
FST 206: FUNDAMENTALS OF HEAT AND MASS TRANSFER (2 UNITS) 

Lecture 1:  

Introduction 

Heating and cooling are the most common processes found in a food processing plant. Example 

of food processing operation where heat transfer occurs includes refrigeration, freezing, thermal 

sterilization, drying, and evaporation. The study of heat transfer is important as it provides a 

basis on how various food processes involving heat transfer operate. When the fundamentals of 

heat transfer are well understood, the knowledge can be applied by a food engineer to design 

appropriate heat transfer equipment and facilities for specific food processes, assess the 

equipment performance, or improve on the existing process equipment design.  

Heat Transfer Theory 

There are two ways to view heat transfer by conduction. The first theory explains conductive 

heat transfer at molecular level. As molecules absorb thermal energy, they vibrate at their 

respective locator. The amplitude increases with higher thermal energy level. These vibrations 

are transmitted from one molecule to another without actual translator motion of the molecules. 

Another theory on mechanism of conduction states that occurs at molecular level due to 

movement of the electron which are prevalent in metals. The free electron carries both thermal 

and electrical conductors. It should be noted that in conductive heat transfer, there is no physical 

movement of the material. It commonly found in heating or cooling of opaque solid media. 

For heat to move from one body to another there must be: 

(i) Temperature difference between the two media exchanging heat. 

(ii) A medium of allowing the passage of heat between them. 

 

There are 3 basic modes of heat transfer: conduction, convection and radiation. 

Conductive Heat Transfer  

Generally, the rate of heat transfer is expressed as 
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 is the heat flux (W/m2) across the solid surface 

Equation (1) above is also known as Fourier’s law of heat conduction. The sign in the eqn (1) 

indicates that flow from higher temperature region to lower temperature thus satisfying the 2
nd 

law of Thermodynamics. This eqn is applicable when steady state conduction is governing the 

heat transfer process. 

Example 1  

One face of a stainless steel plate 1cm thick is maintained at 50
0
C while the offer is at 20

0
C. 

Assuming steady state conductions, calculate the rate of flux through the plate. The thermal 

conductivity of stainless steel is 17 W/m
o
C. 

Thickness of plate = 1.5 cm = 0.015 m 

dT = T2-T1 = (20-50) 
o
C = -30

o
C 

dX = 0.015 – 0 = 0.015m 

k = 17 w/m
0
c  

Heat flux 
dx

dT
k

A

q
  = - 17 × (-30)/0.015 = 34,000 W 

                

                        

 

        
Figure 1: Schematics of conductive heat transfer in a slab 



Example 2 

An experiment was conducted to measure thermal conductivity of a formulated food by using a 

large plane plate of the food material (5mm thick). Under steady state conduction, a temperature 

difference of 35
0
C was maintained between the two surfaces of the plate. A heat transfer rate per 

unit area of 4700 W/m
2
 was measured near the centre of either surface. Calculate the thermal 

conductivity of the product and list two assumptions used in obtaining the result. 

Thickness = 5 mm = 0.005 m 

dT  = 35
o
C  

dx  = (0 – 0.005) m = - 0.005m 

2/  4700 mW
dx

dT
k

A

q
  

K W/m67.035/005.04700 
dx

dT

A

q
k                    

Assumptions are that:  

 Heat transfer is only through conduction 

 The food composition or structure is maintained throughout the experiment (i.e. food is 

not decomposed by heating). 

Conductive heat transfer in a Rectangular slab or plate 

In practice, many food materials undergoing heat transfer have geometry that can be 

approximated as slabs or plate. By applying Fourier’s law, it is possible to determine the 

temperature at any location inside a rectangular slab (Figure 1) under steady state condition. 

Given that 
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The boundary conditions are: 
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Separating the variables, 

 
  



Integrating from x1 to x (some interior location within the slab) 

 

 

 
  

 
  

 
  

Thus, temperature (T) at any location x  in the slab can be determined using: 
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 Example 3 

Consider the metal plate in Example 1. Calculate the temperature at  

i. T at 1.2 cm from 20
o
C surface  

Ak

dxq
TT x


 1  

From T1, dx = (0.015-0.012) = 0.003m 

Therefore, 

T= 50 – 34,000 (0.003)/17 = 49.4
o
C 

ii. T at 1.0 cm from 50
o
C 

Ak

dxq
TT x


 1  

From T1, dx = 0.01 m 

Therefore, 

T1 = 50 – 34,000 (0.01)/17 = 30
o
C 

 

 

 



Conductive heat transfer through a tubular pipe 

Consider a long hollow cylinder of inner radius ri and outer radius ro and  

Length L. Let the inside wall surface be Ti, and outside surface temperature  

be To. Assume that thermal conductivity of the metal remains constant with  

temperature, the rate of heat transfer is obtained from Fourier law: 
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The boundary conditions are: 

 

    @   TT 11 rr   

          @   TT 22 rr   

Rearranging equation (3) and integrating 
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Or if Ti > To 
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