
 

 

MTS 211    ABSTRACT ALGEBRA 

LECTURE NOTE 2 FOR 2011/2012 FIRST SEMESTER  

 1.0 ALGEBRAIC   STRUCTURE 

Let A be a non-empty set, a binary operation on A is a function  ∗ such that  ܣ ∗ → ܣ  That is . ܣ

,∗ is A rule by which every pair of elements  ݔ, ݔ  yield a third element z in A, viz  ܣ ߳ ݕ ∗ ݕ =  ݖ

. Such a set is said to be closed under  ∗. 

EXAMPLE 1.1.0   

The usual arithmetic operations +, - ,x ,÷  are binary operations on the Real set.  Similarly, the 

operations ∪,∩, ∆ are binary operations on the power set  P(A) . 

By an algebraic structure (or algebraic system ) we mean  a non-empty set  S, equipped with one 

or more binary operations. We denote an algebraic structure consisting of set S and a binary 

operation ∗ by the ordered pair (S, ∗). Similarly, an algebraic system consisting of set S and two 

operations ∗ and o shall be denoted  by the ordered triple (S, ∗, o ). 

EXAMPLE: 1.1.1  

(ℕ, +), (ॴ, +), (ℚ, .), (ℝ, +, .) (ℂ, +, .) (p(X), ∪) and (P (x), ∪, ∩ ) are all algebraic systems. 

For any binary operation * defined on a set S,  

1. If x * y = y * x for all x,y ∈ X, then * is said to be communicative. 

2. If x * (y*z) = (x*y)*z for all x,y,z ∈ S then * is said to be associative. 

3. If there is an element e ∈ S such that e*x = x*e = x for all x ∈ S then e is called the 

identity element (or unity element) of S. In particular e*e = e. e.g. 0 and 1 are the identity 

elements of IR with respect to + and . operations respectively since for any x ∈ IR,  x + 0 = 0 + x 

= x, x.1 = 1.x = x. 

4. if there is an element y ∈ S such that x*y = y*x = e for x ∈ S, then y is called the inverse 

of x in S w.r.t*, where e is the identity element of S. 



 

 

5. If * and o are operations defined on S we say that o is left distributive over * if  

x o (y*z) = x o y * x o z for all x,y,z ∈ S   

and o is right distributive over * if 

 (x*y) o z = x o z * y o z for all  x,y,z ∈ S. 

If o is both left and right distributive over * we simply say o is distributive over *. 

 

1.2 THE STRUCTURE OF GROUPS 

1.2.1 DEFINITION AND EXAMPLES OF GROUPS 

An algebraic structure (G,*) is called a group if it satisfies the following properties  

1. * is closed in G 

2. * is associative 

3. the identity element exists  

4. the inverse of each element of G exists. 

A system satisfying only properties 1 and 2 is called a semi group. 

A semi-group in which the identity element exists is called a monoid. 

Now, if in addition to properties 1 – 4, we also have  

5. * is commutative, then (G, *) is called an abelian or commutative group. 

EXAMPLE 1.2.1.0 

It can easily be verified that (ॴ, +), (ℝ, +), (ℂ, +) and (ℝ*, .) are all abelian groups. (ℕ, +) is 

not a group since it has no inverse for its elements. 

EXAMPLE 1.2.1.1  



 

 

Let G =  { f1,f2, …, F6}  and x ∈ R – {0.1} where f1(x) = x, f2(x) = ଵ
୶
,  f3(x)= 1 – x 

 f4(x) = ୶ିଵ
୶

,  f5 (x) = ୶
୶ିଵ

, f6(x) = ଵ
ଵି୶

 

If we define the binary operation o to be that of functional composition, then (G,o) is a non-

abelian group as can be deduced from the composition table below. 

0 f1 f2 f3 f4 f5 f6 

f1 f1 f2 f3 f4 f5 f6 

f2 f2 f1 f6 f5 f4 f3 

f3 f3 f4 f1 f2 f6 f5 

f4 f4 f3 f5 f6 f2 f1 

f5 f5 f6 f4 f3 f1 f2 

f6 f6 f5 f4 f1 f2 f3 

(G, 0) is not abelian since for example  

(f2 o f6) x = f2 (f6(x)) = f2ቀ ଵ
ଵି௫

ቁ =  ଵ
ଵ (ଵି௫)⁄

  =  1 – x = f3(x) 

But  (f6 o f2)(x) = f6(f2(x) = f6ቀଵ
௫

ቁ = ଵ
ଵି భೣ

  =   ଵ
௫ିଵ

 = f5(x) 

Which implies  f2 o f6 ≠ f6  o f2 

EXAMPLE 1.2.1.2 

If we define addition modulo n (i.e. +n) on the set ॴn as aത + bത = b + aതതതതതതത = cത for all a,b ߳ ॴn 

Then (ॴn, +n) forms a group called the group of residue classes modulo n. 

 Similarly, it can be shown that the set of residues (or representatives) { 0,1,2,…,n-1} under 

addition modulo n defined by  a +n b = c for all a,b in the set  (where c is the remainder when a + 

b is divided by n) is also a group. It is called the “group of integers modulo n.” 

1.2.2 ELEMENTARY PROPERTIES OF A GROUP 

For any group (G, *) the following properties are satisfied: 



 

 

1. The identity element of the group is unique  

2. Each element in the group has a unique inverse  

3. The inverse of the inverse of an element is the element itself i.e. if a ߳G, then (a-1)-1 = a  

4. If a,b ߳ G then (ab)-1 = b-1a-1. This is called the reversal law. 

5. If a,b,c are elements of a group (G, *) then the cancellation laws hold. That is  

 i. a*c = b*c implies a = b (Right cancellation law) 

 ii. c*a = c*b implies a = b (Left cancellation law) 

6. If a,b ߳ G, then there exists unique elements x and y in G such that ax = b and ya =b have 

unique  solutions in (G, *). 

1.2.3 FINITE AND INFINITE GROUPS 

If a group consists of a finite number of elements, it is called a finite group, otherwise the group 

is infinite.  E.g.  (G, .) in example 1.2.1.1 is finite while (ॴ, +) is infinite. 

