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NUCLEAR PHYSICS

PREFACE

This study material was originally written for students learning physics in the Open and 
Distance Learning Education Programme, so a great deal of efforts is made for the 
material to be interactive and self-instructional. But it will also be useful as 
teaching/learning material in the normal face-to-face learning mode. The content is an 
appropriate introductory course for physics major or for other areas of nuclear science 
and technology.

The overall aim of this course is to understand the properties of the nucleus, particularly 
in terms of the types of the constituents of the nucleus and types of interactions among 
the constituents. The interactions within the nucleus cannot be understood with the laws 
of classical physics. Therefore, as a student, you will be expected to possess an 
introductory knowledge of quantum physics. Apart from this, knowledge of differential 
equations would be sufficient to follow most of the concepts presented in this material.

Some of the information in this material could also be found, either in greater depth or 
with more general treatments, in other textbooks. At the end of each chapter a list of such 
textbooks is provided for further readings.
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GENERAL INTRODUCTION

At this stage you have studied various modules of physics and come across various laws 
of physics; those that deal with phenomena involving large objects, such as planets, and 
those that deal with small objects, e.g., atoms. In this course, emphasis will be on the 
nucleus. The nucleus is the core of the atom; it contains almost the entire mass of the 
atom. But it occupies a very tiny component of the atom; its dimension is about 10-14m in 
comparison to 10-10m of the atom (see Figure 1.1). Nuclear Physics is the study of this 
complex system.

Figure 1.1 A comparison of atomic, nuclear and sub-nuclear dimensions (Adapted from
Kaiser (2004)).

The purpose of this study material is to explain all aspects of the nucleus, its structure, its 
behaviour under various conditions, and its effect on nature and mankind.  
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Course Objectives 

1. Explain some of the nuclear terminologies, including 
Isotope, Isobar, Atomic mass, Mass number, etc.

2. Describe the methods of evaluating the nuclear radius
3. Explain the inter-relationship between nuclear binding 

energy and nuclear stability
4. Distinguish between nuclear force and the other forces of 

nature; namely the gravitational and electromagnetic forces
5. Enumerate the importance of nuclear models and describe 

the successes and failures of the different models
6. Define Radioactivity and differentiate between nuclear 

decay and nuclear fission
7. Discuss some of the practical applications of nuclear 

physics in industries, medicine, etc.
8. List the unique properties of the major elementary 

particles.
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Lecture 1: Properties of the nucleus

Introduction
In this lecture we will study some of the most basic properties of the nucleus; its mass, 
size, shape, and other externally observable properties. We will also familiarize with 
some of the nomenclature and terminologies that are commonly used in nuclear physics. 
Finally, you will be introduced to the units and dimensions that are peculiar to nuclear 
system, and we will describe how to convert from the nuclear units to the S.I. unit and 
vice versa.

1.1. Constituents of the Nucleus

We will start the discussion by reviewing some fundamental facts that you are probably 
already familiar with. The nucleus is made up of NEUTRONS and PROTONS. A proton 
is about 1840 times more massive than the electron, and the neutron is slightly heavier 
than the proton. Protons and neutrons are referred to as nucleons.

ATOMIC AND MASS NUMBERS
The number of protons in the nucleus is the Atomic Number, denoted by Z. The total 
number of nucleons is called Mass Number and denoted by A. Therefore the number of 
neutrons is A-Z.

ISOTOPE
The atoms which make up a chemically pure substance of an element do not all have the 
same mass. For example, when we analyze samples of many naturally occurring 
elements, we find they contain different atoms all having the same atomic number Z but 
different mass number A, i.e., different neutron numbers. Such atoms are called isotopes. 

Objectives

At the end of this lecture you should be able to 
1. Explain nuclear terminologies such as nucleon, mass 

number, atomic mass, isotopic mass, nuclear  binding 
energy, atomic mass unit, etc.

2. State the general properties of stable nuclides 
3. Describe at least one experimental setup for determining 

the density distribution of the nucleus and hence the radius 
of the nucleus

4. Convert from Atomic Mass Unit to kg and vice versa
5. Calculate the binding energy for a specified nucleus  
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For example, the element chlorine has two isotopes; 35Cl, 37Cl that are stable against 
radioactive decay, and many that are artificially produced in nuclear reactions.

NUCLIDE
Nuclide is a specific combination of numbers of protons and neutrons. Generally a 
nuclide is represented by the symbol A

ZXN, where X is the chemical symbol of the 
element and N (= A-Z) is the number of neutrons. Examples of nuclides are 1

1H0, 
238

92U146, 
56

26Fe30, etc. Sometimes it is cumbersome and unnecessary to indicate the N and 
Z, i.e. it may be sufficient to write 1H, 238U, and 56Fe. 

ISOTONE
Nuclides with the same N but different Z are called isotones. For example, 2H and 3He 
are isotones with N = 1. 

ISOBAR
Isobars are nuclides with the same mass number, e.g., 3He and 3H.

ISOMER
Nuclei can have the same A, N, and Z, but different internal energies. Such nuclei are 
said to be in different states. Nucleus having the lowest internal energy is said to be in 
ground state, while nuclei with higher internal energies are said to be in excited states. 
Excited nuclei are unstable and they transit to lower excited (more stable) states by 
emitting high-energy photons (gamma rays). A nucleus X in an excited state is denoted 
by X*. Generally, nuclei do not exist in excited states for any appreciable time. However, 
some excited nuclei have lifetime of several hours. Such a long-lived excited state is 
known as an isomer.    

Activity

Give FIVE examples of (i) Nuclides; (ii) Isotopes, (iii) Isotones, 
and (iv) Isobars. 
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ATOMIC MASS UNIT (u)
Atomic mass unit is (1/12)th of the mass of the carbon (12C) atom. 1u = 931.481 MeV/c2

= 1.66042 x 10-27 kg.

THE ATOMIC NUCLEUS (RUTHERFORDS SCATTERING 
EXPERIMENT)

Rutherford (1911) bombarded thin foils with alpha particles, which 
he had previously shown to be doubly ionized helium atoms, and 
observed the angles of deflection due to the scattering in the foils. 
He attributed the effective deflecting force to the Coulomb repulsion 
2Ze2/r2, where Z is the atomic number of the scattering element. 
Furthermore, some of the scattering angles indicated that the alpha 
particle had passed within a distance of about 10-14 m from the 
centre of an atom. This showed that they had passed right through 
the atom, the radius of which is about 10-10 m. On the other hand, for 
almost head-on collisions, for which the distance of the closest 
approach was even less than 10-14 m, deviations from the Coulomb 
law were observed. Hence the nucleus must have a finite size. Also, 
the nucleus had to contain almost the whole mass of the atom, since 
otherwise the alpha particles would have been deflected by the outer 
regions of the atom. Lastly, the whole atom was neutral, and since 
the nucleus had a charge +Ze, it had to be surrounded by Z electrons 
which circled around the nucleus in radii of the order of 10-10 m. The 
emptiness of the atom is almost unimaginable. The atom is often 
compared to the planetary system. But if the nucleus were enlarged 
to the size and mass of the sun, then the mass of an electron would 
be that of the earth and its distance from the nucleus ten times 
greater than that of the farthest planet from the sun. The variations in 
density and distance are thus vastly greater in the atom than in the 
solar system .

Excerpt from Elton L.R.B. (1958)
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ISOTOPIC MASS
The average mass of all the isotopes of an element considering their relative abundance. 
For example, the two isotopes of Chlorine are present in the approximate ratio of three 
atoms of 35Cl17 to one of 37Cl17. Therefore the (average) isotopic mass of Chlorine is 35.5 
u.

ATOMIC MASS (M)
This is the exact mass of an isotope (comprising A nucleons and A-Z electrons) as would 
be measured experimentally, e.g. with a mass spectrograph.  

Example
Chlorine is found to have two naturally occurring isotopes: 35Cl17, which is 76% 
abundant, and 37Cl17, which is 24% abundant. The atomic weights of the two isotopes are 
34.97 and 36.97. Show that this isotopic composition accounts for the observed atomic 
weight of the element.

