That is 

Relative error = ௦௨௧
|௫௧௩௨|

 

Percentage error:-This is equivalent to Relative error x 100 

Inherent error:- In a numerical method calculation, we may have some basic mathematical 
assumptions for simplifying a problem. Due to these assumptions, some errors are possible at the 
beginning of the process itself. This error is known as inherent error. 

Accumulated error:-Consider the following procedure:  

ܻାଵ = 100 ܻ (݅ = 0,1,2, … . . ) 

Therefore, 

ଵܻ = 100 ܻ 

ଶܻ = 100 ଵܻ 

ଷܻ = 100 ଶܻetc 

Let the exact value of Y0 = 9.98 



Suppose we start with Y0 = 10 

Here, there is an inherent error of 0.02 

Therefore, 

ଵܻ = 100 ܻ = 100 x 10 = 1000 

ଶܻ = 100 ଵܻ = 100 x 1000 = 100,000 

ଷܻ = 100 ଶܻ = 100 x 100,000 = 10,000,000 

The table below shows the exact and computed values, 

Variable Exact Value Computed value Error 
Y0 9.98 10 0.02 
Y1 998 1000 2 
Y2 99800 100,000 200 
Y3 9980000 10,000,000 20,000 
 

Notice above, how the error quantities accumulated. A small error of 0.02 at Y0leads to an error 
of 20,000 in Y3. So, in a sequence of computations, an error in one value may affect the 
computation of the next value and the error gets accumulated. This is called accumulated error. 

Relative Accumulated Error 

This is the ratio of the accumulated error to the exact value of that iteration. In the above 
example, the relative accumulated error is shown below. 

Variable Exact Value Computed value Accumulated 
Error 

Relative Accumulated error 

Y0 9.98 10 0.02 0.02 9.98 = 0.002004⁄  
Y1 998 1000 2 2 998 = 0.002004⁄  
Y2 99800 100,000 200 200 99800 = 0.002004⁄  
Y3 9980000 10,000,000 20,000 20,000 9980000 = 0.002004⁄  
 

Notice that the relative accumulated error is same for all the values. 
 

 

 

 



CHAPTER TWO 

ROOT FINDING IN ONE DIMENSION 

This involves searching for solutions to equations of the form: (ݔ)ܨ =  0 

The various methods include: 

1. Bisection Method 
This is the simplest method of finding a root to an equation. Here we need two initial 
guesses xaandxb which bracket the root. 
 
Let ܨ = ܨ and (ݔ)݂ = ܨܨ such that (ݔ)݂ ≤ 0 (see fig 1) 
 

 
 
 
 
 
 
Figure1: Graphical representation of the bisection method showing two initial guesses (xa and 
xbbracketting the root). 

 



 
Clearly, if  ܨܨ = 0 then one or both of  ݔ and ݔ must be a root of  (ݔ)ܨ =  0 
 
The basic algorithm for the bisection method relies on repeated applications of: 

                       Let ݔ = (௫ೌା௫್)
ଶ

 

If  Fc= f(c) = 0 then,    x =xc   is an exact solution, 

            Else if  ܨܨ < 0 then the root lies in the interval (ݔ  (ݔ,

            Else the root lies in the interval (ݔ  (ݔ,

By replacing the interval (ݔ ݔ) ) with eitherݔ, ݔ) ) orݔ,  )( whichever brackets theݔ,

root), the error in our estimation of the  solution to (ݔ)ܨ =  0 is on the average, halved. 

We repeat this interval halving until either the exact root has been found of the interval is 

smaller than some specified tolerance. 

Hence, the root bisection is a simple but slowly convergent method for finding a solution 

of (ݔ)ܨ =  0, assuming the function f  is continuous. It is based on the intermediate value 

theorem, which states that if a continuous function f has opposite signs at some x = aand 

x = b(>a) that is, either ݂(ܽ) < 0, ݂(ܾ) > (ܽ)݂ݎ 0 > 0, ݂(ܾ) < 0, then f must be 0 

somewhere on [ܽ, ܾ]. 

We thus obtain a solution by repeated bisection of the interval and in each iteration, we 

pick that half which also satisfies that sign condition. 

 

Example: 

Given that(ݔ)ܨ = ݔ  − 2.44, solve using the method of root bisection, the form 

(ݔ)ܨ =  0 . 

 

Solution: 

Given that (ݔ)ܨ = ݔ  − 2.44 = 0 

Therefore, 

ݔ − 2.44 = 0 

Direct method gives ݔ = 2.44 

But by root bisection; 

Let the trial value of x = -1 



 

X F(x) = x-2.44 
Trial value                            -1 -3.44 
                                               0 -2.44 
                                               1 -1.44 
                                               2 -0.44 
                                               3 +0.56 

 
It is clear from the table that the solution lies between x = 2 and x = 3. 
 
Now choosing x = 2.5, we obtain  F(x) = 0.06, we thus discard x = 3 since F(x) must lie 

between 2.5 and 2. Bisecting 2 and 2.5, we have x = 2.25  with F(x) = -0.19. 

Obviously now, the answer must lie between 2.25 and 2.5. 

The bisection thus continues until we obtain F(x) very close to zero, with the two values 

of x having opposite signs. 

 
 

           X F(x) = x-2.44 
2.25 -0.19 
2.375 -0.065 
2.4375 -0.0025 
2.50 -0.06 

 
When the above is implemented in a computer program, it may be instructed to stop at 
say, |(ݔ)ܨ| ≤ 10ିସ, since the computer may not get exactly to zero. 

 

Full Algorithm 

1. Define F(x) 
2. Read x1 , x2, values of x such that F(x1)F(x2) < 0 
3. Read convergence term, s = 10-6, say. 
4. Calculate F(y), y = (x1+x2) / 2 
5. If abs(x2-x1) ≤ s, then y is a root. Go to 9 
6. If abs(x2-x1) > s, Go to 7 
7. If  F(x1)F(x2) ≤ 0, (x1,y) contains a root, set x2 = y and return to step 4 
8. If not, (y, x2) contains a root, set x1 = y and return to step 4 
9. Write the root A 

 



Flowchart for the Root Bisection Method 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Start 

Dimension 

Define F(x) 

Input interval limits x1, x2, tolerance, s 

Y = (x1 + x2) / 2 

 Abs (x2 – x1) : s > 

≤ 

    F(x1)F(x2) : s 
> 

≤ 

X2 = y 

X1 = y 

Output Root = A 

    І 

    І 



2. The RegulaFalsi (False position) Method   
 
This method is similar to the bisection method in the sense that it requires two initial 

guesses to bracketthe root. However, instead of simply dividing the region in two, a 

linear interpolation is used to obtain a new point which is (hopefully, but not necessarily) 

closer to the root than the equivalent estimate for the bisection method. A graphical 

interpretation of this method is shown in figure 2. 

 

 
 

Figure2: Root finding by the linear interpolation (regulafalsi) method. The two initial guesses xa and xb 

must bracket the root. 



 

The basic algorithm for the method is: 

Let  ݔ = ݔ −
௫್ି௫ೌ
್ିೌ ݂ = ݔ −

௫್ି௫ೌ
್ିೌ ݂  

  =   ௫ೌ್ି௫್ೌ
್ିೌ

 

If ݂ = (ݔ)݂ = 0  thenx = xc  is an exact solution.. 

Else if fafc< 0 then the root lies in the interval (xa,xc) 

Else the root lies in the interval (xc, xb) 

Because the solution remains bracketed at each step convergence is guaranteed as was the 

case for bisection method, The method is first order and is exact for linear f 

Note also that the method should not be used near a solution. 

 

 

 

 

Example 

Find all real solutions of the equation ݔସ = 2 by the method of false position. 

Solution 

Let xa = 1 and xb = 2 

Now rewriting the equation in the form:ݔସ − 2 = 0 

Then  fa= 1-2 = -1 

fb = 8 -2 = 14 

Therefore, 

ݔ = ௫ೌ್ି௫್ೌ
್ିೌ

 =(ଵ)(ଵସ)ି(ଶ)(ିଵ)
ଵସି(ିଵ)

= ଵ
ଵହ

 = 1.07 

 

݂ = (1.07)ସ − 2 = −0.689 

Now, from the algorithm, fc  ≠ 0, hence xc ≠ x, the exact solution. 

Again, fafb = (-1)(-0.689) = 0.689 > 0 

Therefore, the roots lie in the interval xc, xb 

That is, ±(1.07, 2)  (two roots) 

 



3. The Newton-Raphson Method  

This is another iteration method for solving equations of the form:   F(x) = 0, where f is 

assumed to have a continuous derivative f ‘. The method is commonly used because of its 

simplicity and great speed. The idea is that we approximate the graph of f by suitable 

tangents. Using an approximate value x0 obtained from the graph of f, we let x be the 

point of intersection of the x – axis and the tangent to the curve of f at x0. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Illustration of the tangents to the curve in Newton-Raphson method  

 

Then, 

tan ߚ = ݂ (ݔ)′ = (௫బ)
௫బି௫భ

,  

Hence, 

xଵ = ݔ −
(௫బ)
′(௫బ)

,  

In the second step, we compute; xଶ = ଵݔ −
(௫భ)
′(௫భ)

,  

And generally, 

x୩ାଵ = ݔ −
(ݔ)݂
݂  (ݔ)′

 

 

X2   x1      x0 
x 

y 

Y = f(x) 

F(x)       

β 



Algorithm for the Newton-Raphson method 

1. Define f(x) 

2. Define f’ (x) 

3. Read x0, s (tolerance0 

4. K = 0 

5. x୩ାଵ = ݔ −
(௫ೖ)
′(௫ೖ)

,  

6. Print k+1, xk+1, f(xk+1) 

7. If |ݔା − |ݔ <  then  go to 10 ݏ

8. K = k+1 

9. Go to step 5 

10. Print ‘The root is -----‘, xk+1 

11. End 

 

Consider the equation: ݔଷ + ଶݔ2 + ݔ2.2 + 0.4 = 0 

 

Here,                                    ݂(ݔ) = ଷݔ + ଶݔ2 + ݔ2.2 + 0.4 

݂ (ݔ)′ = ଶݔ3 + ݔ4 + 2.2 

Let the initial guess, x0 = - 0.5 

Let us now, write a FORTRAN program for solving the equation, using the Newton-

Raphson’s method. 