1.2.4 ORDER OF A GROUP AND OF ITS ELEMENTS   

If a group (G, .) is finite, the  number of elements in the group is called the order of the group 

denoted |G| or o(G). 

If x is an element of (G, o) finite or infinite then the order of x is the least positive integer n such 

that xn = e. e.g. the order of the group ({1,a,a2,…,a5},.)  

 

1.3 SUBGROUPS AND COSETS  

A non-empty subset H of a group (G, .) is called a subgroup of (G, o) if (H, o) is itself a group. 

We call H a complex. 

EXAMPLE 1.3.0 

(ॴ, +) is a subgroup of (ℚ, +) and (ℚ, +) is a subgroup of (ℝ, +). 



 

 

Obviously, any group (G, *) has at least two subgroups viz (G, *) and ({e}, *) where e is the 

identity element in G. These two subgroups are called trivial subgroups of (G,*). Any other 

subgroup of (G,*) is non-trivial. 

Also, the intersection of two subgroups of (G,*) is also a subgroup. However if (H1, *) and (H2, 

*) are subgroups of (G,*) then (H1UH2,*) is a subgroup of (G,*) iff H1 c H2 or  H2 c H1. Also if 

(H1, *) is an arbitrary indexed collection of subgroups of (G, *) then (H1, *) is also a subgroup. 

THEOREM 1.3 

The necessary and sufficient conditions that a complex H is a subgroup of a group (G, *) are: 

(i) H ≠ ∅ 

(ii) for every a,b in H, ab-1 is also in H. 

1.3.1 CENTRE OF A SUBGROUP 

The centre of a subgroup (G,*) denoted c(G) is the subset of G containing those elements which 

commute with all elements of G i.e. c(G) = {x ߳ G: xg = gx for all g ߳ G}. 

1.3.2 COSETS OF A SUBGROUP 

If (G, *) is a group and (H, *) is its subgroup, then the collection 

 H*a = { h*a: a ߳ G, h ߳ H} is called the right Coset of H in G, and  

 a*H = {a*h: a ߳ G, h ߳ H} is called the left Coset of H in G. 

If e is the identity element in (G, *), then since He = eH, H is itself  a Coset. 

For any Cosets aH and bH where a,b߳G  

aH = bH iff a߳bH. If a∉bH then aH ≠ bH. 

Hence, two left (or right) Cosets are either identical or disjoint; and so the left (or right) Cosets 

of a subgroup H of G forms a partition of G.  

The number of left (or right) Cosets of H in G is called the index of H in G, denoted (G:H). 



 

 

EXAMPLE 1.3.2.1 

Find the Cosets of the additive subgroup (2 ॴ, +) of the additive group (ॴ, +). 

Solution: 

The set ॴ = {…, -3, -2, -1, 0, 1, 2, …} 

 2 ॴ = {…, -6, -4, -2, 0, 2, 4, …} 

 If a ߳ ॴ, then the Cosets of 2ॴ  in ॴ corresponding to a is 2ॴ + a. Since the group is abelian ॴ + a = 

a + ॴ, therefore 

 2ॴ + 0 = {{…, -6, -4, -2, 0, 2, 4, …} 

  = 2ॴ = 2ॴ + 2 = 2ॴ + 4 …  etc. 

 2ॴ  + 1 = {…, -5, -3, -1, 1, 3, 5, ... } 

  = 2ॴ + 3 = 2ॴ + 5 = … etc 

Hence the distinct Cosets of (2ॴ, + ) in (ॴ, +) are 2ॴ and 2ॴ + 1; obviously ॴ = 2ॴ U (2ॴ + 1) 

THEOREM 1.3.1 

The order of every subgroup (H, *) of a finite group (G, *) is a divisor of the order of the group. 

PROOF 1.3 

Suppose the order of (G, *) is n and the order of the subgroyup (H, *) is m, then by considering 

the set of all right cosets of H in G where H = { h1,h2, …, hm}, since G is finite, the number of 

right cosets of H in G is finite. Let the number of (distinct) right cosets be k.  

Since the right cosets form a partition of G, the number of elements in G (i.e. n) will be equal to 

the number of elements in all the k right cosets having m elements each. Therefore, 

   N = m.k ⟹ k = n m⁄  

1.3.3 NORMAL SUBGROUP 



 

 

If (H, *) is a subgroup of (G, *) we say H is normal in G denoted H ∆ G if for all g ϵ G, gHg-1 = 

H. 

From this definition we can verify that the subgroup of every abelian group is normal. Also, H is 

normal (invariant) if every left cosets of H is also a right coset of H in G. subgroup H, we can 

easily talk of cosets of H in G without specifying whether right or left. 

The trivial subgroups are obviously normal, and so any group having no normal subgroup except 

the trivial ones is called a simple group. 

EXAMPLE 1.3.3.1 

If in example 1.2.1.1, we define a subset H = {f1,f4,f6} then (H, o) is a normal subgroup of (G,o) 

since  fk oH = {f1,f4,f6} = Hofk for  Thus in a normal  

k = 1,4,6. 

Similarly, the subgroup (2ॴ, +) ∆ (ॴ, +), and the subgroup (R, +) ∆ (ℂ, +). 

1.3.4 FACTORS OF QUOTIENT GROUP 

If (H, *) is a normal subgroup of (G, *) and we define multiplication of cosets as: 

 Ha  ⊛ Hb   =  Ha ⊛ b 

then  the set of all cosets of H denoted G/H forms a group under this composition, and is called 

the factor group (or quotient group) relative to H, viz (G/H, ⊛). 

Similarly, if we define addition of cosets as Ha + Hb = Ha+b then (G/H, +) is quotient group. 

EXAMPLE 1.3.4.1 

The set of cosets R/ ॴ is a quotient group  w.r.t. multiplication. 

 

1.4 GROUP HOMOMORPHISMS 



 

 

A mapping f:G ⟶ G! from a group (G, ⊛) into another group (G!, *) is called a homomorphism 

if for all x,y ߳G. 

 F(x⊛y) = f(x)*f(y) 

where ⊛ and * are the binary operations in G and G! respectively. 

