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1. The kinetic theory of gases       
 Postulates of kinetic theory 
  Derivation of Ideal gas equation from the  

kinetic theory 
  Deductions of gas laws from kinetic theory 

2. Deviation from Ideal gas behavior 

 Causes of deviation 
 van der Waals equation 

3. The distribution of molecular velocities 
 The most probable velocity, mean velocity 

and mean square velocity 

 Mean free path, collision frequency and 
collision density 

4. Thermal energy and Heat capacity 

5. Internal modes of motions 
 The equipartition principle 

6. Phase equilibria 

 Phase rule, phase diagrams and triple 
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Kinetic theory of gases 

Postulates of kinetic theory 



 

 

1. Every gas consists of identical molecules which 
are considered as non interacting point masses. 
 

2. Molecules are in constant random motion and the 
associated translational kinetic energy is 
determined only by the absolute temperature. 
 

3. The pressure exerted by the gas is due to the 
bombardments by the gas molecules with the 
walls of the container. 

 
4. The collisions of molecules with each other and 

with the walls of the container are perfectly 
elastic. 

 
5. The molecules of a gas are small, hard sphere and 

exert no forces on each other, except at the 
instant of collision. 

 
 

 
6. Since the molecules are very small compared to 

the distance between them, the volume 
occupied by the molecule is negligible compare 
to the total volume of the container. 

 
7. There is no effect of gravity on the motion of the 

molecules of a gas. 
 



 

 

Derivation of Ideal gas equation from  the kinetic 
theory 
Consider a cubic container of a gas of each side ‘a’ 
containing N number of molecules. The velocity U of 
the gas can be resolved into 3 component velocities 
Ux,Uy and Uz.   
 
 
     
 
 
 
The magnitude of U is given by the Pythagoras’ 
theorem as 

  2222
zyx UUUU         (1) 

Consider 1 molecule of the gas in the cube, moving in 
the x-direction.  
The distance travelled between successive collision 
on the surface of a=2a 
The time between successive collisions is given by  
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After each collision with surface A, there will be a 
change in momentum, i.e momentum before 
collision xmU         (2a) 

          and momentum after collision xmU  (2b) 
Change in momentum, xmU2mU x     (3) 
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From Newton’s second law of motion, 
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Area of surface A=a2 and pressure, 
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The pressure exerted by the molecule on surface A is 
P1,  
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Let V represent the volume of the cubic box, then V=a3 
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Since the collisions of molecule 1 with surface A are 
perfectly elastic, the velocity Ux and mass of each 
molecule are constant. i.e. P1=constant  
Total pressure on surface A will be given by 
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Since it is not possible to measure the velocity of 
each of the molecule, the average velocity of all the 
molecules is given by 

  N
U

U xi
x
 22

     (9b) 

   NUU xxi

2
2



    Where I is a counter and 
2

U is 
mean square velocity 

       V

2

xUmNP



    (10) 

For each molecule, 
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Adding up: 
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 where N is number of molecule 
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Since the motion is entirely random and the 3 
directions x, y and z are equivalent.  

Then,   
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 UNmPV                (13a)   for N molecule of 
gas 

For 1 mole,  
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But  MmN A   where M is molar mass and m is the 
relative molecular mass 
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Deductions of gas laws from kinetic theory 



 

 

(1) Boyles law: According to the law, PV= constant 
at constant mass and temperature. 

According to the postulate 2 of the kinetic theory, 
the translational kinetic energy for N molecule is 
directly proportional to the absolute temperature. 

i.e    TUNmEtrans 
2
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 Multiply both sides by 2/3 
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Recall that    
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       PV = constant if T is constant 
2. Charles law: The law states that V α T at constant 
mass and pressure. Recall that  KTPV
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Avogadro’s law: To deduce this law, let there be 2 
gases 1 & 2 existing at the same temperature and 
pressure. 
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But P and V for the 2 gases are the same 

    2211 VPVP   

Hence,        

2

222

2

111 3
1

3
1 

 UmNUmN         (19) 

Since the 2 gases are at the same temperature, the 
average kinetic energy per molecule will be the same. 