 

 

 

 

 



C  NEWTON RAPHSON METHOD 

  DIMENSION X(100) 

  F(X) = X**3. + 2. *X*X + 2.2 *X + 0.4 

  F1(X) = 3. *X*X + 4. *X + 2.2 

  WRITE (*,*) ‘TYPE THE INITIAL GUESS’ 

  READ (*,5) X(0) 

 5 FORMAT (F10.4) 

  WRITE (*,*) ‘TYPE THE TOLERANCE VALUE’ 

  READ (*,6) S 

 6 FORMAT (F3.6) 

  WRITE (*,*) ‘ITERATION X F(X)’ 

  K = 0 

 50 X(K+1) = X(K) – F(X(K)) / F1(X(K)) 

  WRITE (*,10) K+1, X(K+1), F(X(K+1)) 

 10 FORMAT (1X, I6, 5X, F10.4, 5X, F10.4) 

  IF (ABS(X(K+1) – X(K) .LE. S) GOTO 100 

  K = K+1 

  GOTO 50 

 100 WRITE (*,15) X(K+1) 

 15 FORMAT (1X, ‘THE FINAL ROOT IS ‘, F10.4) 

  STOP 

  END 

 

 

 



Assignment 

If  S = 0.00005, manually find the root of the above example  after 5 iterations. 

 

CHOOSING THE INITIAL GUESS, X0 

In the Newton-Raphson’s method, we have to start with an initial guess, x0. How do we 

choose  x0?  

If f (a) and f (b) are of opposite signs, then there is at least one value of x between a andb 

such thatf(x)= 0. We can start with f(0), find f(0), f(1), f(2) ----------------- . If there is a 

number k such that f(k) and f(k+1) are of opposite signs then there is one root between k and 

k+1, so we can choose the initial guess x0 = k or x0 = k+1. 

Example; 

Consider the equation: ݔଷ − ଶݔ7 + ݔ + 1 = 0 

F(0) = 1 ( =  +ve) 

F(1) = -4 (= -ve) 

Therefore, there is a root between 0 and 1, hence our initial guess x0, may be taken as  0 or 1 

Example: 

Evaluate a real root of ݔଷ + ଶݔ2.1 + ݔ13.1 + 22.2 = 0, using the Newton Raphson’s 

method, correct to three decimal places. 

Solution; 

F(x) =  ݔଷ + ଶݔ2.1 + ݔ13.1 + 22.2 

F(0) = 22.2 (positive) 

Now, since all the coefficients are positive, we note that f(1), f(2), ------- are all positive. So 

the equation has no positive root. 

We thus search in the negative side: 



F (-1) = 20.2 (positive) 

F (-2) = +ve = f (-3) ------ f (-11). But f (-12) is negative, so we can choose x0 = -11. 

Iteration 1  

F(x) f ݔଷ + ଶݔ2.1 + ݔ13.1 + 22.2 

F’ (x) = f 3ݔଶ + ݔ24.2 + 13.1 

Now, with x0  = -11 

F (x0) = F (-11) = 11.2 

F’ (x0) = F’(-11) = f 3(−11)ଶ + 24.2(−11) + 13.1  = 109.9 

Therefore, 

xଵ = ݔ −
(௫బ)
′(௫బ)

 = −11− ଵଵ.ଶ
ଵଽ.ଽ

 = -11.1019 

Iteration 2 

X1 = -11.1019 

F (x1) = f (-11.1019) = -0.2169 

F’ (x1)  = F’ (-11.1019) = 114.1906 

Therefore,. 

ଶݔ = ଵݔ −
(௫భ)
′(௫భ)

 = - 11.1019 – ( ି .ଶଵଽ)
ଵଵସ.ଵଽ

 = - 11.100001 

Iteration 3 

X2 = -11.100001 

F (x2) = F ( - 11.100001) = - 0.0001131 

F’ (x2) = F’ (-11.100001) = 114.1101 

Therefore,  



ଷݔ = ଶݔ −
(௫మ)
′(௫మ)

 = - 11.100001 – ( ି .ଵଵଷ)
ଵଵସ.ଵଵଵ

 = - 11.1000000 

Now, correct to three decimal places, x2 = x3, and so, the real root is x = -11.1000. 

 

Example 2 

Set up a Newton-Raphson iteration for computing the square root x of a given positive 
number c and apply it to c = 2 

 

Solution 

We have  ݔ = √ܿ, hence 

F (x) = ݔଶ − ܿ = 0 

݂ (ݔ)′ =  ݔ2

Newton-Raphson formula becomes: 

ାଵݔ = ݔ −
(ݔ)݂
݂ (ݔ)′ = ݔ −

ଶݔ) − ܿ)
ݔ2

 

= ଶ௫ೖ
మି௫ೖ

మା
ଶ௫ೖ

    = ௫ೖ
మା
ଶ௫ೖ

 

= 1
2ൗ ݔ) +

ܿ
ݔ

) 

Therefore, 

For c = 2, choosing x0 = 1, we obtain: 

X1 = 1.500000, x2 = 1.416667, x3 = 1.414216, x4 = 1.414214, ……… 

Now, x4 is exact to 6 decimal places. 

 

 

 



Now, what happens if݂ (ݔ)′ = 0? 

Recall, if  ݂(ݔ) = 0,and ݂ (ݔ)′ = 0 , we have repeated roots or multiplicity (multiple roots). 

The sign in this case will not change; the method hence breaks down. The method also fails 

for a complex solution (i.e. ݔଶ + 1 = 0) 

4. The Secant Method 

We obtain the  Secant method from the Newton-Raphson method, replacing the 

derivative F’ (x) by the difference quotient: 

 ݂ (ݔ)′ = (௫ೖ)ି(௫ೖషభ)
௫ೖି௫ೖషభ

 

Then instead of using  ݔାଵ = ݔ −
(௫ೖ)
′(௫ೖ)

 (as in Newton-Raphson’s), we have 

ାଵݔ = ݔ − (ݔ)݂
ݔ − ିଵݔ

−(ݔ)݂  (ିଵݔ)݂

Geometrically, we intersect the x-axis at xk+1 with the secant of f (x) passing through Pk-1 and Pk 

in the figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We thus, need two starting values x0 and x1. 

Y = f(x) Secant 

Pk-1 

        

S Xk-1 xk 

x 

y 

Pk 

Xk+1 



CHAPTER THREE 

 

COMPUTATION OF SOME STANDARD FUNCTIONS 

Consider the sine x series: 

ݔ݊݅ܵ = ݔ − ௫య

ଷ!
+ ௫ఱ

ହ!
−  ---------- 

 For a given value of x, sin x can be evaluated by summing up the terms of the right hand 

side. Similarly, cosx, ex ,etc can also be found from the following series; 

 

ݔݏܥ = 1 − ௫మ

ଶ!
+ ௫ర

ସ!
−   ---------- 

݁௫ = 1 + ݔ + ௫మ

ଶ!
+ ௫య

ଷ!
+   -------- 

Example: 

Solve  sin (0.25) correct to five decimal places. 

Solution; 

 

Given that x = 0.25 

ଷݔ

3! =
ଷݔ

6 =
(0.25)ଷ

6 = 0.0026041 

ହݔ

5! =
ହݔ

120 =
(0.25)ହ

120 = 0.0000081 

ݔ

7! =
ݔ

5040 =
(0.25)

5040 = 0.0000000 

   (correct to 6 D) 

Therefore, 

ݔ݊݅ܵ = ݔ −
ଷݔ

3! +
ହݔ

5! = 0.25 − 0.002641 + 0.0000081 

 

  = 0.2475071 = 0.24751 (correct to 5D) in radians 



1. Taylor’s Series Expansion 

Let F(x) be a function. We want to write f(x) as a power series about a point x0. That is, 

we want to write f(x) as: 

(ݔ)݂ = ܿ + ܿଵ(ݔ − (ݔ + ܿଶ(ݔ − )ଶݔ +  … … … ----------------------- (1) 

Where c0, c1, c2,  ----------, are constants. 

We are interested in finding the constants co, c1, ----------, given f(x) and x0. 

Therefore, from equation (1), 

ܿ  =  (ݔ)݂ 

If we differentiate equation (1), we obtain: 

ଵܥ + 2ܿଶ(ݔ– (ݔ  +  3ܿଷ(ݔ– )ଶݔ  + − −−− −− − (2) 

Therefore, 

݂ (ݔ)′ = ܿଵorܿଵ = ݂  (ݔ)′

Differentiating equation (2), we obtain: 

݂ (ݔ)′′ = 2ܿଶ + 3(2)(ܿଷ)(ݔ −  (ݔ

Hence, 

݂ (ݔ)′′ = 2ܿଶorܿଶ = ′′(௫బ)
ଶ!

 

Proceeding like this, we shall get; 

ܿଷ =
݂ (ݔ)′′′

3! ܽ݊݀ܿସ =
݂(௩)(ݔ)

4!  

In general, 

ܿ =
݂()(ݔ)

݇!  

Equation (1) thus becomes; 

(ݔ)݂ = (ݔ)݂ + ′(௫బ)
ଵ!

ݔ) − (ݔ + ′′(௫బ)
ଶ!

ݔ) − )ଶݔ +  … … … --------- (3) 



This is called the Taylor’s series expansion about x0. 

Taylor’s series can be expressed in various forms. Putting x = x0 + h in equation (3), we get 

another form of Taylor’s series: 

ݔ)݂ + ℎ) = (ݔ)݂ + ′(௫బ)
ଵ!

ℎ + ′′(௫బ)
ଶ!

ℎଶ +  … … … ---------- (4) 

Some authors use x in the place of h in equation (4), so we get yet another form of Taylor’s 

series; 

ݔ)݂ + (ݔ = (ݔ)݂ + ′(௫బ)
ଵ!

ݔ + ′′(௫బ)
ଶ!