Thus, we see that homomorphism is an operation preserving mapping. 

EXAMPLE 1.4.1 

Let (R+,*) be the group of all positive real numbers under multiplication and let (R, +) be the 

group of all real numbers under addition. 

If we define  f: R+ ⟶  R by  

  f(x)  =  log10
x   

then f is a homomorphism since for any x,y߳ R+  

  f(x,y)  =  log (x,y) 

  =  log (x) + log (y) = f(x) + f(y) 

EXAMPLE 1.4.2 

Suppose G is a group and N ∆ G and we define the mapping f: G ⟶  G/N by  

 f(g) = Ng for all g߳G 

then f is a homomorphism of G onto G/N since  

 f(g1.g2) = N(g1.g2) for g1,g2߳G 

  = Ng1 Ng2 = f(g1)f(g2). 

1.4.1 KERNEL OF HOMOMORPHISM 



 

 

If f is a homomorphism of G into G! then Kernel of f (denoted Ker. (f)) is a subset of G 

containing those elements which are mapped by f to the identity element of G!. i.e. Ker = {g߳G: 

f(g) = e! where e! is the identity element of G! } 

1.4.2 ISOMORPHISM AND OTHER HOMOMORPHISMS 

A homomorphism f:G ⟶  G! is called an epimorphism if f is onto i.e. if f(G) = G!  

 If f: G ⟶ G! is one-to-one then f is called a monomorphism. 

A homomophism f: G ⟶  G! is called an isomorphism if f is one-to-one and onto, thus we say G 

is isomorphic (denoted ≅) to G!.  

A homomorphism f: G ⟶ G (i.e. G into itself) is called an endomorphism. 

 If f: G ⟶ G is isomorphic and onto then f is called an automorphism. 

EXAMPLE 1.4.2.1 

Let f: ॴ ⟶  ℝ - {o} defined by  

 F(n) = {ିଵ ௜௙ ௡ ௜௦ ௔௡ ௢ௗௗ ௜௡௧௘௚௘௥
ଵ ௜௙ ௡ ௜௦ ௔௡ ௘௩௘௡ ௜௡௧௘௚௘௥  

Then f is clearly a homomorphism, and  

 Ker.(f) = {n߳ॴ : f(n) = 1} = ॴe (even integers) while the direct image f(ॴ) = {1, -1} 

REMARKS 

If f:G ⟶G! is a homomorphism with kernel K then k ∆G. Also if e and e! are the identity 

elements of G and G! then 

(i) f(e) = e!  

(ii) f(a-1) = [f(a)]-1 for all a ߳ G 

(iii) if the order of a ߳G is finite and divides the order of a. 

THEOREM 1.4.2.1 (Fundamental Homomorphism) 



 

 

If f: G ⟶H is a homomorphism of group G into group H then: 

i. The Ker. (f)  = N is a normal subgroup of G 

ii. the mapping ∅: f(G) ⟶G/N defined by ∅ (f(g)) = Ng is an isomorphism. 

PROOF 

We first show that N (i.e. Ker (f)) is a normal subgroup of G. N ≠ ∅ since it contains e the 

identity of G. Let n1,n2 ߳N, then 

 f(n1) = f(n2) = e!  

Also since f is a homomorphism  

 f(n1n2
-1) = f(n1)f(n2

-1) = f(n1) [f(n2)]-1 

 = e1e-1 = e1 

 ⟹ n1n2
-1 ߳N. Hence N is a subgroup. 

Now take n߳N, and any g߳G, then 

 f(gng-1) = f(g) f(n) f(g-1) 

 =  f(g) e! [f(g)]-1 

 =  f(g) [f(g)]-1 = e-!  

 ⟹ gng-1 ߳N, thus N ∆ G 

Now the homomorphism f induces map ∅ on G/N. 

Next, we prove that ∅ : f(G) ⟶ G/N is a mapping. 

It is conceivable that for g1 ≠ g2   

 F(g1) = f(g2). Thus, consider  

 f(g1g2
-1) = f(g1) f(g2

-1) 



 

 

  =  f(g1) [f(g2)]-1 

  = f(g2) [f(g2)]-1 = e!   

Hence  g1g2
-1߳N  ⟹  g1߳Ng2   

But g1߳Ng1 also. And since the right cosets form a partition, hence 

 Ng1 = Ng2 

 ⟹  ∅(f(g1)) = ∅(f(g2))  ⟹  ∅ is a mapping 

We now show that ∅ is isomorphic 

(i) ∅ is one-to-one, for if ∅ (f(g1)) = ∅(f(g2))  then g1 = ng2 for some n߳N. 

 ⟹  f(g1) = f(ng2) 

  = f(n) f(g2) = e!. f(g2) = f(g2) 

(ii) ∅ is a homomorphism for  

 ∅ (f(g1) f(g2)) = ∅(f(g1g2))    [Homomorphism] of f] 

  = Ng1g2   [Definition of ∅] 

  = Ng1g2   [G/N is quotient] 

  = ∅(f(g1))  ∅(f(g2)) 

Thus (i) and (ii) show that ∅ is an isomorphism since ∅ is onto by the definition of factor group 

(proof completed). 

EXAMPLE 1.4.2.2  

From example 1.4.2.1 above, we have f: (ॴ, +) ⟶ (ℝ+,.), Ker. (f) = ॴe, f(ॴ, +) = ({-1,1}, .). 

Hence, ॴ/Ker (f) = ॴ/ॴe = { ॴe, ॴo} 

Theorem 1.4.2.1 guarantees that ({ॴe, ॴo},*) ≅ ({1, -1}, .) as can be seen in the tables 



 

 

 

 

 

 

 

 

 

The mapping f- (induced mapping) which establishes the isomorphism is given by  

 f:̅ ({-1,1}, .) ⟶ ({ ॴe, ॴo},*) 

 f ̅(ॴe) = f(0 + ॴe) = f (o) = 1 

 f ̅(ॴo) = f(1 + ॴe) = f (1) = -1 

THEOREM 1.4.2.2 

In an abelian group the only inner automorphism is the identity mapping on G., but in a non-

abelian group there is always a non-trivial inner automorphism. 

 f(-1) = ॴe* ॴe = ॴo   

 f(1) = ॴe* ॴe = ॴe  

PROOF 

We first note that an inner automorphism is an automorphism fa: G⟶ G such that 

 fa(x) = a-1 xa for all x߳G. 