Solution
Taking the weighted average of the atomic weights of the two isotopes, we find for the
atomic weight of Cl, 0.76 × 34.97 + 0.24 × 36.97 = 35.45, as observed.

1.2. Binding Energy

MASS EXCESS
Mass excess ( em ) is the difference between the exact mass M (for a neutral atom) and 

its mass number A:

AMme  1.1

Relationship between a.m.u and MeV
. 
By definition, the 12C atom has a mass of exactly 12 a.m.u. Since 
its gram atomic weight is 12 g, it follows that 1 a.m.u. =
1/(6.02×1023) = 1.66×10–24 g = 1.66×10–27 kg. 
Using the Einstein relation and c = 3×108 ms–1, we obtain
1 a.m.u. = (1.66×10–27)(3×108)2

= 1.49×10–10 J = 1.49×10–10 J /(1.6×10–13) J MeV–1 = 931 MeV.
More precisely, 1 a.m.u. = 931.49 MeV.
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Table 1.1 Examples of mass number, atomic mass and mass excess in atomic mass units 
(u)

Nuclide M A
em

1H
4He
16O
35Cl

120Sn

1.007825
4.002603
15.994915
34.968851
119.902198

1
4
16
35
120

0.007825
0.002603
-0.005505
-0.031149
-0.097802

Note that em  is zero for 12C atom.

MASS DEFFECT AND BINDING ENERGY

The particles that constitute a stable nucleus are held together by strong attractive forces, 
and therefore work must be done in separating them from each other until they are at
‘large distances’ apart. In other words, energy must be supplied to the nucleus to separate 
it into its individual constituents. It also means that the total energy of the constituents 
when separated by ‘large distances’ is greater than the energy of the nucleus formed. This 
apparent loss in energy as a nucleus is formed is called the binding energy of the nucleus, 
and it is given in terms of the mass-energy relation of the special theory of relativity,

2cmE d 1.2

where E is the binding energy of the nucleus, dm  is the mass defect and c is the velocity 

of light in vacuum. dm  is the difference between the mass of the nucleus M and sum of 

the masses of all the constituents of the nucleus.

  MmZAZmm NHd  )( 1.3

Example
Find the binding energy of the nuclide 24Na11. The masses in a.m.u. of the constituents
are 1.0073, 1.0087, 0.000555, and 23.991 a.m.u. for proton, neutron, electron and the 
nuclide 24Na11, respectively.

Solution
One can work in terms of either a.m.u. or MeV. The atom consists of 11 protons, 13 
neutrons, and 11 electrons. Therefore the binding energy is:
BE = 11(1.0073) + 13(1.0087) + 11(0.00055) -23.991 a.m.u. = 24.199 – 23.991 = 0.208 
a.m.u. = 194 MeV.

BINDING ENERGY PER NUCLEON
If we divide the binding energy of a nucleus by the number of protons and neutrons 
(number of nucleons), we get the binding energy per nucleon. This is the common term 
used to describe nuclear reactions because atomic numbers vary and total binding energy 
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would be a relative term dependent upon that. The following figure, called the binding 
energy curve, shows a plot of nuclear binding energy as a function of mass number.

The peak is at iron (Fe) with mass number equal to 56. The eventual dropping of the 
binding energy curve at high mass numbers tells us that nucleons are more tightly bound 
when they are assembled into two middle-mass nuclides rather than into a single high-
mass nuclide. In other words, energy can be released by the nuclear fission, or splitting, 
of a single massive nucleus into two smaller fragments. 

The rising of the binding energy curve at low mass numbers, on the other hand, tells us 
that energy will be released if two nuclides of small mass number combine to form a 
single middle-mass nuclide. This process is called nuclear fusion. 

Another striking feature of the B/A curve is the approximate constancy at ~ 8 Mev per 
nucleon, except for the very light nuclei. It is instructive to see what this behavior
implies. If the binding energy of a pair of nucleons is a constant, say C, then for a 
nucleus with A nucleons, in which there are A(A-1)/2 distinct pairs of nucleons, the B/A 
would be ~ C(A-1)/2.  Since this is not what one sees in the figure of B/A vs A, one can 
surmise that a given nucleon is not bound equally to all the other nucleons; in other 
words, nuclear forces, being short-ranged, extend over only a few neighbors.  The 
constancy of B/A implies a saturation effect in nuclear forces, the interaction energy of a 
nucleon does not increase any further once it has acquired a certain number of neighbors.  
This number seems to be about 4 or 5. 

Figure 1.2. Binding energy per nucleon versus number of nucleon (Adapted from Kaiser,
2004 )

http://library.thinkquest.org/3471/fission.html
http://library.thinkquest.org/3471/fusion.html
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One can understand the initial rapid increase of B/A for the very light nuclei as the result 
of the competition between volume effects, which make B increase with A like A, and 
surface effects, which make B decrease (in the sense of a correction) with A like A2/3.  
The latter should be less important as A becomes large, hence B/A increases (see the 
discussion of the semi-empiricial mass formula and the liquid drop model in chapter
three).  At the other end of the curve, the gradual decrease of B/A for A > 100 can be
understood as the effect of Coulomb repulsion which becomes more important as the 
number of protons in the nucleus increases.

As a quick application of the B/A curve we make a rough estimate of the energies release 
in fission and fusion reactions. Suppose we have symmetric fission of a nucleus with A ~ 
240 producing two fragments, each A/2.  The reaction gives a final state with B/A of 
about 8.5 Mev, which is about 1 Mev greater than the B/A of the initial state. Thus the 
energy released per fission reaction is about 240 Mev.  (A more accurate estimate gives 
200 Mev.)  For fusion reaction we take H 2 + H 2  → He4 .  The B/A values of H2 and He4

are 1.1 and 7.1 Mev/nucleon respectively.  The gain in B/A is 6 Mev/nucleon, so the 
energy released per fusion event is ~ 24 Mev.

Separation Energy
Recall the definition of binding energy involves an initial state where all the nucleons are 
removed far from each other. One can define another binding energy where the initial 
state is one where only one nucleon is separated off.  The energy required to separate 
particle a from a nucleus is called the separation energy Sa. This is also the energy 
released, or energy available for reaction, when particle a is captured. 

This concept is usually applied to a neutron, proton, deuteron, or α -particle. The energy 
balance in general is 

  2),(),(),( cZAMZZAAMZAMS aa  1.4

where particle a is treated as a ‘nucleus’ with atomic number Z’ and mass number A’. 

For a neutron,

  2),(),1( cZAMZAMMS nn  1.5

),1(),( ZABZAB  1.6

Sn is sometimes called the binding energy of the last neutron. Clearly Sn will vary from
one nucleus to another.  In the range of A where B/A is roughly constant we can estimate 
from the B/A curve that Sn ~ Sp ~ 8 Mev.  This is a rough figure, for the heavy nuclei Sn

is more like 5 – 6 Mev.  It turns out that when a nucleus M(A-1,Z) absorbs a neutron, 
there is ~ 1 Mev (or more, can be up to 4 Mev) difference between the neutron absorbed 
being an even neutron or an odd neutron (see Figure 1.2). This difference is the reason 
that U235 can undergo fission with thermal neutrons, whereas U238 can fission only with 
fast neutrons (E > 1 Mev).
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Generally speaking the following systematic behavior is observed in neutron and proton 
separation energies, 

Sn(even N) > Sn(odd N) for a given Z 

Sp(even Z)  >  Sp(odd Z) for a given N 

This effect is attributed to the pairing property of nuclear forces – the existence of extra 
binding between pair of identical nucleons in the same state which have total angular 
momenta pointing in opposite directions. This is also the reason for the exceptional 
stability of the α -particle. Because of pairing the even-even (even Z, even N) nuclei are 
more stable than the even-odd and odd-even nuclei, which in turn are more stable then the 
odd-odd nuclei.