i.e.  
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Thus, the equation 19 is reduced to N1=N2 which 
authenticate the law. 
Graham law: the law states that the rate of diffusion of 
a gas at a particular temperature and pressure is 
inversely proportional to the square root of its 
density. 

i.e  
d
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of diffusion and d is the density 

Hence, 
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Applying the kinetic theory, nRTUNmPV 
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When n=1 for each of the 2 or more gases at constant 
temp. But MmN A   
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Dalton’s law of partial pressure: consider N1 
molecules of a gas 1 with mass m1 and velocity 1



U  

occupying volume V, the pressure exerted by these 
molecules is given by  
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Under similar condition, N2 molecules of gas 2 exerted 

pressure P2, V
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For the 3rd gas,  V
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Assuming that all the 3 gases are put together in a 
vessel of the same volume and at the same pressure, 
the total pressure is given by  
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    321 PPPP      (28b) 

N.B: from all the deductions of the gas laws from 

kinetic theory of gases, it follows that   
2

3
1 

 UNmPV is in 
agreement with the empirical (classical) ideal gas 
equation  PV=nRT where n is the number of mole of 
gas. 

    nRTUNmPV 
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  Deviation from ideal gas behavior 
Experimental evidences have shown that very few 
gases obey the ideal gas equation only at low 
pressure and high temperature, and that most gases 
show marked deviation from the ideal behavior at high 
pressure and low temperature. 
A plot of PV against pressure shows that most gases 
behave ideally only in the limit of zero pressure. 
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From the diagram, 

(i) The smaller molecules like H2 and He, the curve 
starts at the value of PV(ideal) and the value of 
PV increases with the pressure. 

(ii) The larger molecules like O2 and CO2, the 
curve also start at the value of PV(ideal), shows 
a decrease in PV in the beginning, passes 
through a minimum and then begin to 
increase with increasing pressure. 

 
Also, a plot of compressibility factor, z against the 
pressure at constant temperature shows deviation 
from ideal gas behaviour. 
Meanwhile, compressibility factor is an index of 
deviation from ideality. i.e. RT

PVZ   

For 1 mole of an ideal gas, Z=1, and it is 
independent of pressure and temperature. 
For real gases, Z is a function of both temperature 
and pressure and its value varies. The amount by 



 

 

which the actual factor differs from unity gives a 
measure of deviation from ideality for the gas. 
 
 
 
 
 
 
 
 
 
 

From the diagram above, for H2, z increases 
continually but for N2, CH4 and CO2, Z first decreases 
and then increases rapidly with increasing pressure. 
Experiments have shown that for those gases which 
can easily be liquefied (i.e. N2, CH4 and CO2), z 
decreases sharply below the value of unity at low 
pressure. 

Also, a plot of z against P for Nitrogen gas at 
different temperature shows that the dip in the 
curve becomes less pronounced with increasing 
temperature. 
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From the graph above, an increase in temperature 
causes the minimum to become smaller and at the 
same time, the position of the minimum moves 
toward lower pressure. 
N.B: As temperature increases, the gas closely 
approaches ideal behaviour (represented by the 
dashed horizontal line). This confirms that deviation 
from ideality occur at high pressure and low 
temperature. 
 
 
 
 

 



 

 

   Causes of deviation 
Deviation from ideality occurs because of the 
following weak assumptions in the postulates of 
kinetic theory of gases. 
(i) The volume occupied by the molecule is 

negligible compare to the total volume of the 
gas. This is not true at lower temperature and 
high pressure where the molecules of the gas 
get so closed that the liquefaction and finally 
solidification of the gas occur. Since solids 
cannot be compressed, it confirms that 
molecules of the gas occupy some volume. 

(ii) Molecules exert no force on each other. 
However, liquefaction occurs because there 
is force of attraction between the molecules 
of the gas. 

 
 

 
   The van de Waal’s equation 
This equation takes into consideration the effects 
due to finite size and intermolecular forces. Van der 
Waals introduces the correction term to the 
deviation from ideality. The equation is  

     RTbVV
aP  2   For 1 mole 

But for n mole, the equation becomes 



 

 

     nRTnbVV
anP  2

2
 

Where n is the number of mole of the gas, a & b are 
the van der Waals constants whose magnitudes 
depend on the type of the gas, and the units in 
which the pressure and volume are expressed. 
 

