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Abstract:The paper examines the flow and convection heat transfer in a pseudoplastic power
law fluid past a vertical plate with heat generation. The governing non – linear partial dif-
ferential equations describing the flow and heat transfer problem are transformed into non –
linear ordinary differential equation, using similarity transformation, and the resulting problem
is solved numerically using Runge – Kutta shooting method. The problem is studied for power
law exponents between 0 and 1. And the analysis of results obtained showed that the heat gen-
eration parameter have significant influence on the flow and heat transfer.
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1 Introduction

The study of heat and mass transfer in a non – Newtonian power law fluid obeying the Ostwald – de Waele
rheological model,
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has been attracting the interest of researchers and scientist in the recent time due to its applications in
food, polymer, petrol-chemical, geothermal, rubber, paint and biological industries. The two parameter
rheological equation (1) is also known as the power law model. When n=1, the equation represents a
Newtonian fluid with a dynamic coefficient of viscosity m. Therefore, deviation of n from a unity indicates
the degree of deviation from Newtonian behavior. For n < 1, the fluid is pseudoplastic and for n > 1, the
fluid is dilatant. n, is power law exponent and m is the consistency coefficient.

Chung [2] examined the nonlinear stability of steady flow and temperature distribution of a Newtonian
fluid in a channel heated from below and the viscosity is a function of temperature.

Hassanien et al. [3] investigated the flow and heat transfer in a power law fluid over a non-isothermal
stretching sheet. They presented a boundary layer analysis for the problem of flow and heat transfer from a
power law fluid to a continuous stretching sheet with variable wall temperature. They performed parametric
studies to investigate the effect of non-Newtonian flow index, generalized Prandtl number, power law surface
temperature and surface mass transfer. Their result showed that friction factor and heat transfer depend
strongly on the flow parameter.

Howell et al. [4] examined momentum and heat transfer on a continuously moving surface in a power
law fluid .They examined the momentum and heat transfer occurring in the laminar boundary layer on a
continuously moving and stretching two dimensional surface in non Newtonian fluid. Their results in clued
situation when then velocity is nonlinear and when the surface is stretched linearly.

Ibrahim et al [5] investigated the method of similarity reduction for problems of radiative and magnetic
field effect on free convection and mass transfer flow past a semi-infinite flat plate. They obtained new
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similarity reductions and found an analytical solution for the uniform magnetic field by using lie group
method. They also presented the numerical results for the non-uniform magnetic field.

Makinde [6] examined the free convection flow with thermal radiation and mass transfer past a moving
vertical porous plate. The plate is maintained at a uniform temperature with uniform species concentration
and the fluid is considered to be gray, absorbing – emitting. The coupled non-linear momentum, energy and
concentration equation governing the problem is obtained and made similar by introducing a time dependent
length scale. The similarity equations are then solved numerically by using superposition method.

Sivasankaran et al [7] investigated the natural convection heat and mass transfer fluid past an inclined
semi – infinite porous surface with heat generation using Lie group analysis. Their result revealed that the
velocity and temperature of the fluid increases with the heat generation parameter. And also, the velocity of
the fluid increases with the porosity parameter and temperature and concentration decreases with increase
in the porosity parameter.

Uzun [8] presented the finite difference solution for laminar heat transfer of a non-Newtonian power
law fluid in the thermal entrance region of arbitrary cross sectional ducts with constant wall temperature. In
his study, the effects of axial heat conduction, viscous dissipation and thermal energy sources with the fluid
were neglected.

Yu – shu and Karsten [9] review their previous work on the development of a three dimensional, fully
implicit, integral finite difference simulation for simple and multi-phase flow of non-Newtonian fluids in
porous fractured media. The methodology, architecture and numerical scheme of the model are based on a
general multi-phase, multi-component fluid and heat flow simulator and presented a new discussion on the
numerical scheme used in the treatment of non-Newtonian properties and several bench mark problems for
model verification.

Yurusoy and Pakdemirli [10] examine the exact solution of boundary layer equations of a non-Newtonian
fluid over a stretching sheet by the method of lie group analysis and they found that the boundary layer
thickness increases when the non-Newtonian behavior increases. They also compared the results with that
of Newtonian fluid.

In this paper, we examine the flow and convection heat transfer in a pseudoplastic power law fluid past a
vertical plate with heat generation. The problem is studied for power law exponents between 0 and 1. And
the analysis of results obtained showed that the heat generation parameter have significant influence on the
flow and heat transfer.