1.3. Nuclear Stability

One can construct a stability chart by plotting the neutron number N versus the atomic 
number Z of all the stable nuclides. The results, shown in Figure 1.3, show that N ~ Z for 
low A, but N > Z at high A.

Figure 1.3. Plot of Z versus N for illustrating nuclear stability (adapted from Martin, 
2006)

Binding energy is also a measure of the stability; a nucleus is stable against break-up if its 
mass is less than the combined mass of the fragments. For example, if we imagine that 
6Li3 can split up into 2H1 + 4He2. The masses involved are 6Li – 6.0170, 2H – 2.0147, and 
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4He – 4.0039, respectively. The mass defect of 6Li against this reaction is 0.0016, hence 
6Li is stable.

Another way to summarize the trend of stable nuclides is shown in the table below. 

Table 1.1: Systematics of stability trends in nuclei (Adapted from Meyerhof)

A Z N Type
Alternative
Designation

Number of
 Stable + Long 
lived Nuclides

Degree of
 Stability

Usual number 
of isotopes/
 elements

Even

Odd

Odd

Even

Even

Even

Odd

Odd

Even

Odd

Even

Odd

e-e

e-o

o-e

o-o

Even mass
Even N
Odd mass,
Odd N
Odd mass,
Even N
Even mass
Odd N

166 + 11 =177

55 + 3 = 58

51 + 3 = 54

6 + 4 = 10
___________ 
278 + 21 = 299

Very
Pronounced
Fair

Fair

Low

Several
(2 and 3)
1

1

0

Also, one can readily understand that in heavy nuclei the Coulomb repulsion will favor a 
neutron-proton distribution with more neutrons than protons.  It is a little more involved 
to explain why there should be an equal distribution for the light nuclides (see the 
following discussion on the semi-empirical mass formula). We will simply note that to 
have more neutrons than protons means that the nucleus has to be in a higher energy 
state, and is therefore less stable. This symmetry effect is most pronounced at low A and 
becomes less important at high A.
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Figure 1.4 Part of nuclear chart (Source: Chart of the nuclides, Nuclides and Isotopes, 
15th edn, General Electric Co., 1996.)

1.4. Nuclear Size and Nucleon Distribution

The radius of a nucleus is not a precisely defined quantity; the nucleus is not like a solid 
sphere of abrupt boundary. The straightforward approach to study the size and shape of 
nuclei is to shoot probing particles at them and measure the effects produced. There is, 
however, one well-known limitation in this, i.e. the wavelength of the probing particles 
must be of the order of the size of the nuclei being studied or smaller. Since ordinary 
light, for example, has a wavelength of about 10-7 m, which is many orders of magnitude 
larger than the nuclear size, it is not suitable. Light of very short wavelength, i.e., gamma 
rays, is also unsuitable because electrons surround nuclei and electromagnetic waves 
interact more strongly with these electrons than with the nucleus. It is therefore better to 
employ particles such as electrons, protons, neutrons, and alpha particles as probes. 
Neutrons and protons have the advantage that their wavelength is sufficiently short for 
energies of about 20 MeV, whereas for electrons over 100 MeV of energy is required, 
which is more difficult to obtain. However, electrons have the advantage that their 
interaction with the nucleus is very well known (it is the familiar electromagnetic 
interaction), so the most accurate results have been obtained with electrons as probes.
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But before we investigate electron scattering, let us review the Rutherford’s alpha 
scattering experiment as a means of estimating the nuclear size.

Estimation of the Nuclear Size based on Rutherford’s alpha scattering

Rutherford’s theory of the scattering of alpha particles gives some idea about the size of 
the atomic nucleus. Suppose the gold nuclei in the Rutherford’s scattering experiment are 
spherical and have radius R. The scattering of the alpha particle by the central repulsive 
Coulomb force leads to a hyperbolic trajectory. An alpha particle trajectory can be 
specified by its impact parameter, b; this is the distance between the trajectory of the 
incident alpha particle (if it were undeflected) and the parallel line passing through the 
center of the gold nucleus, i.e., the perpendicular distance between any two such parallel 
lines (See figure 1.5 below). 

Figure 1.5. (a) Possible alpha particles scattering angles at different impact 
parameters, (b) Relation between impact parameter and distance of closest 
approach.

NOTE

In terms of dimension, the nucleus is a very tiny part of the atom; 
the atomic radius is about 10,000 times the nuclear radius. An 
approximate analogy to the relation between the nucleus and an 
atom could be like a coin in a football field. 

(a) (b)

http://hyperphysics.phy-astr.gsu.edu/hbase/rutsca.html#c1#c1
http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elefor.html#c1
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From the scattering angle and momentum, one can calculate the impact parameter and 
closest approach to the target nucleus.

Figure 1.6. Change in angular momentum P after scattering through angle .

At an arbitrary position r >> R, the deflection is small because the alpha particle 
experiences less Coulombic repulsive force; 

r
r

Ze
F

3
0

2

4

2


 1.7

Where 2e and Ze are the charges on alpha and the nucleus, respectively. (Note that the 
exact expression should consider the motion of the nucleus by introducing the reduced 
mass of the alpha – nucleus system).

But the repulsion and the scattering angle increase as the trajectory of the alpha particles 
gets closer to the periphery of the nucleus, and they are maximum for r  R, i.e. when the 
alpha particle just grazes the nucleus edge:

F slows down the alpha particle as it approaches the nucleus and accelerates it as it 
recedes away from the nucleus. Therefore, F is maximum at the point of closest approach
and it is given by

2
min

2

0

2

4

1

r

Ze
F


 1.8

If the alpha particle has a velocity v, the time within which it experiences this force is

v

r
t min 1.9

b

b

rmin

P

P

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The momentum change P produced (perpendicular to the direction of incidence) is 
obtained in terms of Newton’s law and impulse:

v

r

r

Ze
tFP min

2
min

2

0

2

4

1


 1.10

The scattering angle  is given by; 
P

P
Sin


 

Therefore, 
mvvr

Ze 112

4

1

min

2

0
  1.11

Or 

12

4

1
2

2

0
min mv

Ze
r  1.12

Although Rutherford occasionally observed large scattering angles (), the maximum or 
most frequently observed   1 radian. Therefore, rmin corresponding to maximum 
deflection is obtained by putting   = 1 in equation 1.12:

2

2

0
min

2

4

1

mv

Ze
r


 1.13

Putting Z = 79 for gold, m = 6 x 10-27 kg for alpha particle, v = 107 m s-1 and e = 1.6 x 10-

19 C, means that rmin  4.2 x 10-14 m. Since R (the nuclear radius) is less than rmin, it is 
obvious that R will be of the order of 10-15 to 10-14 m. The above estimation is based on 
the assumption that Coulomb’s law of electrostatic repulsion still holds good at such 
short distances. However, the nuclear radius determined from this consideration is bound 
to be defective; since the Coulombic force has far greater range compared to the
dimension of the nucleus.

Alternative estimate of nuclear radius

When we talk of the nuclear radius, the nucleus is assumed to have spherical shape. This 
is expected because of the short range character of the nuclear force. However, small 
departure from sphericity exist, inferred from existence of electric quadrupole moment, 
which should be zero for spherical nuclei.

Assuming that the nuclear charge is uniformly distributed, i.e. nuclear charge density  is 
approximately constant. Since nuclear mass is almost linearly proportional to the mass 
number A, this means that:

tconsVA tan/ 

i.e, ARV  3

3

4
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or, 3

1

AR   so that 3

1

ArR o , where or  is a constant, known as the nuclear radius 

parameter.

Electron Scattering Experiment for Estimating the Nuclear Size

The estimates of nuclear radius based on Rutherford scattering were not very accurate. 
This is expected considering that Rutherford scattering was based on long range and 
central force between alpha and the scattering nucleus, whereas the dominant force in the 
nucleus is the short range non central nuclear force.

Scattering of high energy electrons by nuclei constitutes the most direct method of 
measuring the charge radius of the nucleus and the nature of the nuclear charge 
distribution. This is because nuclear forces do not act on electrons. Only the Coulomb 
attractive force acts on them. If the de Broglie wavelength of the electrons is small 
compared to the nuclear radius, the electron scattering experiment can reveal many 
details of the nuclear charge distribution.