Van der Waal and critical phenomenon 
Critical temperature, Tc: critical temperature of a gas 
is that temperature above which it cannot be liquefied 
no matter how great the pressure the pressure 

applied. It is given by the expression Rb
aTc 27

8
  

Critical pressure, Pc: is the minimum pressure 
required to liquefy a gas at its critical temperature. It 
is given as  

  227 b
aPc   

Critical volume, Vc: it is the volume occupied by 1 
mole of it at its critical temperature and pressure. It is 
expressed as  

     bV c 3  

   



 

 

The van der Waals constant a and b can be expressed 
in terms of critical constants by means of the 
following equations 

(i) cVb
3
1

  

(ii) 
c

c

P
RTb
8

  

(iii) 
cP
TRa

64
27 22

  

N.B: Numerical problems related  to these concepts 
shall be treated during the lecture hours. 

  The distribution of molecular velocities 
While deriving the equation for pressure from the 
kinetic theory of gases, it was assumed that all 
molecules are moving with the same speed, i.e having 
the root mean square velocity   (

2

U ). However, in 
practice, all the molecules cannot move with the same 
speed because they are frequently colliding with each 
other and walls of container leading to the 
interchange of momentum by the molecules. For 
example, consider 2 molecules with a given velocity 
moving in the same direction and collided. During 
collision, it is possible that one molecule may 
completely transfer its momentum to the other 
thereby causing the latter molecule to move off with 



 

 

increased velocity and the former may stop 
completely and vice versa. 
The molecules can experience collisions in all the 
possible direction. The net result is that, for a fixed 
number of molecules at a fixed temperature, a 
distribution of molecular velocities varying from zero 
to very high value will be attained. A plot of fraction 
molecules having a given velocity nu against the 
velocity U at a definite temperature represent the 
distribution of molecular velocities and the graph is 
known as Maxwell-Boltzmann distribution of 
molecular velocities. 
 

  
   
     

  
 
 

 
 

 
Total area under the curve = total number of 
molecules in the collection, i.e. total number of 
molecules having all velocities. 
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The most probable velocity Up of the molecules is the 
velocity possessed by the greatest number of 
molecule which is given by the maximum in the curve. 
It varies linearly with the temperature, i.e. at higher 
temperature; a greater fraction of molecules is 
expected to have higher velocities. Hence, the 
maximum of the curve at T2 shifts to higher velocity as 
compared to that of T1. 

Since the kinetic energy is proportional to
2

U , the 
mathematical expression that relate the number of 
molecule ni having an energy Ei at a given temperature 
is 
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constant. 
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Therefore, the mean square velocity is given by  
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Hence, the root means square velocity, U rms is given 
by  
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Relating the root mean square to the molar mass 
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Ratio of different velocities is  
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N.B: Numerical problems related to these concepts 
shall be treated during the lecture hours. 

 

  

   Collision properties 

1. Mean free path;: It is the distance travelled by a 
molecule between two successive collisions. It 
can be expressed as follow  
(a) In term of the coefficient of viscosity of gas, 


rmsrms dumnu
 33

   where  is the 

mean free path, n is the number of molecules 
per m3, m is the mass and d is the density 

(b) In term of molecular diameter,   
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n22
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
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   where  
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n  is the 

average number of molecules per cubic 

centimeter and it is expressed as AN
RT
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
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2. Collision frequency, z: it is the number of 
molecular collisions taking place per second per 



 

 

unit volume of the gas. It  is denoted by z and 
given by the relation 




unz 22  

Where  


u is the average velocity and it is 
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3. Collision diameter, Z: It is the number of 
collisions per unit time per unit area. It is given by  


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N.B: Numerical problems related  to these concepts 
shall be treated during the lecture hours. 

 
 
 

 THERMAL ENERGY AND HEAT ENERGY 

Recall that    
2

3
1 

 UNmnRT
 
and   kNR A  

Since  AnNN  ,   
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Translational energy, 
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Multiply both sides by 3
2

 

   nRTEtrans 3
2

  for n moles 

   NkTEtrans 2
3

   for N molecules 

The heat supplied to the system tends to increase the 
translational energy. 