Hence let x߳G, if G is abelian, then 

 fa(x) = a-1xa (by definition) 

* ॴe ॴo 

ॴe 

ॴo 

ॴe 

ॴo 

ॴo 

ॴe 

 

* 1 −1 

1 

−1 −1 

1 −1 

1 



 

 

 = a-1(a g) (commutativity) 

 = (a-1 a) g = g (associativity) 

fa  is the identity mapping on G. 

If G is not abelian, then for a,b߳G 

 ab ≠ ba ⟹ b ≠ a-1 ba (or a ≠ bab-1) 

Now, fa (b) = a-1ba ≠ b 

i.e. fa is not equal to the identity 

 ∴ fa is not a trivial inner automorphism. 

    (proof completed). 

  



 

 

 RINGS AND THEIR ELEMENTARY PROPERTIES 

2.0 INTRODUCTION 

We have established a survey of all the basic ideas and important results necessary for this 

project in section one above. We will now introduce the main topic of lesson – the theory of 

rings – by considering its elementary properties and some useful results derived from these. 

2.1 RINGS 

An algebraic structure (R, +, .) is called a ring if: 

A. (R, +) is an Abelian group. In other words, the following axioms are satisfied. 

 A1: Closure: For all a,b߳R, a+b߳R 

 A2: Commutativity: For all a,b߳R, a+b = b+a 

 A3: Associativity: For all a,b߳R, (a+b)+c = a+(b+c) 

 A4: Additive identity: There exists a number 0 in R such that a + 0 = 0 + a = a for all a߳R 

 A5: Additive Inverses: There exists an element –a in R such that a+(-a) = 0 for all a߳R 

M. (R, .) is a semi-group: That is 

 M1: Closure Property: For all a,b߳R, a.b߳R 

 M2: Associativity:  For all a,b,c߳R, (a.b).c = a.(b.c). 

D. Multiplication: ‘.’ Is distractive over additive ‘+’ that is, for all a,b,c in R. 

 D1: a.(b+c) = a.b + a.c (left dist. Law) 

 D2: (a+b).c = a.c + b.c (right dist. Law) 

NOTE: 

1. The additive identity is the zero-element of R, and so should not be confused with the 

number 0. 



 

 

2. It can be shown that – ( - a) = a. Since a + (-a) = 0, let b = -a then a + b = 0, a = -b = -(-a). 

EXAMPLE 2.1.1 

Consider the system (ॴ, +) of integers under addition ‘+’, this forms an abelian group.  Also (ॴ, o) 

is a semi-group with identity 1. Thus the system (ॴ, +, o) form a ring since ‘o’ is distributive over 

‘+’. It is called the ring integers. 

We can also verify that the algebraic systems (ℝ, +, o), (ℚ, +, o) and (ℂ, +, o) are all examples of 

rings. 

2.1.1 COMMUTATIVE RING WITH IDENTITY 

If in addition to the above properties of ring (ℝ, +, o) we have also M3: an element 1߳R such that 

for all a߳R    

a.1 = 1.a = a 

Then (ℝ, +) is called a ring with unity or (identity) element. 

If a ring (ℝ , +, o) is such that for all a,b߳R 

 M4: a.b = b.a 

Then (ℝ, +, o) is called a commutative ring. A ring (ℝ, +, o) in which the properties M3 and M4 

are satisfied is called a commutative ring with identity (or unity). 

EXAMPLE 2.1.1.1 

Consider the power set P(x) discussed in section one, if we define the binary operations Δ 

(symmetric difference) and ∩ (inetersection) on P(x) the (P(x), Δ, ∩ ) forms a commutative ring 

under these operations. 

EXAMPLE 2.1.1.2 

Let  S = ॴ [√2] be the set of all real numbers of the form x + y√2   where x,y߳ ॴ. It is easily 

verifiable that (ॺ, +, o) is a commutative ring with unity. 

EXAMPLE 2.1.1.3 



 

 

Consider the modulo 5 set ॴ5 = {0,1,2,3,4}. It can easily be established that (ॴ5, +5, o5) is a 

commutative ring with unity under these compositions. 

Generally, (ॴn, +n, on) is a commutative ring with unity element 1ത and is called the ring of 

integers modulo n. 

2.1.2 ELEMENTARY THEOREMS ON RINGS 

If (ℝ, +, o) is a ring, then the following properties hold good: 

THEOREM 2.1.2.1 

For every element a in ℝ, a.o = o.a = o 

PROOF 

Since o is the additive identity then,  

 a.o + a.o = a.(o+o) = a.o = a.o+o 

 ⟹ a.o = o by (L.C.L)        (i) 

Conversely, o.a = (o+o).a ⟹ o+o.a = o.a+o.a 

 ⟹ o = o.a by (R.C.L)        (ii) 

(i) and (ii) give the result. 

THEOREM 2.1.2.2 

For all a,b in ℝ (i) a.(-b) = -(a.b) = (-a).b 

  (ii) (-a).(-b) = a.b 

PROOF 

(i) a.o = o ⟹  a(-b+b) = o  ⟹  a(-b)+a.b = o  

 ⟹ a.(-b) = -(a.b) (inverse law)      (iii) 

Conversely, o.b = o ⟹  (-a+a).b = o, (-a).b + a.b = o 



 

 

 ⟹ (-a).b = -(a.b)        (iv) 

 (iii) and (iv) give the result. 

(ii) (-a).(-b) = (-a).(-b) = (-a).(-b) + a.o = (-a)(-b)+a(-b+a) 

 = (-a)(-b) + a(-b) + a.b = (-a+a)(-b) + a.b 

 = o(-b) + a.b = o + a.b = a.b 

THEOREM 2.1.2.3 

For all a,b,c in ℝ, (i) a(b – c) = ab – ac and (ii) (b – c)a = ba – ca 

PROOF 

(i) a(b – c) = a(b + (-c)) = ab + a (-c) = ab + (-ac) = ab - ac 

(ii) (b – c)a = (b + (-c))a = ba + (-c)a = ba + (-ca) = ba – ca. 