According to de Broglie’s theory of wave-corpuscular dualism, the wavelength of a 
realistic electron of rest mass mo, having the total energy E > moc

2 is given by:

 2
1

)/2( 2 ecmVVe

ch

o
 1.14

Where e is the electronic charge and eV is equal to the kinetic energy of the electron. For 
electrons of kinetic energy = 200 MeV, the corresponding wavelength is about 6 x 10-5

Angstrom. This is considerably smaller than the radius of most nuclei, hence electrons of 
a few hundred MeV energy can reveal considerable details about the nuclear charge 
distribution.

The experiment consists of bombarding a thin target of the material under study with 
high-energy electrons, e.g. from an accelerator, and observing the probability of various 
angular deflections (). For each , the ratio of the number of scattered electrons 
(recorded by the detector) to the number of electrons in the incident beam is calculated. 
Practically all of the electrons in the incident beam are undeflected, very few electrons 
are deflected. Typical experimental results are shown in figure 1.7.
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Figure 1.7 Angular distribution of electrons scattered from various nuclei

One can guess a density distribution (r), the probability of various angular deflection 
can be calculated and compared with the experimental results. If they do not fit, another 
(r) can be tried until a fit is obtained. The experiments have been performed for many 
nuclei and at several incident energies. All the results can be approximately described by 
a form of charge distribution known as Fermi distribution:

 aRr
r o

/)(exp1
)(

2
1




 1.15

Where o is the nucleon density near the center of the nucleus, R1/2 is the half-value 
radius, i.e., radius at which the density has decreased by a factor of 2, i.e. (r = R1/2) = 
o/2 and ‘a’ is a measure of how rapidly  falls towards zero. R1/2 and a are adjusted to 
get the best fit with experimental data. Figure 1.8 shows two typical nucleon density 
distributions obtained by high-energy electron scattering by 40Ca and 209Ca. It is obtained 
from the fits of 1.15 to experimental data.

Figure 1.8 Nucleon density in two nuclei 40Ca and 209Ca

Angle of scattering ()

Relative  
intensity

Bi209

Co259

Ca40
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A sketch of the distribution, given in figure 1.9, shows clearly the core and boundary 

components of the nucleon density. A new length unit is called Fermi (F), 1 F = 10-13

cm.

Figure 1.9.  Schematic of the nuclear density distribution, R is a measure of the nuclear radius, and 

the width of the boundary region is given by 4.4a.

SUMMARY

In this lecture we have:

 Learnt nuclear terminologies such as nucleon, mass 
number, atomic mass, isotopic mass, nuclear  binding 
energy, atomic mass unit, etc.

 Stated the general properties of stable nuclides 
 Described the Rutherford’s experimental setup and the 

electron scattering methods for determining the density 
distribution of the nucleus and hence the radius of the 
nucleus.

 Shown how to convert from atomic mass unit to kg and vice 
versa

 Explained the meanings of binding energy, binding energy 
per nucleon, separation energy, and described how to 
calculate these quantities for a specified nucleus.
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   EXERCISE 1

1. Distinguish between atomic mass and isotopic mass.
2. Distinguish between mass excess and mass defect.
3. The atomic masses of 11B5, 

12C6, 
14N7 and 16O8 are 11.009305, 

12.0, 14.003074, and 15.994915 a.m.u, respectively. Calculate 
their binding energies and list them in order of their stability . 
Mass of hydrogen atom is 1.007825 and mass of neutron is 
1.008665 a.m.u.

4. Atomic masses of Tritium (3H1) and Helium (3He2) are 3.016050 
and 3.016030 a.m.u. respectively. Find their binding energies, 
and explain the origin of the difference in their binding energies.

5. Gallium occurs with two natural isotopes, 69Ga (60.2% 
abundant) and 71Ga (39.8%), having atomic weights 68.93 and 
70.92. What is the atomic weight of the element?

6. Calculate the total binding energy of the alpha particle 4He2.
7. What is the mass of a 6Li atom in grams?
8. Calculate the average binding energy per nucleon for the Nuclide 

40K19.
9. Show that 1 a.m.u. = 1.49×10–10 J.
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Lecture 2: Nuclear Force

Introduction
In this Lecture we consider the characteristics of the force that hold the nucleus together, 
and relate it to the other forms of the forces of nature that we have come across in other 
areas of physics.  

2.1. Characteristics of Nuclear force

These are forces operating between nucleons inside the nucleus. They are characterized 
by the following properties:

(a) Within a certain distance between the nucleons, nuclear forces are attractive. This 
is also indicated by the high binding together of nucleons and the stability of 
nuclei. Nuclear attraction is a great deal stronger than the electrostatic  repulsion 
between protons

(b) They are short-range forces, i.e. they drop off to a negligible value after a short 
distance, of the order of 10-15m

(c) They are charge independent, i.e. the interactions between nucleons are 
independent of whether one or both Nucleons are independent of whether one or 
both nucleons have electric charge or not. In other words, n-n, n-p and p-p 
interactions are almost indistinguishable. The charge independence of nuclear 
forces was established from experiments on scattering of protons by deuterons
and of neutrons by protons.

(d) Nuclear forces are non central forces, or tensor i.e. their direction partly depend 
on the spin orientation of the Nucleons, which may be parallel or anti parallel. 
(the strength of this non central force or tensor force, depends not only on the 
separation  between the interacting prior of particles but also on the ample 
between the spins of the particles)

Objectives
At the end of this lecture you should be able to 

1. State the properties of nuclear force
2. Distinguish between nuclear force and the other types of 

forces that you are familiar with
3. Explain the meson theory of nuclear force
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(e) Nuclear forces saturate in a similar way to that of chemical bonds between 
valence electrons in the atom. The saturation of the Nuclear forces means that a 
nucleon can only form bonds with a certain definite number of its neighbours and 
no more, even though they may be within the effective range of Nuclear forces. 
This another explanation for Nuclear stability/instability of Nuclei, in that 
beyond the number of bonded neighbours, the extra Nucleons experiment the 
repulsive force.

2.2. Meson theory of Nuclear Force

An ‘exchange character’ is that which is transferred between (or exchanged by) two 
interacting bodies. For example the exchange electromagnetic interaction is through the 
exchange of E.M. field quanta (i.e. photons) and gravitational attraction is exchange of 
gravitational attraction is an exchange of gravitational-field quanta (i.e. gravitons). 
Graviton is still a theoretical concept, it has not yet been found in nature, but research is 

Mirror nuclei and the charge independence of nuclear 
forces

Mirror Nuclei are those in which number of protons in one is equal to 
the number of neutrons in the other, e.g. 3He2 and 3H1 (or two Nuclei 
for which Nucleons transformed into the other by exchanging all 
neutrons for protons and vice versa)

The difference in binding energy between the mirror nuclei is used to 
confirm the charge independence of Nuclear forces. For example the 
binding energies of  3He and 3H1 are 7.72 MeV and 8.49 MeV, 
respectively. The difference (0.77 MeV) is attributed to coulomb 
repulsion between the two protons in helium. Where 0.77 MeV is 
found to be the potential energy (U) due to coulomb repulsion 

between the protons i.e. 
r

e

r

qq
U

0

2

0

21

44 


For U = 0.77 MeV, the distance r, between the protons is about 1.9 x 
10-15m, which is of the same order as the range of nuclear forces (2.2 x  
10-15m).
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going on! Inter-nucleon forces have also been successful explained on the basis of the 
hypothesis that they have an ‘exchange character’.

In 1935, Yukawa (Japanese Physicist) explained the interaction of nucleons as an 
exchange of a special nuclear-field quanta called pi-mesons or pions. Pions have since 
been found experimentally. They are elementary particles with rest mass of about 250 
times that of an electron (Note, however, that there are other types of mesons).

