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ABSTRACT 
 
We study the steady pseudoplastic flow of a power law fluid over a flat plate in the presence 
of a pressure gradient. The pressure gradient increases along the flow direction.  We examine 

for ( ) 2
1-

o  x  Ux  
α

=u , the flow parallel to the flat plate, the appropriate condition for a 
similarity solution. The flow has a unique solution when the power law exponent varies 
between ½ and 1 and the result showed that the power law exponent has appreciable influence 
on the flow. 
 
Keywords: Fluid dynamics, power law fluid, pressure gradient. 
 
 
1 INTRODUCTION 
 
The study of non – Newtonian fluid has been of much interest to scientist because some 
industrial materials are non – Newtonian. Of particular interest is power law fluid for which 
the shear stress τ , is given by   
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where m is the flow index,
y∂
∂u  is the shear rate and n is the power law exponent.  

 
When n is less than 1, the fluid is pseudoplastic, for n equal to 1, the fluid is Newtonian and 
when n greater than 1, the fluid is dilatant. Some examples of a power law fluid are cement 
rock in water, napalm in kerosene, lime in water, Illinois yellow clay in water.  
  
Many researchers have shown great interest in the study of the flow of Newtonian and non-
Newtonian fluids. Bird (Bird 1959) examined the flow of an unsteady pseudoplastic fluid near 
a moving wall, he gave interesting results for n = 5/6, 2/3, ½ and 1/3. Kelly et al. (Kelly et al. 
1999) studied a non- conventional fluid dynamic problem by means of the boundary layer 
approximation. The authors find similarity solution for the continuity, momentum, and energy 
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and diffusion equation in a closed form in terms of the exponential functions for the 
temperature and concentration fields. A large part of the work is devoted to the analysis of the 
result; the asymptotic behaviour of the solutions for small and high values of the non- 
dimensional numbers that govern the energy and diffusion equation (i.e. prandtl and Schmidt 
number) is discussed. 
 
Talhouk (Talhouk 1999) studied flow of visco-elastic weakly compressible fluids having a 
differential constitutive equation. The main goals were to prove the existence and uniqueness 
of the solution to the Jeffery’s and maximal type of constitutive equations respectively. In 
both cases, they showed that when the compressibility goes to zero, the corresponding weakly 
compressible steady solution goes to the incompressible one. 
 
Fetecau (Fetecau 1999) investigated the existence and uniqueness of unidirectional spherical 
gap flows of the simple fluid of integral type of the first order and of the fluid of second grade, 
are proved. To this purpose some results from the theory of abstract Volterra integro-
differential equations and from the theory of abstract linear pseudo parabolic equations are 
used. 
 
Marusic-Paloka (Marusic-Paloka and Edward 2001) examined the steady flow of a dilatants 
non-Newtonian fluid obeying the power law in unbounded channels and pipes. A proof of 
existence and uniqueness of the solution for Leary’s problem for such a fluid is given as well 
as the delay estimate for the solution. For the existence result, he applies Garlekins procedure 
using monotonicity of the principal of the operator and the continuity of the inertia term. 
 
Bloom and Hao (Bloom and Hao 2001) considered a non-Newtonian model for the equations 
of motion of a bipolar fluid. The case of flow in unbounded channel is treated. The existence 
of solutions is proved by considering a sequence of approximate solutions in some bounded 
sub-domains, and then by showing that there exist subsequences of approximate solutions 
whose limit is a solution of the problem. 
 
Marusic-Paloka (Marusic-Paloka and E 2001) discussed the problem of a purely viscous flow 
of a non-Newtonian fluid obeying the power law in an exterior domain. It is proved that for 
pseudo plastic fluids the stoke paradox never appears while for the dilatants ones, it appears 
even for three – dimensional exterior problems. 
 
Hassanien et al. (Hassanien et al. 1998) discussed the flow and heat transfer in a power law 
fluid over a non-isothermal stretching sheet. They presented a boundary layer analysis for the 
problem of flow and heat transfer from a power law fluid to a continuous stretching sheet with 
variable wall temperature. They performed parametric studies to investigate the effect of non- 
Newtonian flow index, generalized Prandtl number, power law surface temperature and 
surface mass transfer rate. Their results showed that friction factor and heat transfer depend 
strongly on the flow parameters. 
 