 

 

For monoatomic gases (e.g. He, Ne, Kr, Xe,Rn, Hg and 
Na vapour). Let E be the thermal energy for n moles. 

    E=nRT 

For a small quantity of heat supplied, nRdTdqdE   

The heat capacity at constant volume ( Cv) is given by 

     dT
dqCv   

        nRCv 2
3

  

   But   R=8.314JK-1mol-1 

   47.12
2
3




nRC v  Jmol-1  

Comment: The fact that heat capacity can be 
predicted is the justification that for the equation 

2

3
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 UNmnRT
 

   

Internal Modes of Motions 

Since molecules have bonds, they can rotate, vibrate 
and thermal energy can be absorbed. Degree of 
freedom is a mode of motion e.g. for translational 
motion, D.O.F=3 



 

 

For a molecule containing A atoms, A atom will 
contribute 3A D.O.F.  

Then how is the 3A D.O.F distributed? 

According to classical mechanics, there are linear and 
non-linear molecules.  

(i) For linear molecule, there are 2 D.O.F rotational 
(ii) For non-linear molecule, there are 3 D.O.F 

rotational 

For a linear molecules containing A atoms 

Total D.O.F = 3A 

Translation D.O.F = 3 

Rotational = 2 

Vibrational= (3A-5) 

For non-linear molecules containing A atoms 

Total D.O.F = 3A 

Translation D.O.F = 3 

Rotational = 3 

Vibrational= (3A-6) 

 

The equipartition principle 



 

 

The principle of equipartition of energy states as 
follow: 

(a) Each translational and rotational D.O.F 
contributes ½kT to the thermal energy of 1 
molecule (i.e. ½RT to the thermal energy of 1 
mole). 

(b) Each Vibrational mode contributes kT per 
molecule or per mole. 

Predicting the thermal energy, the following 
expressions are considered using classical 
mechanics. 

 For monoatomic gas: RC v
2
13



 

 For linear molecules : 
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 For non- linear molecules: 

   RARARRC v 3363
2
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2
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

 

N.B: This predictions are not accurate for linear and 
non-linear molecules because the principle of 
equipartition of energy were all based on classical 
mechanics which are not applicable to the molecular 
systems. To treat the heat capacities and thermal 
energy of molecules, it is therefore necessary to 



 

 

replace the classical mechanics with quantum 
mechanics (which assumes that energies are 
quantized) 

    —  

—                      — 
—                            — 
— 
—                                  

    —                           — 
translational   rotational    vibrational 

 
 
 
PHASE EQUILIBRIA 

Introduction: phase equilibria is a primarily concerned 
with systems in which one phase is converted to 
another. A system is said to experience phase 
equilibrium if a number of phases co-exist and there is 
no net conversion of one phase to another. 

    Phase rule 

Phase rule is the general law governing the phase 
equilibria. It is expressed in the form:  F=C-P+2 



 

 

Where F is the number of degree of freedom, C is the 
number of component and P, the number of phases in 
a heterogeneous system. 

A phase: a phase is a region having uniform 
properties and is separated from other phases by a 
boundary. Any gas or mixture of gases always 
constitutes a single phase, as does a homogeneous 
liquid or solid solution. 

A mixture of water and ether constitutes a two-phase 
system since two liquid layers are obtained (i.e. one 
containing a saturated solution of ether in water, the 
other containing a saturated solution of water in 
ether), which are separated from each other by a 
definite boundary surface. 

Under normal conditions, water constitutes a three-
phase equilibria system (i.e. ice, water and water 
vapour). However, at a very high pressure, six 
different crystalline forms of ice exist, each of which 
constitutes a separate phase, since each is clearly 
separated from the other by a definite boundary. 

 

Component: The number of components in a system 
is the minimum number of independent chemical 
constituents necessary to describe the composition of 



 

 

each phase present either directly or in the form of a 
chemical equation. 

The composition of each of the three phases present 
in water can be expressed in terms of one component 
(i.e. water), even though the molecular arrangement is 
different in the 3 phases. 