Properties of π meson:

 Mass of π meson ~ 250 times mass of electron (i.e. Mass of π meson ~ 140 MeV)
 Occurs in three forms, i.e. negatively charged, positively charged and neutral (with zero 

electric charge)
 The immediate and simple consequence of the fact that the field particle for the nuclear 

force, unlike for the E.M. and gravitational forces, has a finite mass is that nuclear 
force has a short range.

According to Yukawa’s meson theory, when two nucleons are near each other, the meson 
travels from one nucleon towards the nucleon which absorbs it. During the exchange, the 
energy of the nucleon which gives up a meson is decreased, and that increased of the 
nucleon which absorbs the meson theory.

Exchange of   meson (pion) between two nucleons can be, symbolically, described as 
follows;

(i) Exchange of  + between proton (p) and neutron (n): 
pnnnnp  

The explanation is as follows:

The initial proton becomes a neutron, by losing a positive pion ( +); the initial neutron 
absorbs the positive pion ( +) and becomes a proton. The initial/original nucleons have 
thus exchanged their coordinates.

Similarly:
(ii) Exchange of  - between proton and neutron 

nppppn  
(iii) Exchange of  ° between proton and proton

pppppp  
(iv) Exchange of  ° between neutron and neutron

nnnnnn  
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Determination of the range of nuclear forces

Note that when a pion is sent from one nucleon to another, the creation of the pion
momentarily violates the conservation of energy by an amount 2cME  , where M is 

mass of the pion, and c is the velocity of light (i.e., assuming the pion moves at the speed 
of light). Such a violation of energy conservation cannot last longer than a time t, which 
from uncertainty principle is given by:

2cME
t







 2.1

Even with the assumption that the pion travels with a velocity of light (c), the farthest 
distance it can travel in this time is given by:

cM
tcx




 2.2

This will be the order of the range of the nuclear force. Numerically, it works out to be ~ 
1.4 F.

Example
Suppose a pion of mass 2.3 X 10-28 kg is exchanged between two nucleons during a 
nuclear interaction. Assume the pion travels at the speed of light and use equation 2.2 to 
calculate the range of the nuclear force of interaction between the nucleons.

Solution

mX
msXkgXX

sJX

cM
tcx 15

1828

34

1053.1
100.3103.2

.100545.1 









SUMMARY

In this lecture we have:

 Stated the properties of nuclear force
 Distinguished between nuclear force and the other types of 

forces;
 Explained the meson theory of nuclear force;
 Used the meson theory to estimate the nuclear radius.



27

REFERENCES

1. Elton L.R.B. (1958) Introductory Nuclear Theory, ELBS, 
London.

2. General Electric Co. (1996) Chart of the nuclides, Nuclides 
and Isotopes, 15th edn.

3. Kaiser, R. (2004) Nuclear Physics and Radiation detectors. 
Nuclear Physics Lectures 
http://www.physics.gla.ac.uk/kaiser/ 

4. Ghoshal, S.N. (2008) Nuclear Physics (for undergraduate 
and postgraduate students of Indian Universities) S. Chand 
& Co Ltd, New Delhi.

5. Cohen, B.L. (1985) Concepts of Nuclear Physics, Tata 
McCraw-Hill, New Delhi

   EXERCISE 2

1. What are mirror nuclei? Give two examples of mirror nuclei pair.
2. Explain the charge independent nature of nuclear forces. 

Calculate the binding energies for 3H1 and 3He2. Hence or 
otherwise show quantitatively that nuclear forces are charge 
independent (Atomic masses in a.m.u. are 3.016050 and 
3.016030 for 3H1 and 3He2, respectively; assume distance 
between any two nucleons in the nucleus to be 2.0 X 10-15 m.

3. Show that for most nuclei, binding energy (BE) is directly 
proportional to mass number (A). Explain how the direct 
proportionality between BE and A is a confirmation that nuclear 
forces saturate.
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Lecture 3: Nuclear Models

Introduction

We have recognized the complex nature of the nucleus. It is a many-body system and it is 
difficult to give full theoretical treatment (solution) of the interactions among the 
constituents. As a result of this difficulty, nuclear models were introduced, which account 
in a semi-quantitative fashion for many of the nuclear properties. What nuclear 
physicists try to do – within the constraints imposed by the many-body problem – is to
understand the structure of nuclei in terms of their constituent particles, the dynamics of
nuclei in terms of the motions of these particles, and the fundamental interactions among
particles that govern these motions. Experimentally, they study these concepts through
nuclear spectroscopy and the analysis of nuclear reactions of many kinds. Theoretically, 
they construct simplifying mathematical models to make the many-body problem 
tractable. These nuclear models are of different kinds. Independent-particle models allow
the motion of a single nucleon to be examined in terms of a steady, average force field
produced by all the other nucleons. The best-known independent-particle model is the 
shell model, so-called because it entails the construction of "shells" of nucleons analogous
to those of the electrons in the theory of atomic structure. At the other extreme,
collective models view the nucleons in a nucleus as moving in concert (collectively) in
ways that may be simple or complex – just as the molecules in a flowing liquid may
move smoothly or turbulently. In fact, the best-known collective model, the liquid-drop
model, is based on analogies with the behavior of an ordinary drop of liquid. The above
descriptions are necessarily oversimplified. The actual models in question, as well as
related ones, are very sophisticated, and their success in explaining most of what we
know about nuclear structure and dynamics is remarkable. In this lecture we will review 
three of these models and discuss the way in which they are related to the ‘true’ 
description of the nucleus. 

Objectives
At the end of this lecture you should be able to 

1. Give three different examples of Nuclear models
2. Discuss the Successes and failures of the Liquid drop 

model of the nucleus
3. Discuss the main features of the Fermi Gas Model
4. Define Magic Numbers and give examples of Nuclei with 

magic numbers
5. Describe the background to the to the Nuclear Shell model 

theory
6. Describe the procedure for determining the energy levels 

and the ground state angular momentum and parity of 
specific nuclei
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3.1. The Liquid Drop Model

The liquid drop model was proposed first in 1936 by Frenkel and later elaborated by 
Bohr and Weizsacker. It is based on the outer analogy between the atomic nucleus and a 
charged liquid drop.

Similarities between the properties of a Nucleus and those of a drop of liquid.

1. Constant density which is independent of size;
2. Constant binding energy per nucleon of nucleus corresponding to latent heat of 

vaporization of liquid
3. The constituent molecules of a liquid drop operate over a short range like the 

nuclear forces
4. The intermolecular force in the liquid drop saturates just as does the nuclear force 

between nucleons.

Difference

The nucleus is charged and obeys the laws of quantum mechanics. In this, it differs from 
a liquid drop.

Calculation of binding energy on the basis of the Liquid Drop Model

We will treat the nucleus as an assemblage of interacting particles similar in some ways 
to a drop of liquid, but we will introduce (i) presence of Coulomb forces; (ii) effects of 
Pauli exclusion principle; (iii) other effects due to the complex structure of the nucleus, 
i.e. quantum principle. We can therefore treat the binding energy of a nucleus as a 
combination of many terms, i.e., PSymCSV EEEEEE   where EV, ES, EC, ESym, 

EP are the volume, surface, Coulomb, symmetry, and pairing terms, respectively.

(i) Volume term (EV)
The volume term is equivalent to binding energy of a liquid drop, i.e. energy required to 
evaporate a liquid drop (called heat of evaporation). This energy is directly proportional 
to the volume of the liquid drop. Similarly, the volume term of the nuclear binding 
energy is proportional to the volume of nucleus which is also proportional to the mass 
number A. Therefore 

AcE VV  3.1

where cV is a proportionality constant.

(ii) Surface term (ES)
The statement in (i) above, i.e., E  A is under the assumption that every nucleon (or 
liquid molecule) is surrounded from all sides by neighbours, i.e., they all experience 
equal attraction. This is not true, those on the surface interact with less nucleons 
compared to those close to the center. Therefore it can be said that the presence of surface 
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reduces the binding energy from what it would have been if the nucleus were to have no 
surface. This surface energy term is to the surface area, i.e. 2RES since surface area is 

proportional to square of radius. Nuclear radius is proportional to A1/3, therefore surface 

area  A2/3, i.e., 3

2

AcE SS  , where cS is a proportionality constant.