Elena and Paola (Elena and Paola 1998) investigated the flow of a Bingham fluid in contact 
with a Newtonian fluid. The Newtonian fluid played the role of a lubricant. A free boundary 
problem coupled by means of diffraction conditions with a boundary value problem of 
parabolic type was obtained. They examined the steady state solution and a regular model 
related to the appearance of a new rigid zone. 
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Howell et al. (Howell et al. 1997) examined momentum and heat transfer on a continuously 
moving surface in a power law fluid. They examined the momentum and heat transfer 
occurring in the laminar boundary layer on a continuously moving and stretching two 
dimensional surface in non-Newtonian power law fluid. Their results include situations when 
the velocity is non linear and when the surface is stretching linearly. 
 
In this paper, we discuss the steady pseudoplastic flow of a power law fluid over a flat plate in 
the presence of a pressure gradient. The pressure gradient increases along the flow direction. 

We examine for ( ) 2
1-

o   x U 
α

=xu , the flow parallel to the flat plate, the appropriate condition 
for similarity solution. The flow has a unique solution when the power law exponent varies 
between ½ and 1 and the result showed that the power law exponent has appreciable influence 
on the flow. 
 
 
2     MATHEMATICAL FORMULATION 
 
We consider the pseudoplastic flow of a power law fluid over an infinite plate in the presence 
of the pressure gradient with a uniform flow of constant physical properties including density. 
The relevant governing equations for the steady flow are as follows. 
 
Continuity Equation: 
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Momentum Equation 
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where, 
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With boundary and initial conditions 
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(4)                                                              0   ,    ,     0,
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where ρ is the density, 

u is the x- component velocity, 
v is the y- component velocity, 

yxτ   is the stress, 

p is the pressure. 
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3 METHOD OF SOLUTION 
 

Assume  
y∂
∂u  is every where negative, (see Bird (Bird 1959)). 

 
Equation (3) becomes,  
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And so, equation (2) becomes 
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Introducing the stream function 
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the continuity equation (1) is automatically satisfied. 
 
If the flow parallel to the flat plate is given by 
 

( ) 2
1-

o x    x 
α

Uu = ,          (8) 
 
then, the pressure gradient along the plate can be computed from Euler’s equation, so that 
 

22
o U

2
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∂ ααρ x

x
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In a region of decreasing pressure along the flow direction, the net pressure force acting on 
the fluid tends to accelerate it; the pressure gradient is called favourable. In a region in which 
pressure increases along the flow direction; it is called an adverse pressure gradient. 
 
Equation (9) implies that, for pseudoplastic flow in the presence of an adverse pressure 

gradient 0    
x
p  -1;  ≥
∂
∂

<α .  

 
Using equations (7) and (9) in equation (6) and define a similarity variable 
 

2
1-
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α

η =                  (10) 
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Such that 
 

( )   D     yx,  f=ψ ( )η                  (11) 
 
where A and D are constants.  
 
Equation (6) together with the boundary and initial conditions (4) become, 
 

( ) ffVnfA n ′′′′′−⎟
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( ) ( ) ( ) 0       ,1  0      ,10 =∞′=′= fff                (13) 

 
REMARK 1: Similarity solution exist for 
 

12
32

−
−

=
n
nα                    (14) 

 
 
4   EXISTENCE AND UNIQUENESS OF SOLUTION 
 
THEOREM 1:  For every ½ < n < 1, 0 < y < ∞, problem (6) satisfying the boundary and 
initial conditions (4) has a unique solution. 
 
REMARK 2: To prove the existence and uniqueness of solution of problem (6) satisfying 
conditions (4), it is sufficient to prove the existence and uniqueness of solution of problem (12) 
satisfying conditions (13). 
 
THEOREM 2: There exist a solution of problem (12) satisfying conditions (13) for every  
½ < n < 1. 
 
Proof: 
 
For pseudoplastic flow with adverse pressure gradient 1-  <α , this implies, 
 

1 -   
1-2n
  3 -2n   <=α               (15) 

  
and so, 
 
( ) ( ) 0   1-n  12 <−n .           (16)  
 
Thus 
 
½ < n < 1             (17) 
 
This completes the proof. 
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Now, resolve equation (12) into system of equations. 
 