2 Mathematical Formulation

Consider a two dimensional steady flow and natural convection heat transfer in a pseudoplastic heat gener-
ating power law fluid over a semi – infinite vertical plate. The flow is assumed to be in the x – direction,
which is taken along the vertical plate in the upward direction and the y – axis is taken to be the normal
to the plate. The surface of the plate is maintained at a uniform constant temperature Tw which is higher
than the corresponding value of T∞, sufficiently far away from the flat surface. It is also assumed that the
free stream velocity parallel to the plate is constant. The appropriate governing equations of Continuity,
Momentum and Energy are given by;
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where u, v are the velocity components in the x – and y – directions respectively, υ = m
ρ , m is the flow

index, ρ is the density, g is the acceleration due to gravity, β is the coefficient of volume expansion, T, Tw

and T∞ are the temperature of the fluid inside the boundary layer, the plate, and the fluid temperature in the
free stream, respectively, k is the thermal conductivity, c is the specific heat capacity, Q is the heat generation
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constant. And the appropriate boundary conditions are;

u = U, v = vw(x), T = Tw at y = 0
u → 0, T → T∞ as y →∞

}
(5)

3 Method of solution

Introduce the stream function formulation,

u =
∂ψ

∂y
, v = −∂ψ

∂x
(6)

the continuity equation (2) is automatically satisfied.
Define a similarity variable,

η =
Ay

x
1

2n−1

(7)

Such that
ψ = Uf(η) (8)

And
θ(η) =

T − T∞
Tw − T∞

(9)

Therefore equations (3) and (4) together with the boundary and initial conditions (5) become,

υnUn−2A2n−1(−f ′′)n−1f ′′′ − 1
2n− 1

(f ′)2 −Grnθ = 0 (10)

υ

Prn
(2n− 1)θ′′ + Heθ = 0 (11)

f = fw, f ′ = 1, θ = 1 at η = 0
f ′ = 0, θ = 0 at η →∞

}
(12)

f ′ = 0, θ = 0 as η →∞
And the dimensionless parameters introduced in equations (10) and (11) are as defined below;

Grn = x
2n+1
2n−1 gβ(Tw−T∞)

U2A2 is the Grashof number,
Prn = υρcU

kAx
2n−2
2n−1

is the Prandtl number,

He = Q(2n−1)x
2n

2n−1

ρcUA is the heat generation parameter.

4 Numerical Solution

Resolve equations (10) and (11) into a system of first order differential equations. Let,

x1 = η, x2 = f, x3 = f ′, x4 = f ′′, x5 = θ, x6 = θ′ (13)

Taking the derivative of the system of equations (13), then equations (10) together with equation (11)
become,
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Fig1:Temperature profile for different values of the Fig2:Temperature profile for different values of the
power law exponent n and for He = 0.2 and Grn = 0.9 power law exponent n and for He = 0.2

And the initial conditions in (12) become,

x1(0) = 0, x2(0) = 0, x3(0) = 1, x4(0) = −Γ, x5(0) = 1, x6(0) = −γ (15)

where Γ and γ are constants to be determined ? Problem (14) together with the initial conditions (15) is
solved numerically using Runge – Kutta shooting method.

In a shooting method, the missing (unspecified) initial condition at the initial point of the interval is
assumed, and the differential equation is then integrated numerically as an initial valued problem to the
terminal point. The accuracy of the assumed missing initial condition is then checked by comparing the
calculated value of the dependent variable at the terminal point with its given value there. If a difference
exists, another value of the missing initial condition must be assumed and the process is repeated. This
process is continued until the agreement between the calculated and the given condition at the terminal point
is within the specified degree of accuracy. The numerical results are presented in table 1 and as velocity and
temperature profiles in figures 1 – 4.

Table 1: Numerical result
n He Grn θ′(0) f ′′(0)
0.2 0.2 0.9 -1.1630 -0.8633
0.4 0.2 0.9 -1.45985 -0.4808
0.4 0.5 0.9 -2.02355 -0.4662
0.4 0.8 0.9 -2.49065 -0.4558
0.4 1.5 0.9 -3.36493 -0.4400
0.4 3.5 0.9 -5.12438 -0.41945
0.6 0.2 0.9 -0.43155 -1.5173
0.7 0.2 0.9 -0.7327 -1.2677
0.7 0.5 0.9 -0.2652 -1.2766
0.7 0.6 0.9 -0.0862 -1.2802

Table 2: Numerical result
n He Grn Cf Nu

0.2 0.2 0.9 0.038841173217 1.1630
0.4 0.2 0.9 0.029843226489 1.45985
0.6 0.2 0.9 0.051369207540 0.43155
0.7 0.2 0.9 0.047224953021 0.7327

5 Skin – friction Coefficient and Nusselt number.

The local skin – friction coefficient and local Nusselt number which indicates the physical wall shear stress
and rate of heat transfer respectively are parameters of engineering interest for the present problem.