The net binding energy, taking the surface effect into consideration, is:
3

2
AcAcE SV  3.2. 

(iii) Coulomb term (EC)
Some work is required to overcome the repulsive Coulombic forces in order to bind the 
nucleus. This columbic energy term is proportional to square of the atomic number (Z), 
i.e., )1(  ZZcE CC 3.3

(iv) Symmetry or asymmetry term (Esym)
The inequality of numbers of protons and neutrons in the nucleus gives rise to a decrease 
in the binding energy. The exclusion principle makes it more expensive in energy for a 
nucleus to have more of one type of nucleon than the other. It explains the difference in 
stability between nuclei containing unequal numbers of protons and neutrons. Nuclear 
stability is directly related to energy, and the most stable system is one having the lowest 
energy, i.e., most stable nuclei are found with highest binding energy per nucleon and 
they contain equal numbers of protons and neutrons. The difference N – Z is called 
neutron excess. The deficit in the binding energy resulting from the neutron excess is 

proportional to the neutron excess )( ZN   and to the neutron excess ratio 
A

ZN )( 
 i.e., 

)( ZNESym   and 
A

ZN
ESym

)(  . This means that:

A

ZA
c

A

ZNZN
cE SymSymSym

2)2())(( 



 3.4

(v) Pairing term (EP)

Allows for the fact that the interactions between nucleons depend on their relative spin 
orientation. It is maximum for nuclei containing an even number of protons and neutrons 
(i.e. even-even or e-e nuclei), and minimum for nuclei containing odd numbers of protons 
and neutrons, i.e. odd-odd or o-o nuclei. The empirical relation for this component of the 
binding energy is given by Fermi as:

0

4
3

4
3









P

PP

PP

E

AcE

AcE

3.5

Where + is for e-e nuclei; - is for o-o nuclei and 0 is for o-e or e-o nuclei.
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The total binding energy can therefore be written as the combination of the five terms:

PSymCSV EEEEEtotalE )( 3.6

Therefore the liquid model of the Nucleus can be used to calculate its binding energy.

Figure 3.1. Relative contributions to the binding energy per nucleon showing the 
importance of the various terms in the semi-empirical Weizsacker formula [from Evans]

Substituting for   2)()( cMMZAZMtotalE nH  , EV, ES, EC, ESym, and EP into 3.6, 

and solving for mass M, we obtain the Weizsacker semi-empirical mass formula:

4

3
123

1
23

2

)2()(),(


 AcAZAcAZcAcAcMZAZMAZM psymCSVnH 

3.7

Or )(),( 2  ZZAAZM  3.8
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Where )(
3

1

A

c
ccM S

symVn 

)(4 HNsym MMc 


















Csym

symCp

cc

A

A

c

A

c

A

c

/4
14)4(

3

2

3

1
 3.9

4

3

A

c p

One possible set of the numerical values of the coefficients is as follow: cV = 14 MeV; cS

= 13 MeV; cC = 0.6 MeV; cSym = 19 MeV; and cP = 33.5 MeV or 0.

Applications of the Weizsacher’s semi-empirical Mass Formula

 Estimation of masses of nuclei (The five constants of the semi-empirical mass formula 
when substituted in the mass formula, should give atomic masses or approximately 
masses of nuclei);

 Estimation of Nuclear radius;
 Explaining/predicting the behaviour of isobars in beta decay

Prediction of stability of beta-emitting Isobar

For constant A, M(Z,A) is a parabolic function of Z. Therefore the plot of M(Z,A) versus Z
should be a parabola with the minimum M corresponding to Zs for the most stable isobar 
in the isobaric family. 

Note that 02
tan












s

tConsA

Z
Z

M  3.10

This implies that  2/)(  sZstableZ 3.11

For Odd A ( = 0)
The plot of M(Z,A) versus Z gives only one parabola. The mass of the most stable isobar 
is then given (substituting Z = Zs, and 0  into 3.8) by:

22),( ssss ZZZAAZM  

i.e., 2),( ss ZAAZM   3.12

The difference in masses of the isobars with odd A is obtained by subtracting equation 
3.12 from equation 3.8:
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22222 )(2),(),( sssss ZZZZZZZZZAZMAZM  
3.13

Most of the unstable nuclides are natural beta-emitters. Hence we can predict the stability 
of emitting isobars from the mass formula.

Using the Q-value problem
The energy released or absorbed during transitions or decays can be obtained using the Q 
– value problem:

),1(),( AZMAZMQ    and substituting for the difference in masses in terms of Z

and Zs, we obtain: 

  )
2

1
(2)1()( 22  ZZZZZZQ sss  3.14

Similarly, )
2

1
(2  sZZQ  3.15

Example

Question:
For the family of isobars with A = 91, estimate (i) Nuclear charge of the most stable 
isobar, (ii) the energy released Q- and Q+,, for transitions to the most stable isobar.

Solution:

(i) The nuclear charge (or Z number) is given by: 



2


sZ

But MeVMeVMM pnsym 77)8.076()(4    and MeV96.0  for A = 

91. Therefore the Z number of the most stable isobar is 104.40
296.0

)77(





x
Zs . This 

corresponds to A = 91 and Z = 40, which correspond to Zr91
40 , and it can be seen how 

excellent the estimate based on the liquid drop model is. Other examples for A = 135 is 
described in figure 3.2.

For even A (  0)

Mass of the most stable isobar is  
2),( ss ZAAZM  . Therefore there are two 

possible most stable isobars; one for + (even - seven nuclei) and the other for - (for 
odd-odd nuclei). The plot of M(Z, A) vs Z results in two parabolas displaced in binding 
energy by 2  (see figure 3.2 b).

The difference in masses is given by :
 2)(),(),( 2

Ss ZZAZMAZM  (for odd Z)
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0)(),(),( 2  Ss ZZAZMAZM   (for even Z).

The Q value relations are:
 2)(2),1(),( 2

1ZZAZMAZMQ s


 for odd Z, 3.16


2)(2),1(),( 2

1
sZZAZMAZMQ 


 for even Z. 3.17

Figure 3.2 Mass parabolas for odd and even isobars. Stable and radioactive nuclides are 
denoted by closed and open circles respectively [from Meyerhof]

Spontaneous fission

For heavier nuclei (beyond 56Fe) the binding energy decreases as the mass increases. A 
nucleus with Z > 40 can therefore, in principle, split into two lighter nuclei. Thankfully, 
the potential barrier is generally so large that such reactions are extremely unlikely.

The lightest nuclides where the probability of spontaneous fission is significant are 
certain uranium isotopes.
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Figure 3.3. Schematic of the potential barrier against spontaneous fission

The height of the barrier for fission determines the probability for spontaneous fission.

Figure 3.4. Deformation of spherical heavy nucleus

Let’s consider the deformation of a heavy nucleus from spherical shape to an ellipsoid 
with constant volume and axes 

3.18

The surface, and therefore the surface energy, will increase. At the same time the 
Coulomb energy decreases. The surface energy ES and the Coulomb energy EC can be 
shown to behave like 

3.19

Hence a deformation changes the total energy by

3.20
The fission barrier disappears for 

3.21
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Which is roughly in the same ball park as 238U, but not exactly the same. This shows us 
the limitations of our simple liquid drop model and we’ll now move on to more elaborate 
models.

3.2. Fermi Gas Model

Assumptions

 The potential that an individual nucleon feels is the superposition of the potentials of 
the other nucleons. This potential has the shape of a sphere of radius, R = RoA

1/3 fm, 
equivalent to a 3-D square potential well with radius R.

 Nucleons move freely (like gas) inside the nucleus, i.e. inside the sphere of radius R_

 Nucleons fill energy levels in well up to the ’Fermi energy’ EF.
 Potential wells for protons and neutrons can be different.