Let 
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We consider, 
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Together with the initial conditions. 
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0,    x  -  , 1   x 0  , L     x 1   ,          0  3 21 ≤≤≤≤<≤∞<≤ βη  

 
Where L, β  are positive constants. The initial condition (20) is obtained from the initial 
conditions (13) using the system of equation (18). 
 
Problem (19) can be written as 
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THEOREM 3:  For every ½ < n < 1 and for which conditions (20) hold,  

( )       ,   3,21   11 xxxf η  in problem (21) are Lipschitz continuous. 
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Proof: 
 
Consider the partial derivative 
 

3  2, 1,   j , i    
 

=
∂
∂

j

i

x
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Clearly, 
 
For every ½ < n < 1 and 0       x    -    , 1      x   0     , L      x  1   ,          0  3 21 <≤Γ≤≤<<∞<< η , 
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=
∂
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j

i

x
f

  is bounded 

 
And so, there exist a constant K > 0, such that 
 

Max K
x
f

j

i         
 

≤
∂
∂

          (23) 

 
Hence  ( )      x,   3,21   1 xxf η  , i = 1, 2, 3 are Lipschitz continuous. 
 
This completes the proof. 
 
Re-write problem (21) as 
 

( ) ( )X    ,    F        ηη =′X          (24) 
 
Where 
 

( )32   , 1     x        xxX =                       (25) 
 
And 
 

( )321 f   , f    , f     F =           (26) 
 
Also the initial condition (20) is written as,  
 

( ) B     0  X =            (27) 
 
THEOREM 4: 
 
Let X (0) = B be a point in an open subset of A of 31   x  RR suppose that; 
 
(i)  ( )X    ,    F η  is continuous in A and  

(ii) F satisfies lipschitz condition of the form ( ) ( )  Y - X K           ,  F   -  X ,   F ≤Yηη  
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For some real K and all points (η, X) and (η, Y). Then a unique solution of problem (24) 
satisfying initial condition (27) exist in the interval              ∞≤≤ ηO  
 
Proof: 
 
Since 
 

( )X ,  F     X η=′                                                                                                 (28) 
 
And  
 
X (0) = B            (29) 
 
Then, 
 

( ) ( )( ) ds    s   X   s,  F         B      X
0∫+=
η

η          (30) 

 
Let M denotes the set of continuous functions from R1 to R3 
 
Define the norm of any function X in M as 
 

( )η X  Sup    X M =           (31) 
 
We shall show that equation (31) the norm M is Banach space. 
 
Clearly, equation (31) is a norm on M. Suppose M is complete. 
 
Let { } N n   ∈nX  be a Cauchy sequence in M. then, given 0,    >∈  there exist N   n0 ∈   
 
Such that 
 

0Mmn    n m n,   ,  X-X ≥<∈ If         (32) 
 

( ) ( ) ∈<=−    X -   X   Sup    XX mnMmn  ηη        (33) 
 
{ } N n   ∈nX is Cauchy sequence. 
 
Now, define M   X ε   by 
 
( ) ( )

∞→
=

n             
  X  lim    n ηηX           (34) 

 
We show that 
 
(i)  0 -   (ii)                            and          M X n →XXε      (35) 
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Now fix N,n ≥  by (34) 
 
If given 0>∈′  there exist such that 
 

( ) ( ) ∈′≤   X - ηηqX           (36) 
 
Let 
 
m = max (N, q), then, 
 

( ) ( ) ( ) ( ) ( ) ∈′+∈≤+≤       X -   x    -  X         X  - nn ηηηηη ηqn XX     (37) 
 
Since ∈′ 0 can be arbitrarily small, it implies that 
 

( ) ( ) N   n    allfor           X  - ≥∈≤ηηnX        (38) 
 

( ) ( )ηη   X                n+∈≤X         (39) 
 
Xn is bounded being element M so, therefore, X is bounded and such is in M.  
 