REMARK 

Theorem 2.1.2.1 shows that in a ring with identity, the identity and zero elements are never the 

same (since a.1 = 1.a =a) except if the ring contains only one element o. 

We call a ring ({0}, +, o) consisting of only one element, 0, a zero ring. 

 If ℝ ≠ {0} and (ℝ, +, o) is a ring with identity then the elements o and 1 are distinct 

because ℝ ≠ {0} implies that there must be a non-zero element a in ℝ, otherwise, if 1 = 0 then a 

= a.1 = a.o = o which is a contradiction. Thus we can safely assume that any ring with identity 

contains more than one element. 

2.2 SUBRINGS AND ZERO DIVISORS 

2.2.1 ZERO DIVISORS 

A ring (ℝ, +, o) is said to have zero divisor (or divisors of zero) if there exists non-zero elements 

a,b ߳ℝ such that a.b = o. We call a the “ left zero divisor”, and, b the “right zero divisor”. 

EXAMPLE 2.2.1.0 



 

 

The monoid (ॴ5, o) discussed in example 2.1.1.3 have no zero divisors since there are no such 

elements a,b in ॴ5 such that a,b = o.  

However consider the set ॴ8, = {0,1,2,…,6,7} we see that the  ring (ॴ8, +, o) contains three zero 

divisor 2,4 and 6 since 

  2.4 = 4.6 = 0 (mod 8) 

Whereas none of 2,4,6 is zero. 

THEOREM 2.2.1.1 

A ring is without zero divisors if and only if the two cancellation laws hold for multiplication. 

PROOF 

Let the cancellation laws hold good in ℝ and let a.b = 0 where a ≠ o, then a.b = a.o  

⟹   b = o by (L.C.L). Conversely, suppose ℝ has no zero divisors and a ≠ o, if ab = ac then: 

 ab – ac = 0 ⟹ a (b – c) = 0 or 

 a(b – c) = a.o ⟹ b – c = o (by L.C.L) ⟹ b = c 

Similarly, we can show that the RCL holds since if b ≠ 0 and a.b = c.b then (a – c) b = o  

 = o.b ⟹ a – c = o (by R.C.L) ⟹  a = c. 

2.2.2 INTERNAL DOMAIN 

A commutative ring with of integers is an integral domain or if a,b are non-zero integers then     

a.b ≠ o.  

The ring of integers modulo p (ॴp, +p, op) where p is prime and is also an integral domain.   

For instance (ॴ8, +, o) is not an integral domain since it has zero divisors 2,4 and 6). 

2.2.3 IDEMPOTENT AND NILPOTENT ELEMENTS 

An element ‘a’ of a ring (ℝ, +, o) such that a2 = a is called idempotent element. 



 

 

Also, if any element a߳ℝ is such that an = o where n is a positive integer then a is called nilpotent 

element. 

EXAMPLE 2.2.3.1 

In an integral domain D, if e (≠ o) is an idempotent element then it is the identity element of the 

domain. e.g. in (ॴ, +, o), the only idempotent elements of D are 0 and 1. 

Furthermore, the only nilpotent element of an integral domain D is o. 

THEOREM 2.2.3.1 

If (ℝ, +, o) is a ring with identity having no zero divisors, then the only solutions of the equation 

a2 = a are a = 0 and a = 1. 

The Proof is very obvious since;  

 If a2 = a and a ≠ o, then a.s = a.1  ⟹ a = 1. 

EXAMPLE 2.2.4 (TRIVIAL RING) 

Let (A, +) be any abelian group, and let us define o on A by a o b = o for all a,b߳A. 

Then (A, +, o) is a ring; it is called a trivial ring on A. It is obvious that all the elements of (A, +, 

o) are zero divisors. 

2.2.4 CHARACTERISTIC OF A RING  

If (ℝ, +, o) is an  arbitrary ring and there exists a positive integer n such that  

 n . a = o for all a߳ℝ     

then the least positive integer with this property is called the characteristic of the ring. 

If no such positive integer exists (i.e. na = o ⟹ n = o for all a߳ℝ) then we say (ℝ, +, o) has 

characteristic zero. 

EXAMPLE 2.2.4.1 



 

 

The rings of integers, rational numbers and real numbers have characteristic zero while the ring 

(p(x), ∆, ∩) is of characteristic 2 since 2A = A∆A = (A – A) ∪ (A – A) = ∅  for all A in P(x). 

THEOREM 2.2.4.1 

Let (ℝ, +, o) be a ring with identity, then (ℝ, +, o) has characteristic n > 0 iff n is the least 

positive integer for which n.1 = o. 

PROOF: 

If the ring (ℝ, +, o) is of characteristic  n > o then it follows trivially that n.1 = 0. Suppose m.1 = 

0 where 0 < m < n then  

 Ma = m(1.a) = (m1).a = o.a = o 

for every element a߳ℝ implying the characteristic of (ℝ, +, o) is less than n, a contradiction.  

The converse is established the way. 

CORROLARY 1 

In an integral domain all the non-zero elements have the same additive order, which is the 

characteristic of the domain. 

CORROLARY 2 

The characteristic of an integral domain is either zero or a prime number. 

2.2.5 DIVISION RING (OR SKEW FIELD) 

A division ring is a ring with identity in which every non-zero element has a multiplicative 

inverse. 

 ⟹ It is a ring with unity in which the non-zero elements form a group w.r.t 

multiplication. 

FIELD 



 

 

A commutative dicision ring is called a field. Also by implication, we can say that: A field is an 

integral domain in which every non-zero element has a multiplicative inverse. 

Thus, every field is an integral domain. The converse does not hold however, but, any finite 

integral domain is a field. 

EXAMPLE 2.2.5.1 

(ℚ, +, o), (ℝ, +, o) and (ℂ, +, o) are fields of rational, real and complex numbers respectively.  