ଶݔ +  … … … --------- (5) 

2. The Maclaurin’s Series 

The Taylor’s series of equation (5) about x0 = 0 is called Maclaurin’s series of f(x), that is,  

(ݔ)݂ = ݂(0) + ′()
ଵ!

ݔ + ′′()
ଶ!

ଶݔ +  … … …  ----------------- (6) 

3. Binomial Series 

Consider, 

(ݔ)݂ = (1 +  (ݔ

݂ (ݔ)′ = ݊(1 +  ିଵ(ݔ

݂ (ݔ)′′ = ݊(݊ − 1)(1 +  ିଶ(ݔ

݂ (ݔ)′′′ = ݊(݊ − 1)(݊ − 2)(1 +  ିଷ(ݔ

Now applying the above to the Maclaurin’s series, we obtain, noting that; 

݂(0) = 1 

݂ ′(0) =  ݊ 

݂ ′′(0) =  ݊(݊ − 1) 

݂ ′′′(0) =  ݊(݊ − 1)(݊ − 2) 



So we obtain: 

(1 + (ݔ = 1 + ݔ݊ +
݊(݊ − 1)

2! ଶݔ +
݊(݊ − 1)(݊ − 2)

3!  ଷݔ

This is the Binomial series. 

Example 

Derive the Maclaurin’s series for ݁ି௫ and hence, evaluate ݁ି.ଶ correct to two decimal places. 

Solution: 

(ݔ)݂ = ݁ି௫ ,    ݂(0) =  1 

݂ (ݔ)′ = −݁ି௫  ,   ݂ ′(0) = − 1 

݂ (ݔ)′′ = ݁ି௫  ,   ݂ ′′(0) = 1 

݂ (ݔ)′′′ = −݁ି௫  ,   ݂ ′′′(0) = − 1 

Now, by Maclaurin’s series, 

(ݔ)݂ = ݂(0) +
݂ ′(0)

1! ݔ +
݂ ′′(0)

2! ଶݔ +  … … … 

That is, 

݁ି௫ = 1−
ݔ
1! +

ଶݔ

2! −
ଷݔ

3! +  … … … .. 

Therefore, 

݁ି.ଶ = 1 − 0.2 +
(0.2)ଶ

2 −
(0.2)ଷ

6 +
(0.2)ସ

24 −⋯ .. 

    = 0.81 (to 2D). 

 

 



CHAPTER FOUR 

 INTERPOLATION 

Suppose F(x) is a function whose value at certain points xo, x1, ……,xn are known. The values are 

f(x0), f(x1), ……, f(xn). Consider a point x different from xo, x1, ……,xn . F(x) is not known. 

We can find an approximate value of F(x) from the known values. This method of finding F(x) 

from these known values is called interpolation. We say that w interpolate F(x) from f(x0), f(x1), 

……, f(xn 

Linear Interpolation 

Let x0, x1 be two points and f0, f1 be the function values at these two points respectively. Let x be 

a point between x0 and x1. We are interested in interpolating F(x) from the values F(x0) and F(x1).  

 

 

 

 

Now consider the Taylor’s series: 

(ଵݔ)݂ = (ݔ)݂ +
݂ (ݔ)′

1!
ଵݔ) − (ݔ +  … … …. 

Considering only the first two terms, we have: 

ଵ݂ = ݂ + ݂ ଵݔ)(ݔ)′ −  (ݔ

Therefore, 

݂ (ݔ)′ = ଵ݂ − ݂

ଵݔ − ݔ
 

The Taylor’s series at x gives 

F0 F(x) =? F1 

x0 x x1 



(ݔ)݂ = (ݔ)݂ +
݂ (ݔ)′

1!
ݔ) − (ݔ +  … … … 

Also considering the first the first two terms, we have: 

(ݔ)݂ = (ݔ)݂ + ݂ ݔ)(ݔ)′ − (ݔ = ݂ +
( ଵ݂ − ݂)

ଵݔ) − (ݔ ݔ) −  (ݔ

Now let ௫ି௫బ
௫భି௫బ

 be denoted by p 

We thus get; ݂(ݔ) = ݂ + ( ଵ݂ − ݂) = ݂ +  ଵ݂ −  ݂   =  ݂ −  ݂ +  ଵ݂  

Therefore, 

(ݔ)݂ = (1− ( ݂ +  ଵ݂ 

This is called the linear interpolation formula. Since x is a point between x0 and x1, p is a non-

negative fractional value, i.e. 0 ≤  ≤ 1 

Example 

Consider the following table: 

  7 19ݔ

݂ 15 35 

 

Find the value of ݂(10) 

Solution: 

ݔ = ଵݔ            ,7 = 19 

݂ = 15,          ଵ݂ = 35 

 

 

 

F0 =15 F(x) =? F1 =35 

x0 =7 X =10 x1 =19 



 =
ݔ − ݔ
ଵݔ − ݔ

   =  
10 − 7
19 − 7     =  

3
12 

     = 0.25 

Therefore, 

 

1−  = 1 − 0.25 = 0.75 

Hence, ݂(ݔ) = (1 − ( ݂ +  ଵ݂ 

 = (0.75 x 15) + (0.25 x 35) = 11.25 + 8.75 

  F(10) = 20 

Lagrange Interpolation 

Linear Lagrange interpolation is interpolation by the straight line through (ݔ, ݂), ,ଵݔ) ଵ݂) 

 

y 

 

 

 

 

 

 

 

 Thus, by that idea, the linear Lagrange polynomial P1 is the sum P1= L0f0 + L1f1 with L0 , the 

linear polynomial that is 1 at x0 and 0 at x1 . 

Similarly, L1 is 0 at x0 and 1 at x1. 

Therefore, 

X1 
x 

x X0 

F1 
P1(x) 

F0 

Y = f(x) 



(ݔ)ܮ =
ݔ − ଵݔ
ݔ − ଵݔ

, (ݔ)ଵܮ =
ݔ − ݔ
ଵݔ − ݔ

 

This gives the linear Lagrange polynomial; 

ଵܲ(ݔ) =L0f0 + L1f1 = ௫ି௫భ
௫బି௫భ ݂ + ௫ି௫బ

௫భି௫బ ଵ݂ 

Example 1 

Compute ln 5.3 from ln 5.0 = 1.6094, ln 5.7 = 1.7405 by linear Lagrange interpolation and 

determine the error from ln 5.3 = 1.6677. 

Solution; 

ݔ = 5.0 

ଵݔ = 5.7 

݂ = ln 5.0 

ଵ݂ = ln 5.7 

Therefore. 

(5.3)ܮ =
5.3− 5.7
5.0− 5.7 =  

−0.4
−0.7 = 0.57 

ଵ(5.3)ܮ =
5.3 − 5.0
5.7 − 5.0 =

0.3
0.7 = 0.43 

Hence, 

ln 5.3 = (5.3)ܮ ݂ + ଵ(5.3)ܮ ଵ݂ 

   = 0.57 x 1.6094 + 0.43 x 1.7405 = 1.6658 

The error is 1.6677 – 1.6658 = 0.0019 

 

The quadratic Lagrange Interpolation 



This interpolation of given (x0 ,f0), (x1 , f1), (x2 , f2) by a second degree polynomial P2(x), which 

by Lagrange’s idea, is: 

ଶܲ(ݔ) = (ݔ)ܮ ݂ + (ݔ)ଵܮ ଵ݂ + (ݔ)ଶܮ ଶ݂ 

With, 

(ݔ)ܮ = 1, (ଵݔ)ଵܮ = 1, (ଶݔ)ଶܮ = 1 and 

(ଵݔ)ܮ = (ଶݔ)ܮ = 0, e.t.c., we therefore claim that: 

(ݔ)ܮ =  
݈(ݔ)
݈(ݔ) =

ݔ) − ݔ)(ଵݔ − (ଶݔ
ݔ) − ݔ)(ଵݔ −  (ଶݔ

(ݔ)ଵܮ =  
݈ଵ(ݔ)
݈ଵ(ݔଵ) =

ݔ) − ݔ)(ݔ − (ଶݔ
ଵݔ) − ଵݔ)(ݔ −  (ଶݔ

(ݔ)ଶܮ =  
݈ଶ(ݔ)
݈ଶ(ݔଶ) =

ݔ) − ݔ)(ݔ − (ଵݔ
ଶݔ) − ଶݔ)(ݔ −  (ଵݔ

The above relations are valid since, the numerator makes ܮ൫ݔ൯ = 0 ݂݆݅ ≠ ݇; and the 

denominator makes ܮ(ݔ) = 1 because it equals the numerator at ݔ =  ݔ

Example 2 

Compute ln 5.3 by using the quadratic Lagrange interpolation, using the data of example 1 

and ln 7.2 = 1.9741. Compute the error and compare the accuracy with the linear Lagrange 

case. 

Solution: 

(5.3)ܮ =  
ݔ) − ݔ)(ଵݔ − (ଶݔ

ݔ) − ݔ)(ଵݔ − (ଶݔ =
(5.3 − 5.7)(5.3− 7.2)
(5.0 − 5.7)(5.0− 7.2) 

   = (ି.ସ)(ିଵ.ଽ)
(ି.)(ିଶ.ଶ)

= .
ଵ.ହସ

= 0.4935 

ଵ(5.3)ܮ =  
ݔ) − ݔ)(ݔ − (ଶݔ

ଵݔ) − ଵݔ)(ݔ − (ଶݔ =
(5.3 − 5.0)(5.3− 7.2)
(5.7 − 5.0)(5.7− 7.2) 



=
(0.3)(−1.9)
(0.7)(−1.5) =

−0.57
−1.05 = 0.5429 

ଶ(5.3)ܮ =  
ݔ) − ݔ)(ݔ − (ଵݔ

ଶݔ) − ଶݔ)(ݔ − (ଵݔ =
(5.3 − 5.0)(5.3− 5.7)
(7.2 − 5.0)(7.2− 5.7) 

=
(0.3)(−0.4)
(2.2)(1.5) =

−0.12
3.3 = −0.03636 

Therefore, 

ln 5.3 = (5.3)ܮ ݂ + ଵ(5.3)ܮ ଵ݂ + ଶ(5.3)ܮ ଶ݂ 

 = 0.4935 x 1.6094 + 0.5429 x 1.7405 + (- 0.03636) x 1.9741  

 = 0.7942 + 0.9449 – 0.07177 =1.6673 (4D) 

The error = 1.6677 -1.6673 = 0.0004 

The above results show that the Lagrange quadratic interpolation is more accurate for this case. 