The local wall shear stress is defined as

IJNS homepage:http://www.nonlinearscience.org.uk/



54 International Journal of Nonlinear Science,Vol.7(2009),No.1,pp. 50-56

Fig3:Temperature profile for various values of He Fig4:Temperature profile for various values of He
with power law exponent n = 0.4 with power law exponent n = 0.7
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And the skin-friction coefficient, Cf is given by,

Cf =
2τw

ρU2
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1
2
CfRe =

(−f ′′(0)
)n (17)

where Re = ρU2−nx
2n

n−1

mA2n is the Reynolds number
The heat flux, qw at the wall is given by,

qw = −k

(
∂T

∂y

)

y=0

(18)

And the Nusselt number is given by

Nu =
x

1
2n−1 qw

k∆T
= −θ′(0) (19)

where ∆T = Tw − T∞, the skin friction coefficient and Nusselt number are obtained numerically and the
result is presented in tables 2, 3 and 4.

6 Discussion of result

It is interesting to note from the mathematical equation (10) and (11) that the fluid flow will experience
a constant fluid velocity and zero temperature for the pseudoplastic power law fluid with the power law
exponent n = 0.5. Thus, it is important to investigate the flow and heat transfer for the pseudoplastic
power law fluids with the power law exponents 0 < n < 1/2 and1/2 < n < 1. In the investigation, the
dimensionless parameter Grn which is a measure of the buoyancy forces due to temperature is taken to be
0.9 and this correspond to pure forced convection. The value of the heat generation parameter is varied
to observe its effects on the flow and heat transfer problem. For the pseudoplastic fluid with the power
law exponent’s 0 < n < 1/2, heat generation parameter is varied between 0.2 ≤ He ≤ 3.5 and for the
pseudoplastic fluid with the power law exponent’s 1/2 < n < 1 heat generation parameter is varied between
0.2 ≤ He ≤ 0.6.
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The velocity profiles for different values of the power law exponent n;n = 0.2, 0.4, 0.64 and 0.7 with
the heat generation parameter He = 0.2 and the Grashof number Grn = 0.9 are as shown in figure 1. It is
observed that the velocity experience maximum for the pseudoplastic power law fluids with the power law
exponents between 0 < n < 1 /2 and the value of the maximum velocity increases with increase in the
value the power law exponents. Also, the velocity experience minimum velocity for the pseudoplastic power
law fluids with the power law exponents between 1 /2 < n < 1 and the value of the minimum velocity
decreases with decrease in the value the power law exponents

The temperature profile for different values of the power law exponent n;n = 0.2, 0.4, 0.6 and 0.7 with
the heat generation parameter He = 0.2 and the Grashof number Grn = 0.9 is as shown in figure 2. It
is observed that the fluid temperature experience a minimum for the pseudoplastic fluid with the power
law exponent between 0 and 1 /2 and experience a maximum for the pseudoplastic fluids with the power
law exponent between 1 /2 and1 .it is also interesting to note that the value of the minimum temperature
decreases with increase in the power law exponent between 0 and 1 /2 and also the value of the maximum
temperature increase with decrease in the value of the power law exponent between 1 /2 and 1 .

Fig. 3 shows the temperature profile for various values of heat generation parameter He;He = 0.2, 0.5
and 0.8 with the power law exponent n = 0.4 . It is observed that the fluid temperature decrease with
increase in the heat generation parameter and the rate at which the temperature goes to zero is fast with a
low value of the heat generation parameter.

Fig. 4 shows the temperature profile for different values of the heat generation parameter He;He =
0.2, 0.5and0.6 with the power law exponent n = 0.7 . It is observed that the fluid temperature increases
with in the heat generation parameter.

The important physical quantities, the local shear stress and local rate of heat transfer are respectively
measured in terms of the local skin friction, Cf and the local Nusselt number, Nu and the numerical is as
shown in Table 2, 3 and 4.

Table 3: Numerical result
n He Grn Cf Nu

0.4 0.2 0.9 0.029843226489 1.45985
0.4 0.5 0.9 0.029477381285 2.02355
0.4 0.8 0.9 0.029212566879 2.49065
0.4 1.5 0.9 0.028803221349 3.36493
0.4 3.5 0.9 0.028257391637 5.12438

Table 4: Numerical result
n He Grn Cf Nu

0.7 0.2 0.9 0.047224953021 0.7327
0.7 0.5 0.9 0.047456792230 0.2652
0.7 0.6 0.9 0.047550432048 0.0862