(ॴ, +, o) is an integral domain which is not a field. 

2.2.6 SUBRING OF A RING 

Let (ℝ, +, o) be a ring abd let SCR be a non-empty subset of ℝ. If (ॺ, +, o) is itself a ring, then 

(ॺ, +, o) is called a subring of (ℝ, +, o). 

From our definition of ring, it is evident that (ॺ, +, o) is a subring of (ℝ, +, o)  if (ॺ, +) is a 

subgroup of (ℝ, +), (ॺ, o) is a subsemigroup of (R,o) and the two distributive laws hold for all 

elements of ॺ. 

We should note that both distributive and associative laws automatically hold in ॺ since they are 

valid in ℝ, thus they are not particularly required when defining a subring. All that is required 

are: 

i. ॺ is non-empty  

ii. (ॺ, +) is a subgroup of (ℝ, +) and 

iii. (ॺ, o) is unique. 

EXAMPLE 2.2.6.1 

Consider the ring of integers (ॴ, +, o), the ring of even integers (ॴe, +, o) where ॴe = 2ॴ is a 

subring of (ॴ, +, o) but (ॴo, +, o) considering of odd integers is not. 

EXAMPLE 2.2.6.2  



 

 

Let ॺ = { a + b √3 : a,b ߳ ॴ}, then (ॺ, +, o) is a subring of (ℝ, +, o) since for a,b,c,d߳ॴ  

(a+b√3).(c+d√3) = (ac + 3bd) + (bc + ad) √3  ߳ ॴ and (ॺ, +) is a subgroup of (ℝ, +). 

Similarly, (ॴ[√2] +, o) is a subring of (ℝ, +, o). 

EXAMPLE 2.2.6.3 

Let (ℝ, +, o) be any ring then (ℝ, +, o) and ({0}, +, o) are subrings of (ℝ, +, o) called “trivial 

subrings”. Also, (Cent. ℝ, +, o) is a subring of (ℝ, +, o) where cent. ℝ = {o ߳ ℝ: o.x = x.o for all 

x ߳ℝ } is called the centre of the ring (ℝ, +, o). 

THEOREM 2.2.6.1    

If ॺ is a non-empty subset of ℝ, then (ॺ, +, o) is a subring of (ℝ, +, o) iff for a,b ߳ॺ,  a-b ߳ॺ and 

a.b ߳ॺ. 

PROOF 

Suppose that whenever a,b ߳ॺ, we have a-b ߳ॺ and a.b ߳ॺ then ॺ is a subgroup with respect to 

addition. Moreover, ॺ is closed under multiplication. Since associativity and distributive laws 

hold in ℝ, associativity of multiplication and distributivity hold in ॺ.  Proof completed. 

REMARK 

In a ring with identity, a subring need not contain the identity element. Also, some subrings have 

multiplicative identity whereas the entire ring does not. Also, both the ring and one of its 

subrings possess distinct identity elements. For instance, consider the ring (ℝ *x ℝ*, +, o) of all 

ordered pairs of non-zero real numbers where (a,b)+(c,d) = (a+c, b+d) and (a,b).(c,d)=(a.c,b.d). 

We can easily verify that  (ℝ *x ℝ*, +, o) is a ring with identity element (1,1) whereas  (ℝx0, +, 

o) which is its subring has identity element (1,0). 

 

2.3 RING HOMOMORPHISMS AND ISOMORPHISMS 

2.3.1 HOMOMORPHISM OF RINGS 



 

 

Let (ℝ, +, o) and (ॺ, ⊕, ⊙)  be two rings and f: ℝ ⟶  ॺ be a function, then f is a ring 

homomorphism if and only if  f(a+b) = f(a) ⊕ f(b), and, f(a.b) = f(a) ⊙f(b) for every pair of 

elements a,b in ℝ.  

EXAMPLE 2.3.1.1 

Let ℝ and ॺ be arbitrary rings and let f: ℝ ⟶ ॺ maps each element of ℝ onto the zero element 0! 

of ॺ, we find that f is operation preserving  

 f(a+b) = 0! = 0! ⊕ 0! = f (a) ⊕ f(b) 

 f(a.b) = 0! = 0! ⊙ 0! = f(a) ⊙ f(b)  

 for all a,b߳ ℝ. 

This mapping, as in groups, is the trivial homomorphism. 

EXAMPLE 2.3.1.2 

Consider the rings (ॴ, +, o) and (ॴn, +n, xn), and let f: ॴ → ॴn defined by f(a) = ܽ,  

then f(a+b), ܽ + ܾ =  ܽ +n ܾ = f(a) +n f(b) 

f(a.b) = ܽ. ܾ = ܽ  on  ܾ = f(a) on f(b) 

Hence f is homomorphic. 

THEOREM 2.3.1 

Let f: ℝ → ℝ! be a homomorphism of a ring ℝ into ℝ!, then  

(i) f(0) = 0! Where 0 and 0! Are the additive identities of ℝ and ℝ! Respectively. 

(ii) f(-a) = - f(a) for all a ߳ ℝ 

(iii) If ℝ is a commutative ring then ℝ! is also a commutative ring. 

(iv) If ℝ is a ring with identity, then ℝ! is also a ring with identity. 

(v) If ℝ is a ring without zero divisors, then ℝ! is also a ring without zero divisors. 



 

 

(vi) If ℝ is a skew field then ℝ! is also a skew field. 

(vii) If ℝ is a field then ℝ! is also a field. 

PROOF 

(i) f(a) + f(o) = f(a+o) Definition of homomorphism i.e. f(a) + f(o) = f(a) = f(a) + o! 

 ⟹ f(o) = o! by LCL. 

(ii) f(a) + f(-a) = f(a+(-a) definition of homomorphism i.e. f(a) + f(-a) = f(0) = 0!  

  ⟹ f(-a) = - f(a) 

(iii) Since ℝ is commutative f(ab) = f(ba)  

 F(a) f(b) = f(b) f(a) (definition of homomorphism) 

 Hence ℝ! Is also commutative. 