Consider this equation 

 CaCO3(s)     CaO(s) + CO2 (g) 
Phase 1     phase 2                 phase 3 

The equation involves 3 phases but only 2 
components. To specify the composition of the gas 
phase, specie CO2 is needed. Also, to specify the 
composition of solid phase, either CaCO3 or CaO is 
needed.           

N.B: The reaction above must be given sufficient time 
to reach equilibrium, otherwise the system contains 3 
components. 

 

Degree of Freedom: is the number of independent 
intensive variables (e.g. temperature, pressure, 
concentration, density etc) which must be fixed in 
order to completely define the system at equilibrium. 
For instance, in a single-component, single-phase 



 

 

system (i.e. C=1, P=1), the pressure and temperature 
may be changed independently without changing the 
number of phases. So, F=2 (a bi-variant system i.e. a 
system with 2 degree of freedom) 

 

  

 

 APPLICATION OF THE PHASE RULE TO WATER 

Though water is a three-phase, one-component 
system under normal conditions. However, the 
number of phase may be varied as follow: 

(i) One-phase region: is a region where only a single 
phase is present.  F=1-1+2=2 

i.e. each single phase has 2 degree of freedom which 
implies that both the temperature and pressure must 
be specified in order to define the condition of the 
phase. 

   (ii)  Two-phase regions: is a region where 2 
phases are     present  in equilibrium.  F=1-
2+2=1 

i.e. two-phases in equilibrium have 1 degree of 
freedom implying that only one of the two variables 



 

 

(temperature or pressure) needs to be specified in 
order to define the system. 

   (iii)  Three-phase regions: is a region where 3 
phases are    present in equilibrium. 
 F=1-3+2=0 

i.e. if the 3 phases  co-exist in equilibrium, no variable 
is needed to be specified in order to define the 
system. 

 

     

 

   Phase Diagram 

Phase diagram of a substance is a graphic 
representation of the equilibria among the solid, liquid 
and gaseous phases of a substance as a function of 
temperature and pressure. It shows the regions of 
pressure and temperature at which its various phases 
are thermodynamics stable. The lines separating the 
regions (i.e. phase boundaries) show the values of 
pressure and temperature at which two phases co-
exist in equilibrium. 

 

     



 

 

 

Phase diagram of water 

 

 

 

  

 

 

 

 

 

    

     

 

 

OA and OB represent the variation of the vapour 
pressure of solid and liquid with temperature. OA 
continues to the critical temperature Tc(where liquid 
and vapour becomes indistinguishable) and OB 
continues down to zero Kelvin. 
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OA-  equilibrium between liquid-
vapour 
OB-  equilibrium between solid-
vapour 



 

 

Triple point (OA, OB and OC):- Triple point is the point 
where all the three phases are in equilibrium. The 
triple point for water occurs at 0.0098oC at an 
equilibrium vapour pressure of 611Nm-2 (4.58mmHg). 

Metastable equilibrium: It is a specific equilibrium 
which is not the most stable equilibrium under the 
given conditions. In the diagram, the vapour pressure 
curve of the liquid is extended past the triple point to 
A’ (represented by the broken lines). The liquid-
vapour system along OA’ is said to be in a metastable 
equilibrium. 

 

  Phase diagram of Sulphur 
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There are 4 triple points, they are: 

 

 

 

 

One phase regions: Each sample phase is 
represented by an area. Since there are 4 phases 
(rhombic, monoclinic, liquid and vapour), there will be 
four of such areas. The slopes of the lines BF and CF 
are such that the monoclinic form can exist only in the 
triangular region BCF. 

Two-phase regions: Two phases in equilibrium are 
represented by a line. Since there are 6 ways of 
choosing two phases from four, there should be 6 
lines. 

 

  

F- Triple point for Rhombic-Monoclinic-Liquid sulphur                     
B- Triple point for Rhombic-Monoclinic-Vapour sulphur      
E- Triple point for Rhombic- Liquid- Vapour sulphur 
(metastable)    
C- Triple point for Monoclinic-Liquid- Vapour sulphur                     