Table 2 shows the skin friction Cf and the local Nusselt number, Nu for different values of the power law
exponent n;n = 0.2, 0.4, 0.6and0.7 . And the table shows that the skin friction Cf decreases with increase
in the power law exponent for the pseudoplastic power law fluids with the power law exponents between
0 < n < 1 /2 and the local Nusselt number, Nu increases with increase in the power law exponent. But,
for the pseudoplastic power law fluids with the power law exponents between 1 /2 < n < 1 , the skin
friction Cf decreases with increase in the power law exponents and the local Nusselt number, Nu increases
with increase in the power law exponents. Also the skin friction is minimal for the pseudoplastic power law
fluids with the power law exponents between 0 < n < 1 /2 and the local Nusselt number Nu is greatest for
the pseudoplastic power law fluids with the power law exponents between 0 < n < 1 /2 . Because of the
minimal value of the skin friction Cf and the greatest heat transfer rate, the pseudoplastic power law fluids
with the power law exponents between 0 < n < 1 /2 are better working pseudoplastic power law fluids in
flow and heat transfer.

Table3 shows the skin friction Cf and the local Nusselt number, Nu with the power law exponent
n = 0.4 for various values of the heat generation parameter He ; He = 0.2, 0.5, 0.8, 1.5 and 3.5 .

It is observed that for the power law exponent n = 0.4 , the skin friction decreases with increase in the
heat generation coefficient and the Nusselt number increases with increase in the heat generation parameter.
Thus, high value of the heat generation parameter enhances high heat transfer.

Table3 shows the skin friction Cf and the local Nusselt number, Nu with the power law exponent
n = 0.4 for various values of the heat generation parameter He ; He = 0.2, 0.5 and 0.6 .

It is observed that for the pseudoplastic fluid with the power law exponent n = 0.7 , the skin friction
increases with increase in the heat generation parameter and the Nusselt number decreases with increase
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in the heat generation parameter. Hence, low value of the heat generation parameter enhances high heat
transfer.

7 Conclusion

In conclusion, it is obvious from the above discussions that the heat generation parameter has a significant
influence on the flow and heat transfer and the result also shown that a pseudoplastic power law fluid with
the power law exponent 0 < n < 1 /2 gives a higher heat transfer coefficient than the pseudoplastic power
law fluid with power law exponent 1 /2 < n < 1 .And due to the minimal value of the skin friction and
greatest heat transfer rates, pseudoplastic power law fluid with the power law exponent 0 < n < 1 /2

seem to be better working pseudoplastic power law fluid in flow and heat transfer. This work finds many
practical applications in petroleum drilling, manufacturing of foods, production of polymers and slurries.
More importantly, the boundary layer concept of non – Newtonian power law fluid has application in the
reduction of frictional drags in many engineering process.

References

[1] Bird R.B, Stewart W.E, Light Foot E.N.: Transport phenomena, John Wiley and Sons, Inc. New York,
U.S.A .(1960)

[2] Chung B.J, Vaidya A ,Wulandana:R Stability of steady flow in a channel with linear temperature de-
pendent viscosity. Int. J. of Appl. Math. and Mech. 2(1) : 24 – 33 (2006)

[3] Hassanien , I.A, Abdullah A.A , Gorla R.S.R.: Heat transfer in a power law fluid over a non – isother-
mal stretching sheet. Math. Comp. Modelling. 28 :105 – 116(1998)

[4] Howell T.G, Jeng D.R,De Witt K.J.: Momentum and heat transfer on a continuous moving surface in
a power law fluid. Int. J. Heat and Mass Transfer. 40 :1853 – 1861 (1997)

[5] Ibrahim F.S, Mansour M.A , Hamad M.A.A.:Lie – group analysis of radiative and magnetic field effects
on free convection and mass transfer flow past a semi – infinite vertical flat plate. Electronic Journal
of Differential Equation. 39:1- 17 (2005)

[6] Makinde O.D.: Free convection flow with thermal radiation and mass transfer past a moving vertical
porous plate. Int. comm. Heat and Mass Transfer. 32:1411 – 1419(2005)

[7] Sivasankaran S,Bhuvaneswari M, Kandaswamy P ,Ramasami E.K.: Lie group analysis of natural con-
vection heat and mass transfer in an inclined porous surface with heat generation. Int. J. of Appl. Math.
and Mech. 2(2):34 – 40 (2006)

[8] Uzun I:Heat transfer to a power law fluid in arbitrary cross sectional ducts. Turkish J. Eng. Env. Sci..
26:7-14(2002).

[9] Yu – shu ,Karsten P. :A numerical for simulating non – Newtonian fluid flow and displacement in
porous media. Advances in water resources.21(5):351 – 362(1998)

[10] Yurusoy M , Pakdemirli M.: Exact solutions of boundary layer equations of a special non – Newtonian
fluid over a stretching sheet. Mechanical research communication. 26 (2): 171 – 175(1999)

IJNS email for contribution: editor@nonlinearscience.org.uk