(iv) Let 1߳ ℝ be the unity of ℝ, 

 f(a) = f(a.1) = f(a) f(1) 

 ⟹ f(1) is the unity element of ℝ! 

 Thus ℝ! is also a ring with identity. 

(v) From (1) we have f(o) = o!. Since the mapping f is one-one then 0 is the only element of 

ℝ which has the f- image o!. 

 Let f(a) ≠ 0! ⟹ a ≠ 0 

 Similarly if f(b) ≠ 0! ⟹ b ≠ 0 

 Now, ab ≠ 0 since ℝ has no zero divisors  

 ⟹ f(ab) ≠ f(0) = 0! 

 Hence ℝ! Has no zero divisors. 



 

 

(vi) If ℝ is a skew field this means it is a ring with unity element and without zero divisors. 

Thus in view of (iv) and (v), ℝ! Will also be a ring with unity element and without zero divisors. 

Hence ℝ! Is a skew-field also.  

(vii). If ℝ is a field , then it is a commutative ring with unity element and without zero-

divisors. Hence in view of (iii), (iv) and (v) ℝ! Will also be a commutative ring with unity 

element and without zero divisors. i.e. ℝ! Is also a field. 

 

2.3.2 ISOMORPHISM OF RING 

Two rings (ℝ, +, o) and (ℝ!, +!, o!) are said to be isomorphism if there exists a one-to-one 

homomorphism f from ℝ onto ℝ!, and we write (ℝ, +, o) ≅ (ℝ!, +!, o!). 

2.3.3 KERNEL OF HOMOMORPHISM  

If f is a homomorphism from ring (ℝ, +, o) into ring (ℝ!, +!, o!) the kernel of f is  

 Ker. (f) = {a ߳ ℝ: f(a) = 0!} 

Where 0! Is the zero element of (ℝ!, +!, o!). 

THEOREM 2.3.3.1 

If f is a homomorphism from  (ℝ, +, o) onto  (ℝ!, +!, o!) then (ℝ/ Ker(f), +, o) ≅  (ℝ!, +!, o!). 

PROOF 

Define f: ℝ/ Ker(f) →  ℝ! The induced mapping by taking f (a + Ker (f)) = f(a). 

From the proof of theorem earlier (ℝ/ Ker(f), +, o) ≅  (ℝ!, +!, o!) by f. Thus we only need to 

show that f preserves the multiplication operation (ℝ/ Ker(f), +, o). How f (a + Ker (f)).(b + Ker 

(f)) = f (a.b + Ker (f)) = f (a.b) = f(a)-2f(b) = f (a + Ker (f))1. (b + Ker (f)). Proved. 

2.3.4 IMBEDDING OF A RING INTO ANOTHER 

A ring ℝ is imbedded in another ring ℝ! If there exists some subrings ॺ or ℝ! Such that ℝ ≅  ॺ. 



 

 

THEOREM 2.3.4.1 

Any ring can be imbedded in a ring with identity. 

PROOF 

Let ℝ be an arbitrary ring and ॴ the ring of integers. Construct the cross product  

 ℝ x ॴ = {(a,b): a ߳ℝ, b ߳ॴ} 

and define the following operations on ℝ x ॴ 

 (a,m) + (b,n) = (a+b, m+n) 

 (a,m).(b,n) = (ab + mb + na, mn). 

Under these operations ℝ x ॴ becomes a ring. Its additive and multiplicative identities are (0,0) 

and (0,1) respectively, since (0,0)+(a,b) = (a,b) and, (0,1).(a,b) = (a,b) and the additive inverse of 

any element (a,m) is (-a, -n). Hence ℝ x ॴ is a ring with identity. 

Now, consider the subset ℝx {0} of ℝ x ॴ  

 ℝx {0} = {(a,0) : a߳ℝ} 

This is a subring of ℝ x ॴ since if (a,0), (b,0) ߳ ℝx{0} then 

 (a,0)+(b,0) = (a+b,0) ߳ ℝx{0} 

 (a,0).(b,0) = (a.b, 0) ߳ ℝx {0} 

To show that ℝx {0}  is isomorphic to ℝ, define f: ℝ → ℝx {0} by 

 f(a) = (a,0) 

Evidently, f is one-to-one, and is also operations preserving for  

 f(a+b) = (a+b,0) = (a,0)+(b,0) = f(a)+f(b) 

  f(a.b) = (a.b,0) = (a,0).(b,0) = f(a)+f(b) 

Hence ℝ ≅ ℝx {0} and so ℝ is imbedded in ℝ x  . This complete the proof. 



 

 

NOTE: 

Since it is possible to embed any ring without identity in a ring with identity, there is no loss of 

generality in assuming that every ring has an identity element. 

EXAMPLE 2.3.4.1 

(ॴ, +, o) is embedded in (ℚ, +, o) by the embedding f: m → m/1 while (ॴ, +, o) is embedded in 

(ℂ, +, o) by the embedding f: a → a + o,i. 

THEOREM 2.3.4.2  

 Any finite integral domain is a field. 

PROOF 

Suppose a1,a2, ….,an are elements of ring (ℝ, +, o). For a fixed non-zero element a߳ℝ, consider 

a.{a1,a2,…,an}. The products a.a1, a.a2, …, a.an are all distinct, for if a.a1 = a.aj, then a1 = aj, by 

the leftcancellation law. It follows that each element of ℝ is of the form a.a1. 

In particular, there exists some a1߳ℝ such that a.a1 = 1. Since multiplication is commutative we 

have a1 = a-1 which shows that every non-zero element of ℝ is invertible. 

Hence, (ℝ, +, o) is a field. 

2.3.5 FIELD OF QUOTIENTS 

Let D be an integral domain and F be a field containing a subset D’ such that D ≅D’, then F is 

called the field or quotients of D (or the quotient field of D). 

We now extend the ideas of the above theorem into constructing the embedding field itself, that 

is, the field of quotient. 

THEOREM 2.3.5.1 

Any integral domain can be embedded in a field. That is, from the elements of an integral 

domain D, it is possible to construct a field F which contains a subset D’ isomorphic to D. 