Generally, the Lagrange interpolation polynomial may be written as: 

(ݔ)݂ ≅ ܲ(ݔ) = ܮ(ݔ) ݂ = 
݈(ݔ)
݈(ݔ)



ୀ



ୀ
݂  

Where,  

(ݔ)ܮ =  ݏ݁݀݊ݎℎ݁ݐℎ݁ݐݐܽ 0 ݀݊ܽ 1

 

 

 

 

 

 



CHAPTER FIVE 

INTRODUCTION TO FINITE DIFFERENCES 

Consider a function: ݂(ݔ) = ଷݔ − ଶݔ5 + 6 

The table below illustrates various finite difference parameters. 

 ..…………  ଶ݂ ∆ଷ݂ ∆ସ݂∆ ݂∆ (ݔ)݂ ݔ

0 

1 

2 

3 

4 

5 

6 

6 

2 

-6 

-12 

-10 

6 

42 

 
- 4 
- 8 

- 6 
2 

16 

36 
 

 

- 4 

2 

8 

14 

20 

 
 
6 
 
6 
6 
 
6 
 

 

 

 

Notice that a constant (6) occurs in the forward difference at ∆ଷ݂ (3rd forward difference) 

It can be shown that: 

∆ଷ݂ =
݀ଷ݂
 ଷݔ݀

Therefore, 

݀ଷ݂
ଷݔ݀ = 6 

݀ଶ݂
ଶݔ݀ = ݔ6 +  ܣ

ݕ݀
ݔ݀ = ଶݔ3 + ݔܣ +  ܤ

Hence, ݂ = ଷݔ + 
ଶ
ଶݔ + ݔܤ +  ܥ



We now determine the constants: 

At x = 0, ݂(ݔ) =  6 =  ܥ

Therefore, ݂(ݔ) = ଷݔ + 
ଶ
ଶݔ + ݔܤ + 6 

At ݔ = (ݔ)݂,1 = 2 (from the table) 

Therefore,  2 = 1 + 
ଶ

+ ܤ + 6,    --------------------------- (1) 

At ݔ = (ݔ)݂,2 =  −6 

Hence, 

−6 = 8 + 
ଶ

(4) + ܤ2 + 6   --------------------------------- (2) 

We then solve simultaneously for the other constants. 

The first forward difference is generally taken as an approximation for the first difference, i.e. 

∆݂ ≅ ݂ Also, ∆ଶ݂ .(but will be exact if linear) , (ݔ)′ ≅ ݂  .(but exact if quadratic) (ݔ)′′

Similarly, ∆ଷ݂ ≅ ݂  .(but exact if cubic) (ݔ)′′′

Note also that; 

 will be linear if the constant terms occur at ∆݂ column, quadratic if they occur at ∆ଶ݂(ݔ)݂

column and cubic if at ∆ଷ݂ column. 

Now, 

∆݂ ≅ ݂ (ݔ)′ = ଵ݂ − ݂

ଵݔ − ݔ
= ݂ାଵ − ݂

ାଵݔ − ݔ
 

Let ݔାଵ − ݔ = ℎ = interval, 

Then, 

݂ (ݔ)′ = ݂ାଵ − ݂

ℎ  



Now, from the Taylor’s series expansion, let us on this occasion consider the expansion about a 

point ݔ: 

݂ାଵ = ݂ + ℎ ݂
(ଵ) + మ

ଶ! ݂
′′ + య

ଷ! ݂
(ଷ) +  … … …. ------------------------------ (1) 

In this and subsequently, we denote the nth derivative evaluated at ݔ by ݂
() 

Hence,   

݂ିଵ = ݂ − ℎ ݂
(ଵ) + మ

ଶ! ݂
(ଶ) − య

ଷ! ݂
(ଷ) +  … … ….  ------------------------------ (2) 

From equations one and two, three different expressions that approximate ݂
(ଵ) can be derived. 

The first is from equation (1), considering the first two terms: 

݂ାଵ − ݂ = ℎ ݂
(ଵ) +

ℎଶ

2! ݂
(ଶ) 

Therefore,     శభି


= ݂ + 
ଶ! ݂

(ଶ) 

Hence, ݂
(ଵ) ≡ ቀௗ

ௗ௫
ቁ
௫

= శభି


− 
ଶ! ݂

(ଶ) ------------------------------------------ (3) 

The quantity,శభି


is known as the forward difference and it is clearly a poor approximation, 

since it is in error by approximately          
ଶ ݂

(ଶ). 

The second of the expressions is from equation (2), considering the first two terms: 

݂ − ݂ିଵ = ℎ ݂
(ଵ) −

ℎଶ

2! ݂
(ଶ) 

Therefore, ିషభ


= ݂
(ଵ) − మ

ଶ! ݂
(ଶ) 

Hence, ݂
(ଵ) ≡ ቀௗ

ௗ௫
ቁ
௫

= ିషభ


+ మ

ଶ! ݂
(ଶ)  --------------------------------------------- (4) 

Also, the quantity,ିషభ


 is called the backward difference. The sign of the error is reversed, 

compared to that of the forward difference. 



The third expression is obtained by subtracting equation (2) from equation (1), we then have: 

݂ାଵ − ݂ିଵ = ℎ ݂
(ଵ) + ℎ ݂

(ଵ) + 2
ℎଷ

3! ݂
(ଷ) 

= 2ℎ ݂
(ଵ) + 2ℎଷ ݂

(ଷ)

3!  

Hence, 

݂ାଵ − ݂ିଵ = 2ℎ ൭ ݂
(ଵ) +

ℎଶ ݂
(ଷ)

3!
൱ 

Therefore, 

݂ାଵ − ݂ିଵ

2ℎ = ݂
(ଵ) +

ℎଶ ݂
(ଷ)

3!  

So, 

݂
(ଵ) ≡ ቀௗ

ௗ௫
ቁ
௫

= శభିషభ
ଶ

− మ
(య)

ଷ!
- ------------------------------------------------- (5) 

The quantity, శభିషభ
ଶ

 is known as the central difference approximation to ݂
(ଵ) and can be seen 

from equation (5) to be in error by approximately 
మ

 ݂
(ଷ). Note that this is a better approximation 

compared to either the forward or backward difference. 

By a similar procedure, a central difference approximation to ݂
(ଶ) can be obtained: 

݂
(ଶ) = ቀௗ

మ
ௗ௫మ

ቁ
௫
≅ శభିଶାషభ

మ
 -------------------------------------------- (6) 

The error in this approximation, also known as the second difference of ݂, is about 
2

12
(4) 

It is obvious that the second difference approximation is far better that the first difference. 

 

 



Example: 

The following is copied from the tabulation of a second degree polynomial ݂(ݔ) at values of x 

from 1 to 12 inclusive. 

2, 2,?,8, 14, 22, 32, 46, ?, 74, 92, 112 

The entries marked ?were illegible and in addition, one error was made in transcription. 

Complete and correct the table. 

Solution: 

S/N ݂(ݔ) ∆݂ ∆ଶ݂  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

2 

2 

? 

8 

14 

22 

32 

46 

? 

74 

92 

112 

 
0 
? 
 
? 
6 
 
8 
10 
14 

? 

? 

18 

20 

 

 
 
 
 

 

? 

? 

? 

2 

2 

4 
? 

? 

? 

2 

 

Because, the polynomial is second degree, the 2nd 

differences (which are proportional to ௗ
మ

ௗ௫మ
) should be 

constant and clearly, this should be 2. Hence, the 6th value in 

the ∆ଶ݂ column should be 2 and also all the ?in this column. 

Equally, the 7th value in the ∆݂ column should be 12 and not 

14. And since all the values in the.∆ଶ݂column are a constant 

,2, the first two ? in∆݂ column are 2 and 4 respectively and 

the last two are 14 and 16 respectively. Working this 

backward to ݂(ݔ)column, the first ? = 4, while the 8th value 

in this column = 44 and not 46.. Finally, the last ? in the 

 column = 58 (ݔ)݂

The entries should therefore read: 

2, 2, 4, 8, 14, 22, 32, 44, 58, 74, 92, 112 

 

 

 

 



CHAPTER SIX 

SIMULTANEOUS LINEAR EQUATIONS 

Consider a set of N simultaneous linear equations in N variables (unknowns), ݔ, ݅ = 1,2, … .ܰ. 

The equations take the general form: 

ଵݔଵଵܣ + ଶݔଵଶܣ +  … … + ேݔଵேܣ = ܾଵ 

ଵݔଶଵܣ + ଶݔଶଶܣ +  … … + ேݔଶேܣ = ܾଶ 

    ------- ------ ---------- ----- ----  ------     ………………… (1) 

ଵݔேଵܣ + ଶݔேଶܣ + … … + ேݔேேܣ = ܾே  

Where, ܣare constants and form the elements of a square matrix A. The ܾ are given and form a 

column vector ܾ. If A is non-singular, equation (1) can be solved for the ݔ using the inverse of 

A according to the formula; ݔ =  .ଵܾିܣ

 

Systems of linear Equations 

Consider the following system of linear equations: 

ܽଵଵݔଵ + ܽଵଶݔଶ +  … … + ܽଵݔ = ܽଵ,ାଵ 

ܽଶଵݔଵ + ܽଶଶݔଶ +  … … + ܽଶݔ = ܽଶ,ାଵ 

−  −  −  −  −  −  −  −  −  −  −  −  − 

−  −  −  −  −  −  −  −  −  −  −  −  − 

ܽଵݔଵ + ܽଶݔଶ +  … … + ܽݔ = ܽ,ାଵ 

A solution to this system of equations is a set of values ݔଵ,ݔଶ, … . .   which satisfies the aboveݔ,

equations. 