- If the Fermi energy were different for protons and neutrons, the nucleus 
would undergo -decay into an energetically more favourable state. 

- Generally stable heavy nuclei have a surplus of neutrons. 
- Therefore the well for the neutron gas has to be deeper than for the proton 

gas.
- Protons are therefore on average less strongly bound than neutrons 

(Coulomb repulsion).
 2 protons / 2 neutrons per energy level, since spins can be up or down. The number of 

possible states available to a nucleon inside a volume V and a momentum region dp is 

3.22

 In the nuclear ground state all states up to a maximum momentum, the Fermi 
momentum pF, will be occupied. Integration leads us to the following number of states 
n. Since every state can contain two fermions, the number of protons Z and neutrons N
are also given:

3.23

 The nuclear volume V is given by
_

.

3.24
(experimental value from electron scattering: Ro = 1.21 fm)

 Assuming that the proton and neutron wells have the same radius, and assuming that N 
= Z = A/2, we find the Fermi momentum 
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3.25

 The nucleons apparently move freely inside the nucleus with large momenta. This is in 
agreement with experimental data from electron scattering.

 The energy of the highest occupied state, the Fermi energy EF, is

3.26
where M is the nucleon mass

Figure 3.5. Neutron and proton potential wells

 The difference between the Fermi energy and the top of the potential well is the 
binding energy B’= 7-8 MeV/nucleon that we already know from our treatment of the 
liquid drop model. The depth of the potential well is to a good extend independent of 
the mass number.

 The depth of the potential well Vo is to a good extend independent of the mass number 
A:

3.27
 The average kinetic energy per nucleon is: 

3.28

 The total kinetic energy of the nucleus is therefore

3.29
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 Using the expressions for the numbers of proton and neutron states derived earlier, and 
assuming that the radii of proton and neutron well are the same, this can be re-
expressed as

3.30

 For fixed A = N + Z the term  N5/3 + Z5/3 has a minimum for N = Z; therefore also the 
average kinetic energy has a minimum there. Hence the binding energy shrinks for N 
Z.

 If one expands the expression Ekin(N, Z) for in the difference N - Z one obtains

3.31
which gives the functional dependence on the neutron surplus.

 The first term contributes to the volume term in the mass formula. The second term 
corresponds to the asymmetry term in the mass formula.

 To reproduce the asymmetry term to reasonable accuracy the change in the potential 
for N  Z must be taken into account.

 Not a strict derivation, but it shows that the asymmetry term in the mass formula is 
plausible.

Summary of Liquid Drop and Fermi gas models

 We have seen that the liquid drop model allows a reasonably good descriptions of the 
binding energy. It also gives a qualitative explanation for spontaneous fission. 

 The Fermi gas model, assuming a simple 3D square well potential (different for 
protons and neutrons) explained the terms in the semi-empirical mass formula that 
were not derived from the liquid drop picture.

 We’ve also seen that nucleons can move freely inside the nucleus. This agrees with the 
idea that they experience an overall effective potential created by the sum of the other 
nucleons. 

 We will now have a look at further experimental evidence, that the Fermi gas model 
cannot explain and then see how we can improve the model. This will lead us to the 
Shell Model.
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3.3. The Shell Model

The liquid model emphasized the properties of the entire nucleus but not those of the 
individual nucleons. In the successful atomic model, emphasis is on motion of electrons 
in the central (coulomb) field provided by the nucleus.

Precursors to the shell model:
These are the events that preceded the shell model theory and contributed to its 
promotion. They include:

(i) success of the atomic shell model theory; 
(ii) recognition of the existence of some nuclei (with magic numbers) , which are 

associated with special characteristics of stability. This was reminiscent of the 
stability properties exhibited by the atoms of noble gases.

There are similarities between the electronic structure of atoms and nuclear structure. 
Atomic electrons are arranged in orbits (energy states) subject to the laws of quantum 
mechanics. The distribution of electrons in these states follows the Pauli exclusion 
principle. Atomic electrons can be excited up to normally unoccupied states, or they can 
be removed completely from the atom. From such phenomena one can deduce the 
structure of atoms. In nuclei there are two groups of like particles, protons and neutrons. 
Each group is separately distributed over certain energy states subject also to the Pauli 
exclusion principle. Nuclei have excited states, and nucleons can be added to or removed 
from a nucleus. 

Electrons and nucleons have intrinsic angular momenta called intrinsic spins. The total 
angular momentum of a system of interacting particles reflects the details of the forces 
between particles. For example, from the coupling of electron angular momentum in 
atoms we infer an interaction between the spin and the orbital motion of an electron in the 
field of the nucleus (the spin-orbit coupling). In nuclei there is also a coupling between 
the orbital motion of a nucleon and its intrinsic spin (but of different origin). In addition, 
nuclear forces between two nucleons depend strongly on the relative orientation of their 
spins. 

The structure of nuclei is more complex than that of atoms. In an atom the nucleus 
provides a common center of attraction for all the electrons and inter-electronic forces 
generally play a small role. The predominant force (Coulomb) is well understood. 

Nuclei, on the other hand, have no center of attraction; the nucleons are held together by 
their mutual interactions which are much more complicated than Coulomb interactions. 
All atomic electrons are alike, whereas there are two kinds of nucleons. This allows a 
richer variety of structures. Notice that there are ~ 100 types of atoms, but more than 
1000 different nuclides. Neither atomic nor nuclear structures can be understood without 
quantum mechanics.



40

Experimental Basis of nuclear shell structure  

There exists considerable experimental evidence pointing to the shell-like structure of 
nuclei, each nucleus being an assembly of nucleons. Each shell can be filled with a given 
number of nucleons of each kind. These numbers are called magic numbers; they are 2, 8, 
20, 28, 50, 82, and 126. (For the as yet undiscovered superheavy nuclei the magic 
numbers are expected to be N = 184, 196, (272), 318, and Z = 114, (126), 164 [Marmier 
and Sheldon, p. 1262].) 

Nuclei whose N and Z numbers are magic numbers are particularly stable these are the 
so-called ‘Doubly magic’ nuclei, e.g., 126

208
8228

48
2020

40
208

16
82

4
2 ,,,, PbCaCaOHe

Characteristics of nuclei with magic numbers
(a) Energies emitted by alpha particles emitted from Rn peak at N = 128 for parent, 

i.e. N = 126 for daughter nucleus;
(b) Neutron capture cross sections show a sharp decrease (of 2 orders of magnitude) 

near N = 50, 80, 126;
(c) Changes in the nuclear charge radius are particularly significant at 20, 28, 50, 82 

and 126.

Nuclei with magic number of neutrons or protons, or both, are found to be particularly 
stable, as can be seen from the following data. 

(i) Figure 3.6. shows the abundance of stable isotones (same N) is particularly large for 
nuclei with magic neutron numbers. 

Figure 3.6. Histogram of stable isotopes showing nuclides with neutron numbers 20, 28, 
50, and 82 are more abundant by 5 to 7 times than those with non-magic neutron numbers 
[from Meyerhof]
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(ii) Figure 3.7. shows that the neutron separation energy Sn is particularly low for nuclei 
with one more neutron than the magic numbers, where 

S
n 

=[M (A −1, Z ) + M
n 

− M (A, Z)]c
2 

3.32

This means that nuclei with magic neutron numbers are more tightly bound. 

Figure 3.7. Variation of neutron separation energy with neutron number of the final 
nucleus M(A,Z) [from Meyerhof].
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(iii) The first excited states of even-even nuclei have higher than usual energies at the 
magic numbers, indicating that the magic nuclei are more tightly bound (see Figure 3.8).

Figure 3.8. First excited state energies of even-even nuclei [from Meyerhof]

(iv) The neutron capture cross sections for magic nuclei are small, indicating a wider 
spacing of the energy levels just beyond a closed shell, as shown in Figure 3.9.