PROOF 



 

 

Let D be an integral domain and let Do denote the set of all non-zero elements of D.  

 Form a set D x Do, say, S = {(a,b): a߳D, b߳Do} 

Define a relation ~ as follows: 

 (a,b) ~(c,d) iff ad = bc for all (a,b),(c,d) ߳S. 

This is an equivalence relation, because (a,b) ~ (a,b) since ab = ba ⟹ ~ is reflexive. 

Also, if (a,b) ~(c,d), then ad = bc or cd = da ⟹(c,d) ~ (a,b).  That is ~is symmetric. 

Also, if (a,b) ~ (c,d) and (c,d) ~ (e,f) 

Then,  ad = bc and cf = de 

 i.e. (ad)f = (bc)f ⟹ (ad)f = b(cf) 

 ⟹ a(df) = b(de) 

 i.e. a(fd) = b(ed) ⟹(af)d = (be)d 

 ⟹af = be  (by R.C.L) 

 (a,b) ~ (e,f) ⟹ ~ is transitive. 

Hence, the relation partitions the product set S into disjoint equivalence classes. 

Let us denote the equivalence class containing  

 (a,b)  by ܽ ܾൗ  (oe [a,b] or (ܽ, ܾ) 

 i.e. ܽ ܾൗ  = {(c,d): (c,d) ~ (a,b)} of course, if (a,b) ~ (c,d) ⟹ ௔
௕
 = ௖

ௗ
 ⟹ad = bc. 

Now let us form a set F where  

 F = {௔
௕
: a߳D, b߳Do} is the set of equivalence classes 

And define the following operations of F: 



 

 

Addition:  ௔
௕

 +  ௖
ௗ

=  ௔ௗା௕௖
௕ௗ

 for all ௔
௕

, ௖
ௗ

߳F 

Multiplication:  ௔
௕

 . ௖
ௗ

=  ௔௖
௕ௗ

 for all ௔
௕

, ௖
ௗ

߳F 

We claim that these operations are well-defined and illustrated as follows: 

 If ௔
௕

=  ௔భ
௕భ

  ܽ݊݀ ௖
ௗ

=  ௖భ
ௗభ

,  then 

(i) ௔
௕

+  ௖
ௗ

=  ௔భ
௕భ

+ ௖భ
ௗభ

 ⟹ ௔ௗ ା ௕௖
௕ௗ

=  ௔భௗభା ௕భ௖భ
௕భௗభ

 

 ⟹(ad + bc) b1d1 = bd(a1d1 + b1c1) 

From L.H.S, (ad + bc)b1d1  = adb1d1 + bcb1d1 

    = ab1dd1 + bb1cd1 

    = ba1dd1 + bb1dc1 

    = bda1d1 + bdb1c1 

    = bd(a1d1 + b1c1) = RHS 

Hence, addition is well defined. 

(ii) ௔
௕

 . ௖
ௗ

=  ௔భ.௖భ
௕భ.ௗభ

   ⟹  acb1d1  = bda1c1  = bda1c1 

 From L.H.S, acb1d1 = a1bcd1 

  = ba1dc1  =  bda1c1 = R.H.S 

Hence multiplication is also well defined. 

Now we can verify that under these operations F forms a field. 

The additive identity is ଴
௔

  where a ≠ 0 

And the multiplicative identity is ௔
௔

,  a ≠ 0 

The additive inverse of ௔
௕

=  − ௔
௕
 and the multiplicative inverse of ௔

௕
 is ௕

௔
 (a ≠ 0) 

Associativity, commutativity and distributivity can also be easily established. Hence (F, +, o) is a 

field. 



 

 

Now Let D’ c F where  

 D’ = ቄ௔௫
௫

: ܽ߳D, x߳D଴ቅ 

Since if x ≠ 0, y ≠ 0, then ௔௫
௫

=  ௔௬
௬

  for axy = xay 

Hence, we can write D’ for any non-zero x as  

 D’ = ቄ௔௫
௫

: ܽ߳Dቅ 

Now we define a mapping f: D →D’ by  

 f(a) = ௔௫
௫

 for all a߳D 

f is one-to-one because if f(a) = f(b) then  

 ௔௫
௫

=  ௕௫
௫

 ⟹ ଶݔܽ  = ଶݔܾ   ⟹ (ܽ − ଶݔ(ܾ = 0 

Or a – b = 0 ⟹ a = b 

f is onto, since for any ௔௫
௫

߳D’ there is ܽ߳D such that f(a) = ௔௫
௫

 

Finally f preserves operations because 

 f(a+b) = (௔ା௕)௫
௫

=  (௔ା௕)௫మ

௫మ =  ௔௫మା ௕௫మ

௫మ  

  = ௔௫మ

௫మ +  ௕௫మ

௫మ =  ௔௫
௫

+  ௕௫
௫

= ݂(ܽ) +  ݂(ܾ) 

And ݂(ܾܽ) =  (௔௕)௫
௫

=  ௔௕௫మ

௫మ =  ௔௫.௕௫
௫.௫

 

  = ௔௫
௫

 . ௕௫
௫

= ݂(ܽ). ݂(ܾ) 

Hence, f is isomorphic, that is, D ≅ D’. 

We see that the elements of D’ can be identified with the elements of D in a one-to-one basis, 

and so D c F. 

EXAMPLE 2.3.5.1 



 

 

We see that (ℚ, +, o) is the quotient field of (ॴ, +, o) since if ॴ c field F, then all the ab-1 (or 

a/b) where a ߳ ॴ, b ߳ॴ must also be in F. Thus (ℚ, +, o) must be a subring of F and (ℚ, +, o) 

is thus the smallest field containing (ॴ, +, o). 

Similarly, we can construct the field of quotients (ℝ, +, o) from (ℚ, +, o); and the field (ℂ, 

+, o) from (ℝ, +, o). 

EXAMPLE 2.3.5.2 

(ℝ, +, o) is the quotient field of both (ℚൣ√2൧, +,  and (ℚ[√3], +, o) while (ℂ, +, o) is the (݋

quotient field of (ॴ[i], +, o).   

  

  

  

 

  

 

 

 

 

 

 