 



Consider the matrix: 


ܽଵଵ ܽଵଶ ܽଵଷ … … ܽଵ
ܽଶଵ ܽଶଶ ܽଶଷ … … ܽଶ
ܽଵ ܽଶ ܽଷ … … ܽ

൩ 

This called the coefficient matrix 

The vector: ඍ
ܽଵ,ାଵ
−− −
ܽ,ାଵ

එ  is called the right hand side vector. 

In some special cases, the solution can be got directly. 

 

Cases 1 

A square matrix is called a diagonal matrix if the diagonal entries alone are non-zeros. Suppose 

the coefficient matrix is a diagonal matrix, i.e. the coefficient matrix is of the form: 

 

⎣
⎢
⎢
⎢
⎡
ܽଵଵ    0     0 … . .0
0     ܽଶଶ    0 … 0
−  −  −  −  −  −
−  −  −  −  −  −
0     0     0   . .ܽ⎦

⎥
⎥
⎥
⎤

 

The equations will be of the form: 

ܽଵଵݔଵ = ܽଵ,ାଵ 

ܽଶଶݔଶ = ܽଶ,ାଵ 

−  −  −  −  − 

−  −  −  −  − 

ܽݔ = ܽ,ାଵ 

In this case, the solution can be directly written as: 

ଵݔ =
ܽଵ,ାଵ

ܽଵଵ
ଶݔ   , =

ܽଶ,ାଵ

ܽଶଶ
, … … … , ݔ =

ܽ,ାଵ

ܽ
 



Case 2 

A matrix is said to be lower triangular if all its upper diagonal entries are zeros. 

Suppose the coefficient matrix is a lower diagonal matrix, i.e. it is of the following form: 

   

⎣
⎢
⎢
⎢
⎡
ܽଵଵ    0     0 … .0
ܽଶଵܽଶଶ  0. … 0
−  −  −  −  −  −
−  −  −  −  −  −

 ܽଵܽଶܽଷ … ܽ⎦
⎥
⎥
⎥
⎤

 

The equations will be of the following form: 

ܽଵଵݔଵ                                                             = ܽଵ,ାଵ 

  ܽଶଵݔଵ + ܽଶଶݔଶ                                              = ܽଶ,ାଵ 

ܽଷଵݔଵ + ܽଷଶݔଶ + ܽଷଷݔଷ                            = ܽଷ,ାଵ 

    −− −− −− −− −− −− −− −−− −− 

    −− −− −− −− −− −− −− −−− −− 

ܽଵݔଵ + ܽଶݔଶ + ܽଷݔଷ +  … … + ܽݔ = ܽ,ାଵ 

From the first equation, 

ଵݔ =
ܽଵ,ାଵ

ܽଵଵ
 

Substituting ݔଵ into the second equation, we have: 

ଶݔ =
1
ܽଶଶ

൫ܽଶ,ାଵ − ܽଶଵݔଵ൯ 

Also, doing the same for ݔଶ:n 

ଷݔ =
1
ܽଷଷ

(ܽଷ,ାଵ − ܽଷଵݔଵ − ܽଷଶݔଶ) 

Similarly, we can find ݔସ,ݔହ, … … . ݔ, . This is called forward substitution method. 



Case 3 

Suppose the coefficient is upper triangular. Then, the equations will be of the following form; 

ܽଵଵݔଵ + ܽଵଶݔଶ +  … . +ܽଵݔ = ܽଵ,ାଵ 

0     +   ܽଶଶݔଶ + ⋯ . +ܽଶݔ = ܽଶ,ାଵ 

−− −− −− −− −−− −− −− − 

    −− −− −− −−− −− −− −−− − 

    +  ܽݔ = ܽ,ାଵ 

Starting from the last equation, 

ݔ =
ܽ.ାଵ

ܽ
 

The(݊ −  :ିଵ thusݔ ℎ equation can now be used to evaluateݐ(1

ିଵݔ =
1

ܽିଵ,ିଵ
൫ܽିଵ,ିଵ − ܽିଵ,ݔ൯ 

In general, after evaluating ݔ ିଵݔ, … . .  :asݔ ାଵ , we evaluateݔ

ݔ =
1
ܽ

= (ܽ,ାଵ − ܽ,ାଵݔାଵ … … ܽݔ) 

We can thus evaluate all the ݔ values. This is called backward substitutiion method. 

 

Elementary Row Operations  

Consider a matrix 

A =  

⎣
⎢
⎢
⎢
⎡
ܽଵଵܽଵଶܽଵଷ … . ܽଵ
ܽଶଵܽଶଶܽଶଷ. … ܽଶ
−  −  −  −  −  −
−  −  −  −  −  −

 ܽଵܽଶܽଷ … ܽ⎦
⎥
⎥
⎥
⎤
 

Operation 1 

Multiplying each element of a row by a constant: 



If the ݅ݐℎ row is multiplied by a constant ݇, we write: ܴ = ܴ݇ (read as ܴbecomes ܴ݇). 

Operation 2 

Multiplying one row by a constant and subtracting it from another row, i.e. ܴ can be replaced by 
ܴ − ݇ ܴ. We write ܴ ← ܴ − ݇ ܴ. 

Operation 3 

Two rows can be exchanged: If ܴ  ܽ݊݀  ܴ  are exchanged, we write ܴ ↔ ܴ. 

When operation 1 is performed, the determinant is multiplied by ݇.  

If operation 2 is performed on a matrix, its determinant value is not affected. 

When operation 3 is performed, the sign of its determinant value reverses. 

Now consider a matrix in which all the lower diagonal entries of the first column are zero; 

A =
ܽଵଵ ܽଵଶ ܽଵଷ. . ܽଵ
0 ܽଶଶ ܽଶଷ. . ܽଶ
0 ܽଷଶ ܽଷଷ. . ܽଷ

 

………………….. 

 0     an2      an3..ann 

|ܣ| = ܽଵଵ 
ܽଶଶ ܽଶଷ. . ܽଶ
ܽଷଶ ܽଷଷ. . ܽଷ
ܽଶ ܽଷ. . ܽ

൩ 

 

Pivotal Condensation 

Consider a matrix, 

A  =
ܽଵଵ ܽଵଶ ܽଵଷ. .ܽଵ
ܽଶଵ ܽଶଶ ܽଶଷ. .ܽଶ
… . … . . . … . .

 

          an1     an2  an3 ..ann 

Also consider a row operation ܴ ← ܴଶ −
మభ
భభ

ܴଵ, performed on the matrix A; then the  

ܽଶଵentry will become zero. Similarly, do the operation :ܴ ← ܴ −
భ
భభ

ܴଵ, for i = 2,3,4,…n 



Then the lower diagonal entries of the first column will become zero. Note that these operations 

not affect the determinant value of A. 

In the above operation, ܽwould have now become: 

ܽ −
భ
భభ

ܽଵ, that is: ܽ ← ܽ −
భ
భభ

ܽଵ 

Therefore, according to the new notation: 

A  =
ܽଵଵ ܽଵଶ ܽଵଷ. .ܽଵ
0 ܽଶଶ ܽଶଷ. .ܽଶ
0 ܽଷଶ ܽଷଷ. .ܽଷ

 

          ………………….. 

          0     an2      an3..ann 

|ܣ| = ܽଵଵ 
ܽଶଶ ܽଶଷ. . ܽଶ
ܽଷଶ ܽଷଷ. . ܽଷ
ܽଶ ܽଷ. . ܽ

൩ 

Now, we can once again repeat the above procedure on the reduced matrix to get determinant: 

ଵଵܽଶଶܽ = |ܣ| 
ܽଷଷܽଷସ ⋯ ܽଷ

⋮ ⋱ ⋮
ܽଷܽସ ⋯ ܽ

൩ 

‘A’ was a ݊݊ݔ matrix. In the first step, we condensed it into a (݊ − ݊)ݔ(1 − 1) matrix. Now, it 
has further been condensed into(݊ − ݊)ݔ(2 − 2) matrix. Repeating the above procedure, we can 
condense the matrix into11ݔ. So, determinant, ܣ = ܽଵଵ. ܽଶଶ.ܽଷଷ. … .ܽ. 

 

Algorithm Development  

Let A be the given matrix, 

1. Do the row operation   ܴ ← ܴ −
భ
భభ

ܴଵ 

  (for݅ = 2,3,4 … . ݊) 

This makes all the lower diagonal entries of the first column zero. 

2. Do the row operation  ܴ ← ܴ −
మ
మమ

ܴଶ (for ݅ = 3,4 … .݊) 



This also makes all the lower diagonal entries of the second column zero. 

3. Do the row operation  ܴ ← ܴ −
య
యయ

ܴଷ (for ݅ = 4,5 … .݊) 

This makes all the lower diagonal entries of the third column zero. 

In general, in order to make the lower diagonal entries of the ݇௧ column zero, 

4. Do the row operation, ܴ ← ܴ −
ೖ
ೖೖ

ܴ  for ݅ = ݇ + 1,݇ + 2 … .݊) 

Doing the above operation for ݇ = 1,2,3, … . , ݊ − 1, makes all the lower diagonal entries of 

the matrix zero. Hence, determinant ܣ = ܽଵଵ.ܽଶଶ. ܽଷଷ, … , ܽ. 

Notice that the following segment will do the required row operation: 

݅ݐܽݎ =
ܽ
ܽ

 

                                                      For ݆ =  ݊ ݐ 1

ܽ = ܽ − ݅ݐܽݎ ∗ ܽ 

  ݆ ݐݔ݁݊

This operation has to be repeated for ݅ = ݇ +  in order to make the lower diagonal entries ݊ ݐ 1

of the ݇௧ column zero. 