Again from (34), 
 

( ) N. n allfor               )X( -  X    sup  X - X nn εηη ∈≤=
m

    (40) 
 

0. X -  X   and X  X nn →→         (41) 
 
Hence, M is complete and so norm M is a Banach space 
 
We now, define the set M ( )σ  as  
 

( ) { }.     X : M    X    M m σσ ≤∈=         (42) 
 
And operator U by 
 

( )( ) ( )( )ds  s x s, F     B  X 
v∫+=
η

ηU         (43) 
 

( )σ  M  Xfor  ∈  
 

Where δσ   t   B    +=          (44) 

t being the bound for   ( )X  ,  F η  
 
From (43), 
 
( )( ) ( )( ) δη

η
 t    ds   s x  s,  F     -    B

0
≤− ∫UX       (45) 
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This implies 
 
( )( ) δη   t  B -  X ≤U           (47) 

 
Therefore 
 
( ) ( ) σδη      t  B     X =+≤U         (48) 

 
Hence, U maps M (σ ) into itself 
 
Let X, Y ε  M (σ ) and 1.   K   <δ  
 
( ) ( ) ( ) ( ) ( )( ) ( )( )  ds   sy   s, F  s  x  s, F      Y   X  

0
−=− ∫

η
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                               sup  δ≤   ( )( ) ( )( ) ds  sy   s, F  s  x  s, F −  

                              ( ) ( )  s Y s X   supK    −≤ δ  
Therefore, 
 

( ) ( ) ( )( )ηη  Y -   supY UUXUUX =−        (50) 

       ) (s)  X supK    sY−≤δ  

       YK   −= Xδ  
 
Since, 1   K  <δ . U is a contraction mapping and contraction U has a fixed point in M. Thus, 
there is a unique function in M which is a solution of problem (24). And since any solution of 
(24) is in M and for sufficiently small, there exist a unique solution of problem (24). 
 
Proof of Theorem 1  
 
The existence and uniqueness of problem (24) implies that problem (21) has a unique solution, 
and so, problem (19) has a unique solution. Since problem (19) has a unique solution. 
Therefore, the problem (12) satisfying condition (13) has a unique solution. Hence, the 
problem (6) satisfying condition (4) has a unique solution. 
 
 
5   NUMERICIAL SOLUTION 
 
Resolve, 
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Together with boundary and initial conditions 
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Into system of equations as follows 
 
Let, 
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Together with the initial conditions 
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Note: β  is guessed such that boundary and initial conditions (52) is satisfied. Problem (54) 
together with condition (55) is solved numerically and the result is presented as the velocity 
profile in figure 1.The power law exponent n = 0.6, 0.7, 0.8 and 0.9. The kinematics viscosity 
υ = 0.5. The flow rate is a function of n (see equations (8) and (9)). 
 
 
6   DISCUSSION OF RESULT AND CONCLUSION 
 
In this work, the mathematical model for the flow of a power law fluid over a flat plate in the 
presence of a pressure gradient is presented. The existence and uniqueness theorems 1, 2, 3 
and 4 were used to establish that the mathematical model has a unique solution when the 
power law exponent varies between ½ and 1, since the mathematical model has a unique 
solution; therefore it represents a real life problem. The numerical result is presented in  
figure 1 as the velocity profile. The figure showed that the rate of the flow increases with 
increases in the value of the power law exponent. The increase in the power law exponent 
cause increase in the  pressure gradient, and so, for the flow of a power law fluid in the 
presence of an adverse pressure gradient the flow rate increase with increase in the value of 
the power law exponent. Hence, the power law exponent has appreciable influence on the 
flow. 
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Figure 1: Velocity Profile of flow of a power law fluid over a flat plate  

in the presence of a preesure gradient 
 

The fact that ( ) ∞→→′     as  0  ηηf  implies that this adverse pressure gradient together with 
the action of the shear force, if they act for a sufficient length , bring the boundary layer to 
rest and the flow separates from the surface. This flow separation has serious consequences in 
production engineering which involves the transportation of production materials (fluids) over 
a surface from one point of production to another, due to the continuing action of the adverse 
pressure gradient downstream of separation point, reversed flow is formed which acts to 
increase drastically the drag force acting in the surface. Hence, in designing of flow producing 
surfaces the onset of separation should be avoided. In fact, the present work has many other 
applications in engineering processes.  
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