The complete algorithm is show below: 

1. Read n 

݅ ݎ݂ .2 =  ݊ ݐ 1

݆ ݎ݂ .3 =  ݊ ݐ 1

4. ܴ݁ܽ݀ ܽ 

 ݆ ݐݔ݁݊ .5

 ݅ ݐݔ݁݊ .6

݇ ݎ݂ .7 = ݊ ݐ 1 − 1 

݅ ݎ݂ .8 = ݇ +  ݊ ݐ 1



݅ݐܽݎ .9 = ೖ
ೖೖ

 

݆ ݎ݂ .10 =  ݊ ݐ 1

11. ܽ = ܽ − ݅ݐܽݎ ∗ ܽ  

 ݆ ݐݔ݁݊ .12

 ݅ ݐݔ݁݊ .13

 ݇ ݐݔ݁݊ .14

ݐ݁ܦ .15 = 1 

݅ ݎ݂ .16 =  ݊ ݐ 1

ݐ݁ܦ .17 = ݐ݁ܦ ∗ ܽ 

 ݅ ݐݔ݁݊ .18

 ݐ݁ܦ ݐ݊݅ݎܲ .19

 .݀݊ܧ .20

 

Practice Questions 

1. Write a FORTRAN program to implement the pivotal condensation method, to find the 

determinant of any matrix of order n. 

2. Find the determinant of : 

  1.2     -2.1     3.2     4.3 
 -1.4     -2.6     3.0    4.1 
  -2.2     1.7     4.0     1.2 
   1.1     3.6     5.0     4.6   
       Using the pivotal condensation method, 

 

 

 

 

 

 



Gauss Elimination Method 

Consider the equation: 

ܽଵଵݔଵ + ܽଵଶݔଶ + ⋯+ ܽଵݔ = ܽଵ,ାଵ 

ܽଶଵݔଵ + ܽଶଶݔଶ + ⋯+ ܽଶݔ = ܽଶ,ାଵ 

    --- ------ ------ ------ ------- ------ ------ 

ܽଵݔଵ + ܽଶݔଶ + ⋯+ ܽݔ = ܽ,ାଵ 

This can be in matrix form and solved using the row operation which was done for the pivotal 

condensation method. 

The algorithm consists of three major steps thus: 

(i) Read the matrix 

(ii) Reduce it to upper triangular form 

(iii) Use backward substitution to get the solution.. 

 

Algorithm: 

        Read Matrix A. 

1. Read ݊ 

݅ ݎ݂ .2 =  ݊ ݐ 1

݆ ݎ݂ .3 = ݊ ݐ 1 + 1 

4. ܴ݁ܽ݀ ܽ 

5. Next j 

 ݅ ݐݔ݁ܰ .6

Reduce to upper Triangular 

݇ ݎ݂ .7 = ݊ ݐ 1 − 1 

݅ ݎ݂ .8 = ݇ +  ݊ ݐ 1

݅ݐܴܽ .9 =  ೖ
ೖೖ

 



݆ ݎ݂ .10 = ݊ ݐ 1 + 1 

11. ܽ = ܽ − ݅ݐܴܽ ∗ ܽ  

12. Next j 

 ݅ ݐݔ݁ܰ .13

 ݇ ݐݔ݁ܰ .14

Backward Substitution 

ݔ .15 = ,శభ


 

݇ ݎ݂ .16 = ݊ − ݁ݐݏ 1 ݐ 1 − 1 

ݔ .17 = ܽ,ାଵ 

݆ ݎ݂ .18 = ݇ +  ݊ ݐ 1

ݔ .19 = ݔ − ܽ ∗  ݔ

20. Next j 

ݔ .21 = ௫ೖ
ೖೖ

 

 ݇ ݐݔ݁ܰ .22

Print Answer 

݅ ݎ݂ .23 =  ݊ ݐ 1

 ݔ ݐ݊݅ݎ .24

 ݅ ݐݔ݁ܰ .25

 ݀݊ܧ .26

   
  
 
Example: 

Solve the following system of equations by the Gauss elimination method: 

ଵݔ + ଶݔ +
1
2
ଷݔ + ସݔ = 3.5 

ଵݔ−      + ଶݔ2 + ସݔ          = −2 

ଵݔ3− + ଶݔ + ଷݔ2 + ସݔ = −3 

ଵݔ− + ସݔ2                          = 0 

Solution: The matrix is: 



1     1     0.5    1    3.5 
 -1     2     0       1     -2 
               -3 1     2       1     -3 
               -1     0     0       2     0 

In order to make zero, the lower diagonal entries of the first column, do the following operations 

ܴଶ ← ܴଶ + ܴଵ 

ܴଷ ← ܴଷ + 3ܴଵ 

ܴସ ← ܴସ + ܴଵ 

These will yield: 

                              1     1     0.5    1    3.5 
 0      3     0.5    2    1.5 
                0 4     3.5     4    7.5 
                0     1     0.5     3   3.5 

Now do the operations: 

ܴଷ ← ܴଷ −
4
3ܴଶ 

ܴସ ← ܴସ −
ܴଶ
3  

These will yield: 

                              1     1     0.5        1       3.5 
 0     3     0.5        2        1.5 
                0 0     2.833   1.33   5.5 
                0     0     0.66     2.33     3 

Now, doing: 

ܴସ ← ܴସ −
0.66
2.33 ∗ ܴଷ 

Will result to: 

 
 



                              1     1     0.5        1           3.5 
 0     3     0.5        2            1.5 
                0 0     2.833   1.33        5.5 
                0     0     0          2.0196    1.70588 

Now the equations become: 

ଵݔ + ଶݔ + ଵ
ଶ
ଷݔ + ସݔ = 3.5  ------------------ (1) 

ଶݔ3                             +  ଵ
ଶ
ଷݔ  + ସݔ2  = 1.5  -------------- (2) 

ଷݔ2.833 + ସݔ1.33 = 5.5 ------------- (3) 

ସݔ2.0196                           = 1.70588 ------- (4) 

From equation (4), 

ସݔ = 0.84466 

From equation (3), 

ଷݔ2.833 + 1.33(0.84466) = 5.5 

→ ଷݔ        = 1.544 

Also, from equation (2), 

ଶݔ3 +
1
2

(1.544) + 2(0.84466) = 1.5 

→ ଶݔ     = −0.3204 

Finally, equation (1) gives, after substituting ݔସ ,  :ଶvaluesݔ ݀݊ܽ,ଷݔ

ଵݔ = 2.2039 

 

 

 

 

 



CHAPTER SEVEN 

DIFFERENTIAL EQUATIONS 

The following are some differential equations: 

ᇱݕ = ଶݔ) +  ௫݁(ݕ

ᇱᇱݕ = ݔᇱݕ +  ଶݕݔ

ᇱᇱᇱݕݔ + (1 − ᇱᇱݕݕ(ଶݔ + ݕ = ଶݔ) − 1)݁ఓ 

If ݕ() is the highest order derivative in a differential equation, the equation is said to be a݇௧ 

order differential equation. 

A solution to the differential equation is the value of ݕ which satisfies the differential equation. 

Example: 

Consider the differential equation: ݕᇱᇱ = ݔ6 + 4 

This is a second order differential equation. The function: 

ݕ = ଷݔ + ଶݔ2 − 1 

satisfies the differential equation, hence, ݕ = ଷݔ + ଶݔ2 − 1 is a solution to the differential 

equation. 

Numerical Solutions 

Consider the equation:  ݕᇱᇱ = ݔ6 + 4 

A solution is      ݕ = ଷݔ + ଶݔ2 − 1 , however, instead of writing the solution as a function of x, 

we can find the numerical values of y for various pivotal values of x. The solution from ݔ =

ݔ ݐ 0 = 1 can be expressed as follows: 

 1.0 0.8 0.6 0.4 0.2 0 ݔ

 2.0 0.792 0.064 0.616− 0.912− 1− ݕ



The values are got by the function    ݕ = ଷݔ + ଶݔ2 − 1. This table of numerical values of y is 

said to be a numerical solution to the differential equation. 

The initial value Problem 

Consider the differential equation: ݕᇱ = ;(ݕ,ݔ)݂ (ݔ)ݕ =  ݕ

This is a first order differential equation. Here, the ݕ value at ݔ =   isݔ ݐܽ ݕ . The solutionݕ

given, We must assume a small incrementℎ. i.e. 

ଵݔ = ݔ + ℎ 

ଶݔ = ଵݔ + ℎ 

− −−  − 

ାଵݔ = ݔ + ℎ 

ଵݕ ݕ ଶݕ ?= ଷݕ ?= ସݕ ?= =? 
 ସݔ ଷݔ ଶݔ ଵݔ ݔ

 

Let us denote the y values at ݔଵ,ݔଶ, … …. as ݕଵ,ݕଶ …. respectively.ݕis given and so we must find  
ଶݕ,ଵݕ ….  This differential equation is called an initial value problem. 

 

Euler’s Method 

Consider the initial value problem: ݕᇱ = (ݔ)ݕ  ;(ݕ,ݔ)݂ =  ݕ

 (ݔ)ݕ so we shall write that function as ,ݔ is a function ofݕ

Using the Taylor’s series expansion: 

ݔ)ݕ + ℎ) = (ݔ)ݕ +
ℎ
ݕ!1

ᇱ(ݔ) +
ℎଶ

2! ݕ
ᇱᇱ(ݔ) + ⋯… 

Here, ݔ)ݕ + ℎ) denotes ݕ value at ݔ + ℎ 

ݔ ᇱ value atݕdenotes(ݔ)ᇱݕ + ℎ, e.t.c. 

Given; 

(ݔ)ݕ =  ݕ



ݔ)ݕ    + ℎ) = (ଵݔ)ݕ =  ଵ (say)ݕ

(ݔ)ᇱݕ =  ݔ ݐܽ ᇱݕ

But,  ݕᇱ =  (ݕ,ݔ)݂

→ (ݔ)ᇱݕ     =  (ݕ,ݔ)݂

Now, let  

(ݔ)ᇱݕ  = (ݕ,ݔ)݂ = ݂  

ℎ݁݊ܿ݁, (ݔ)ᇱݕ = ݂ 

Therefore, Taylor’s series expansion up to the first order term, gives: 

ଵݕ = ݕ + ℎ ݂ 

Similarly, we can derive: 

ଶݕ = ଵݕ + ℎ ଵ݂ 

ଷݕ = ଶݕ + ℎ ଶ݂  

In general,  
ାଵݕ = ݕ + ℎ ݂  , where ݂ = ,ݔ)݂  (ݕ

This is called the Euler’s formula to solve an initial value problem. 

Algorithm for Euler’s method 

,ݔ)݂ ݂݁݊݅݁ܦ .1  (ݕ

,ݕ,ݔ ܴ݀ܽ݁ .2 ݊,ℎ 

݅ ݎ݂ .3 = ݊ ݐ 0 −  ܦ 1

ାଵݔ .4 = ݔ + ℎ 

ାଵݕ .5 = ݕ + ℎ݂(ݔ,ݕ) 

, ାଵݔ ݐ݊݅ݎܲ .6  ାଵݕ

 ݅ ݐݔ݁݊ .7

 ݀݊ܧ .8

Assignment: Implement the above in any programming language (FORTRAN of BASIC) 

 



Example: 

Solve the initial value problem: ݕᇱ = ଶݔ + (1)ݕ;ଶݕ = 0.8; ݔ   = 1(0.5)3 

Solution: 

Given: ݂(ݔ, (ݕ = ଶݔ + ,ଶݕ ݔ = ݕ,1 = 0.8,ℎ = ݔ,0.5 =  3 ݐ 1

ݕ = ଵݕ 0.8 ଶݕ ?= ଷݕ ?= ସݕ ?= =? 
ݔ = ଵݔ 1 = ଶݔ 1.5 = ଷݔ 2 = ସݔ 2.5 = 3 

 

ଵݕ = ݕ + ℎ ݂ 

But ݂ = (ݕ,ݔ)݂ = ݂(1, 0.8) = 1.64 

Therefore, ݕଵ = 0.8 + (0.5)(1.64) = 1.62 

ଶݕ = ଵݕ + ℎ ଵ݂ 

But ଵ݂ = (ଵݕ,ଵݔ)݂ = ݂(1.5, 1.62) = 4.8744 

Therefore, ݕଶ = 1.62 + (0.5)(4.8744) = 4.0572 

ଷݕ = ଶݕ + ℎ ଶ݂  

But ଶ݂ = (ଶݕ,ଶݔ)݂ = ݂(2, 4.0572) = 20.460871 

Therefore, ݕଷ = 4.0572 + (0.5)(20.460871) = 14.287635 

ସݕ = ଷݕ + ℎ ଷ݂  

But ଷ݂ = (ଷݕ,ଷݔ)݂ = ݂(2.5, 14.287635) = 210.38651 

Therefore, ݕସ = 14.287635 + (0.5)(210.38651) = 119.48088 

So the numerical solution got by Euler’s method is: 

ݕ = ଵݕ 0.8 = ଶݕ 1.62 = ଷݕ 4.0572 = ସݕ 14.287635 = 119.48088 
ݔ = ଵݔ 1 = ଶݔ 1.5 = ଷݔ 2 = ସݔ 2.5 = 3 

 

 



Assignment: Using Euler’s method, solve: 5 ௗ௬
ௗ௫

= ;ݕଷݔ3 (0)ݕ = 1 

For the interval 0 ≤ ݔ ≤ ℎ ℎݐ݅ݓ,0.3 = 0.1 

 

Backward Euler’s Method 

The formula for backward Euler’s method is given by: ݕାଵ = ݕ + ℎ ݂ାଵ 

Where, ݂ାଵ =  (ାଵݕ,ାଵݔ)݂

For example, consider the initial value problem: 

ᇱݕ = (0)ݕ;ݕଷݔ2 = ݔ;1 = 0(0.2)0.4 

Solution: 

(ݕ,ݔ)݂ =  ݕଷݔ2

ݔ = ݕ,0 = 1,ℎ = 0.2 

The backward Euler’s method formula is: ݕାଵ = ݕ + ℎ ݂ାଵ 

→ ାଵݕ       = ݕ + ℎ(2ݔାଵଷ ∗  (ାଵݕ

Therefore, 

ାଵݕ − 2ℎݔାଵଷ ∗ ାଵݕ =  ݕ

Hence,   

ݕ = −ାଵ(1ݕ 2ℎݔାଵଷ ) 

OR  

ାଵݕ =
ݕ

(1 − 2ℎݔାଵଷ )
 

ݕ = ଵݕ 1 ଶݕ ?= =? 
ݔ = ଵݔ 0 = ଶݔ 0.2 = 0.4 

 

Now, put ݅ = 0 in the formula: 



ଵݕ =
ݕ

(1− 2ℎݔଵଷ) =
1

1 − 2(0.2)(0.2)ଷ = 1.0032102 

Put  ݅ = 1 in the formula: 

ଶݕ =
ଵݕ

(1 − 2ℎݔଶଷ) =
1.0032102

1− 2(0.2)(0.4)ଷ = 1.0295671 

Therefore, the numerical solution to the problem is: 

ݕ = ଵݕ 1 = ଶݕ 1.0032102 = 1.0295671 
ݔ = ଵݔ 0 = ଶݔ 0.2 = 0.4 

 

Euler-Richardson’s Method 

The formula is written as 

ାଵݕ = ݕ +
ℎ
3
ቀ ݂ + 2݂ାభమቁ 

Where ݂ = ݔ)݂ ) ܽ݊݀ ݂ଵାభమݕ, =  ݂ ቀݔାభమ,ݕାభమቁ 

Also, ݔାభమ = ݔ + 
ଶ

; ାభమݕ   = ݕ + 
ଶ ݂  

Algorithm 

,݂) ݂݁݊݅݁ܦ  .1  (ݔ
 ݊,,ℎݕ,ݔ ܴ݀ܽ݁ .2
݅ ݎ݂ .3 = ݊ ݐ 0 −  ܦ 1
ାభమݔ .4 = ݔ + 

ଶ
 

ାభమݕ .5 = ݕ + 
ଶ
ݔ)݂  (ݕ,

ାଵݔ .6 = ݔ + ℎ 

ାଵݕ .7 = ݕ + 
ଷ
ቄ݂(ݔ (ݕ, + 2݂(ቀݔାభమ,ݕାభమቁቅ 

, ାଵݔ ݐ݊݅ݎܲ .8  ାଵݕ 
 ݅ ݐݔ݁ܰ .9
10. End 

Let us now, develop a FORTRAN programme for the function: ݂(ݕ,ݔ) = ଵ
ଶ

(1 +  ଶݕ(ݔ

i.e.ݕᇱ = ଵ
ଶ

(1 + ;ଶݕ(ݔ (0)ݕ   = 1; ݔ   = 0(0.1)0.6 

Hence, ݔ = 0, ݕ = 1, ℎ = 0.1, ݊ = 6  

Note: Let ܺܯ = ܯܻ  ାଵ   andݔ =  ାଵݕ 



C  PROGRAM FOR EULER RICHARDSON 

  DIMENSION X(20), Y(20) 

  F(X,Y) = 0.5*(1. +X) *Y*Y 

  WRITE (*,*) ‘ENTER X0 , Y0 , H , N VALUES’ 

  READ (*,5) X(0),  Y(0), H, N 

 5            FORMAT (3F15.5, I5) 

  WRITE (*,*) X(I), Y(I) 

  DO 25 I = 0, N-1 

  XM = X(I) + H/2.0 

  YM = Y(I) + H/2.0 * F(X(I), Y(I)) 

  X(I+1) = X(I) +H 

  FI = F(X(I), Y(I)) 

  FM = F(XM, YM) 

  Y(I+1) = Y(I) +H/3. * (FI + 2.0 * FM) 

  WRITE (*,15) X(I+1), Y(I+1) 

 15 FORMAT (1X, 2F15.5) 

  CONTINUE 

  STOP 

  END 

Taylor’s Series Method 
Given that y is a function of x, it is written as y(x) 

By Taylor’s series expansion; 

ݔ)ݕ + ℎ) = (ݔ)ݕ +
(ݔ)ᇱݕ

1! ℎ +
(ݔ)ᇱᇱݕ

2! ℎଶ +  … … … 

݂ 

ݔ)ݕ + ℎ) = ݕ +
ℎ
ݕ!1

ᇱ +
ℎଶ

2! ݕ
ᇱᇱ + … … … 



Where,                                               ݕᇱ = ,ݔ) ݐܽ ᇱݕ  (ݕ

ᇱᇱݕ =  (ݕ,ݔ) ݐܽ ᇱᇱݕ

→ (ାଵݔ)ݕ        = ݕ +
ℎ
ݕ!1

ᇱ +
ℎଶ

2! ݕ
ᇱᇱ +  … … … 

Let the given initial value problem to be solved be: 

ᇱݕ = ;(ݕ,ݔ)݂ (ݔ)ݕ   = ݕ  

Now consider the problem: 

ᇱݕ = ଷݔ4 + 1 

(0)ݕ = 1.5 

ݔ = 0(0.2)0.8 

Here,  
ᇱݕ = ଷݔ4 + 1 

ᇱݕ = ଷݔ4 + 1 

 

ᇱᇱݕ = ᇱᇱݕଶݔ12 =  ଶݔ12

ᇱᇱᇱݕ = ᇱᇱᇱݕݔ24 =  ݔ24

(௩)ݕ = ݕ24
(௩) = 24 

(௩)ݕ = ݕ0
(௩) = 0 

Therefore, Taylor’s expansion becomes: 

ାଵݕ = ݕ + ℎ(4ݔଷ + 1) +
ℎଶ

2
(ଶݔ12) +

ℎଷ

6
(ݔ24) +

ℎସ

24 (24) 

Given that ℎ = 0.2 

ାଵݕ = ݕ + ଷݔ0.8 + 0.2 + ଶݔ0.24 + ݔ0.052 + 0.0016 

Hence, by putting ݅ = 0, 1, 2, ܽ݊݀ 3  respectively, we can evaluate ݕଵ,ݕଶ, ,ଷݕ  .ସݕ

 

 



The Runge – Kutta Methods 

Consider the initial value problem: 

ᇱݕ = ;(ݕ,ݔ)݂ (ݔ)ݕ   = ݕ  

Sincey is a function of x, and it can be written as y(x) 

Then by mean value theorem, 

ݔ)ݕ + ℎ) = (ݔ)ݕ + ℎݕᇱ(ݔ +  (ℎߠ

Where, 0 < ߠ < 1 

In our usual notation, this can be written as: 

ାଵݕ = ݕ + ℎ݂൫ݔ + , ℎߠ ݔ)ݕ +  ℎ)൯ߠ

Now, choosing = ଵ
ଶ
 , we obtain: 

ାଵݕ = ݕ + ℎ݂ ൬ݔ +
ℎ
ݕ, 2 +

ℎ
2 ݂൰ 

And since Euler’s method with spacing 
ଶ
 , this formula may be expressed as: 

݀ଵ = ℎ݂(ݔ ,  (ݕ

݀ଶ = ℎ݂(ݔ +
ℎ
2 , ݕ +

݀ଵ
2 ) 

Therefore,   
ାଵݕ = ݕ + ݀ଶ 

This is called the second order Runge – Kutta formula. 

The third order formula is: 

݀ଵ = ℎ݂(ݔ ,  (ݕ

݀ଶ = ℎ݂(ݔ +
ℎ
2 , ݕ +

݀ଵ
2 ) 

݀ଷ = ℎ݂(ݔ + ℎ , ݕ + 2݀ଶ − ݀ଵ) 

Therefore, 

ାଵݕ = ݕ +
1
6 (݀ଵ + 4݀ଶ + ݀ଷ) 



The fourth order Runge – Kutta formula is given as: 

݀ଵ = ℎ݂(ݔ ,  (ݕ

݀ଶ = ℎ݂(ݔ +
ℎ
2 , ݕ +

݀ଵ
2 ) 

݀ଷ = ℎ݂ ൬ݔ +
ℎ
ݕ, 2 +

݀ଶ
2 ൰ 

݀ସ = ℎ݂(ݔ + ℎ , ݕ + ݀ଷ) 

Therefore, 

ାଵݕ = ݕ +
1
6 (݀ଵ + 2݀ଶ + 3݀ଷ + ݀ସ) 

Example 

Solve the initial value problem value using the Runge – Kutta second order method. 

ݕ݀
ݔ݀ = (1 + ;  ݕ(ଶݔ (0)ݕ   = 1  ; ݔ   = 0(0.2)0.6 

Solution: 

,ݔ)݂ (ݕ = (1 + ; ݕ(ଶݔ ݔ   = 0, ݕ = 1,ℎ = 0.2 

ݕ = ଵݕ 1 ଶݕ ?= ଷݕ ?= =? 
ݔ = ଵݔ 0 = ଶݔ 0.2 = ଷݔ 0.4 = 0.6 

 

To find ݕଵ 

݀ଵ = ℎ݂(ݔ ,ݕ)  = 0.2(1 +  ݕ(ଶݔ

   = 0.2(1)(1) = 0.2 

݀ଶ = ℎ݂ ൬ݔ +
ℎ
2 , ݕ +

݀ଵ
2 ൰ = ℎ݂(0.1, 1.1) = 0.2(1 + 0.01)1.1 

= 0.2222 

Therefore,   
ଵݕ = ݕ + ݀ଶ     =      1 + 0.2222    

= 1.2222 



To find ݕଶ: 

݀ଵ = ℎ݂(ݔଵ ,ݕଵ)  = 0.2(1 + ଵݕ(ଵଶݔ   = 0.2(1 + 0.04)(1.2222) 

= 0.2542222 

݀ଶ = ℎ݂ ൬ݔଵ +
ℎ
2 , ଵݕ +

݀ଵ
2 ൰ = ℎ݂(0.3, 1.349333) = 0.2(1 + 0.09)(1.34933) 

= 0.2941546 

Then,  ݕଶ = ଵݕ + ݀ଶ   =   1.2222 + 0.2941546   = 1.5163768 

To find ݕଷ 

݀ଵ = ℎ݂(ݔଶ ,ݕଶ)  = 0.2(1 + ଶݕ(ଶଶݔ  = 0.2(1 + 0.16)(1.5163768) 

= 0.3517994 

݀ଶ = ℎ݂ ൬ݔଶ +
ℎ
ଶݕ, 2 +

݀ଵ
2 ൰ = ℎ݂(0.5, 1.6922785) 

= 0.4230691 

Then,  ݕଷ = ଶݕ + ݀ଶ   = 1.5163768 + 0.4230691 

= 1.9394459 

Assignment 

Solve the problem given below, using the Runge – Kutta fourth order method: 

ݕ݀
ݔ݀ = (1 + ;  ݕ(ଶݔ (0)ݕ   = 1  ; ݔ   = 0(0.2)0.6 

 

 

 

 

 

 

 



CHAPTER EIGHT 

NUMERICAL INTEGRATION 

Methods: 

1. Trapezoidal Formula 

ݕ = න݂(ݔ)݀ݔ ≈ ℎ(
ݕ + ݕ

2





+ ଵݕ + ଶݕ + ⋯… .  (ିଵݕ

,݁ݎℎ݁ݓ ݕ = ,(ݔ)݂ (݅ = 0,1,2, … . . , ݊) 

ℎ =
ܾ − ܽ
݊  

2. Simpson’s Formula (Parabola formula) 
 

ݕ = න݂(ݔ)݀ݔ ≈
ℎ
3





ݕ] + ଶݕ + ଶݕ)2 + ସݕ + ⋯… . (ଶିଶݕ + ଵݕ)4 + ଷݕ + ⋯… .  [(ଶିଵݕ+

ℎ  ݁ݎℎ݁ݓ =
ܾ − ܽ
݊ =  

ܾ − ܽ
2݉  

3. Newton’s Formula (ଷ
଼
 rule) 

 

ݕ = න݂(ݔ)݀ݔ ≈
3ℎ
8





ݕ] + ଷݕ + ଷݕ)2 + ݕ + ⋯… (ଷିଷݕ. + ଵݕ)3 + ଶݕ + ଷݕ + ସݕ

+ ⋯… . (ଷିଶݕ+ +  [(ଷିଵݕ

,݁ݎℎ݁ݓ ℎ =
ܾ − ܽ
݊ =

ܾ − ܽ
3݉  

 

 

 

 



Example 1 

Evaluate the integral, employing the trapezoidal rule, for n = 10 

ݕ = න݁ି௫మ݀ݔ
ଵ



 

Solution: 

Form a table of the integrand function  

 ݕ ଶݔ ݔ ݅

0 0 0.0 1.0000 

1 0.1 0.01 0.9900 

2 0.2 0.04 0.9608 

3 0.3 0.09 0.9139 

4 0.4 0.16 0.8521 

5 0.5 0.25 0.7755 

6 0.6 0.36 0.6977 

7 0.7 0.49 0.6125 

8 0.8 0.64 0.5273 

9 0.9 0.81 0.4449 

10 1.0 1.00 0.3679 

Applying the formula; 

ݕ = න݂(ݔ)݀ݔ ≈ ℎ(
ݕ + ݕ

2





+ ଵݕ + ଶݕ + ⋯… .  (ିଵݕ

We note that :ଵ
ଶ

ݕ) + (ଵݕ + ∑ ݕ  =   7.4620ଽ
ୀଵ  

Therefore,   

ݕ = ∫ ݁ି௫మ݀ݔଵ
  = ℎ ∗ 7.4620   =    0.1 ∗ 7.4620 

≈ 0.746 



Example 2 

Compute the integral;  ݕ = ∫ ݁௫మ݀ݔଵ
  by the Simpson formula, for n = 10 

Solution: 

Form a table of the function:           

 

                            Values of ݕ = ݁௫మ 

݅ ݎ݂ ଶݔ ݔ ݅ = 0,  ݅ ݀݀ ݎ݂ ݅ ݊݁ݒ݁ ݎ݂ 10

0 0 0.00 1.0000   

1 0.1 0.01   1.0101 

2 0.2 0.04 1.0408  

3 0.3 0.09  1.0942 

4 0.4 0.16 1.1735  

5 0.5 0.25  1.2840 

6 0.6 0.36 1.4333  

7 0.7 0.49  1.6323 

8 0.8 0.64 1.8965  

9 0.9 0.81  2.2479 

10 1.0 1.00 2.7183   

 7.2685 5.5441 3.7183 ݊݅ݐܽ݉݉ݑܵ

 

Applying the Simpson’s formula: 

න ݁௫మ݀ݔ ≈  
1

30
[(3.7183) + 2(5.5441) + 4(7.2685)]

ଵ


 

 

= 1.46268 ≈ 1.4627 

 



Example 3 

Compute the integral, using the Newton’s formula for h = 0.1 

න
ݔ݀

1 + ݔ

.


 

Solution: 

If  ℎ = ݊ ℎ݁݊ݐ 0.1 = ି


= .ି
.ଵ

= 6 

Now form a table of the function: 

                            Values of ݕ = ଵ
ଵା௫

 

 1ݔ ݅ + ݅ ݎ݂ ݔ = 0, ݅ = ݅ ݎ݂ 6 = ݅ ݎ݂ 3 = 1,2,4,5 

0 0 1.00 1.0000   

1 0.1 1.10  

 

 

 

 

0.6250 

 0.9091 

2 0.2 1.20  0.8333 

3 0.3 1.30 0.7692  

4 0.4 1.40  0.7143 

5 0.5 1.50  0.6667 

6 0.6 1.60   

 3.1234 0.7692 1.6250 ݊݅ݐܽ݉݉ݑܵ

 

Applying the formula, we obtain; 

ݕ = න݂(ݔ)݀ݔ ≈
3ℎ
8





ݕ] + ଷݕ + ଷݕ)2 + ݕ + ⋯… (ଷିଷݕ. + ଵݕ)3 + ଶݕ + ଷݕ + ସݕ

+ ⋯… . (ଷିଶݕ+ +  [(ଷିଵݕ

 

න
ݔ݀

1 + ݔ

.


≈

3
8 ∗ 0.1 ∗ (1.6250 + 1.5384 + 9.3702)  ≈ 0.47001 
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