Figure 3.9. Cross section for capture at 1 MeV [from Meyerhof].
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The Closed Shells
The first task in the construction of the shell model is the explanation of the magic 
numbers. In the independent single-particle (shell) model it is assumed that the nucleons 
move independently in a common (overall) nuclear field whose potential is determined 
by the average motion of all the other (A-1) nucleons. The (central) potential is assumed 
to be proportional to the nuclear density distribution which in turn is approximately the 
same as the charge distribution.

The spherical nuclei, the charge distribution can be represented to a first approximation 
by the Fermi distribution. Therefore it is appropriate to start the investigation of the 
single - particle levels by using a potential that has the form of an attractive Fermi 
distribution.

The Schrödinger equation for such a potential can not be solved in closed form. The 
realistic potential is consequently replaced by approximate ones that can be treated easily, 
either a square well or a harmonic oscillator potential.

Simple Shell Model 
The basic assumption of the shell model is that the effects of internuclear interactions can 
be represented by a single-particle potential. One might think that with very high density 
and strong forces, the nucleons would be colliding all the time and therefore cannot 
maintain a single-particle orbit. But, because of Pauli exclusion the nucleons are 
restricted to only a limited number of allowed orbits. A typical shell-model potential is

]/)exp[(1
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aRr
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
 3.33

where typical values for the parameters are Vo ~ 57 Mev, R ~ 1.25A
1/3 

F, a ~ 0.65 F. In 
addition one can consider corrections to the well depth arising from (i) symmetry energy 
from an unequal number of neutrons and protons, with a neutron being able to interact 
with a proton in more ways than n-n or p-p (therefore n-p force is stronger than n-n and 
p-p), and (ii) Coulomb repulsion. For a given spherically symmetric potential V(r), one
can examine the bound-state energy levels that can be calculated from radial wave 
equation for a particular orbital angular momentum , 
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Figure 3.10 shows the energy levels of the nucleons for an infinite spherical well and a 
harmonic oscillator potential, V (r) = mω 

2 

r 
2 

/ 2 . While no simple formulas can be given 
for the former, for the latter one has the expression

)2/3()2/3(  zyxv nnnvE   3.35
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Where ,..,..,2,1,0,,,,..,..,2,1,0  zyx nnnandv  are quantum numbers. One should notice 

the degeneracy in the oscillator energy levels. The quantum number v can be divided into 
radial quantum number n (1, 2, …) and orbital quantum numbers (0, 1, …) as shown in 
Figure 3.10. One can see from these results that a central force potential is able to account 
for the first three magic numbers, 2, 8, 20, but not the remaining four, 28, 50, 82, 126. 
This situation does not change when more rounded potential forms are used. The 
implication is that something very fundamental about the single-particle interaction 
picture is missing in the description.

Figure 3.10. Energy levels of nucleons in (a) infinite spherical well (range R = 8F) and 
(b) a parabolic potential well. In the spectroscopic notation (n, ), n refers to the number 
of times the orbital angular momentum state has appeared. Also shown at certain levels 
are the cumulative number of nucleons that can be put into all the levels up to the 
indicated level [from Meyerhof]. 

Shell Model with Spin-Orbit Coupling 
It remains for M. G. Mayer and independently Haxel, Jensen, and Suess to show (1949) 
that an essential missing piece is an attractive interaction between the orbital angular 
momentum and the intrinsic spin angular momentum of the nucleon. To take into account 
this interaction we add a term to the Hamiltonian H,

LsrVrV
m

p
H so  )()(

2

2

3.36

where Vso is another central potential (known to be attractive). This modification means 
that the interaction is no longer spherically symmetric; the Hamiltonian now depends on 
the relative orientation of the spin and orbital angular momenta. It is beyond the scope of 



45

this class to go into the bound-state calculations for this Hamiltonian. In order to 
understand the meaning of the results of such calculations (eigenvalues and 
eigenfunctions) we need to digress somewhat to discuss the addition of two angular 
momentum operators. 

The presence of the spin-orbit coupling term in (3.36) means that we will have a different 
set of eigenfunctions and eigenvalues for the new description. What are these new 
quantities relative to the eigenfunctions and eigenvalues we had for the problem without 
the spin-orbit coupling interaction? We first observe that in labeling the energy levels in 
Fig. 9.5 we had already taken into account the fact that the nucleon has an orbital angular 
momentum (it is in a state with a specified ), and that it has an intrinsic spin of ½ (in 
unit of ). For this reason the number of nucleons that we can put into each level has 
been counted correctly. For example, in the 1s ground state one can put two nucleons, for 
zero orbital angular momentum and two spin orientations (up and down).

The student can verify that for a state of given , the number of nucleons that can go into 
that state is 2(2 +1). This comes about because the eigenfunctions we are using to 
describe the system is a representation that diagonalizes the square of the orbital angular 
momentum operator L

2

, its z-component, Lz, the square of the intrinsic spin angular 
momentum operator S

2

, and its z-component Sz. Let us use the following notation to label 
these eigenfunctions (or representation),

sl m
s

m
lsl Ymsml ,,, 3.37

Where lm
lY  is the spherical harmonic. It is the eigenfunction of the square of the orbital 

angular momentum operator L2 (it is also the eigenfunction of Lz). The function sm
s is 

the spin eigenfunction with the expected properties,
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The properties of χ
s 

with respect to operations by S
2 

and Sz completely mirror the 

properties of Y


m
l with respect to L

2 

and Lz. Going back to our representation (3.37) we see 
that the eigenfunction is a “ket” with indices which are the good quantum numbers for 
the problem, namely, the orbital angular momentum and its projection (sometimes called 
the magnetic quantum number m, but here we use a subscript to denote that it goes with 
the orbital angular momentum), the spin (which has the fixed value of ½) and its 
projection (which can be +1/2 or -1/2). 

The representation given in (3.37) is no longer a good representation when the spin-orbit 
coupling term is added to the Hamiltonian. It turns out that the good representation is just 
a linear combination of the old representation. It is sufficient for our purpose to just know 
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this, without going into the details of how to construct the linear combination. To 
understand the properties of the new representation we now discuss angular momentum 
addition.

The two angular momenta we want to add are obviously the orbital angular momentum 
operator L and the intrinsic spin angular momentum operator S, since they are the only 
angular momentum operators in our problem. Why do we want to add them? The reason 
lies in (3.36). Notice that if we define the total angular momentum as 

LSj  3.40

We can then write

2/)( 222 LSjLS  3.41

so the problem of diagonalizing (3.36) is the same as diagonalizing j
2

, S
2

, and L
2

. This is 
then the basis for choosing our new representation. In analogy to (3.37) we will denote 

the new eigenfunctions by lsjm j , which has the properties 

sljsllsjmjjlsjmj jj  ,.........)1( 22  3.42

jmjlsjmmlsjmj jjjjz  ,......... 3.43

,...,.....2,1,0,.........)1( 22  llsjmlllsjmL jj  3.44

2
122 ,.........)1(  slsjmsslsjmS jj  3.45

In (3.42) we indicate the values that j can take for given and s (=1/2 in our discussion), 
the lower (upper) limit corresponds to when S and L are antiparallel (parallel) as shown 
in the sketch.

Returning now to the energy levels of the nucleons in the shell model with spin-orbit 
coupling we can understand the conventional spectroscopic notation where the value of j 
is shown as a subscript.

This is then the notation in which the shell-model energy levels are displayed in Figure
3.11.
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Figure 3.11. Energy levels of nuclei in a smoothly varying potential well with a strong 
spin-orbit coupling term [from Meyerhof].

For a given ( n,, j ) level, the nucleon occupation number is 2j+1. It would appear that 
having 2j+1 identical nucleons occupying the same level would violate the Pauli 
exclusion principle. But this is not the case since each nucleon would have a distinct 
value of mj (this is why there are 2j+1 values of mj for a given j). 

We see in Figure 3.11 the shell model with spin-orbit coupling gives a set of energy 
levels having breaks at the seven magic numbers. This is considered a major triumph of 
the model, for which Mayer and Jensen were awarded the Noble prize in physics. For our 
purpose we will use the results of the shell model to predict the ground-state spin and 
parity of nuclei. Before going into this discussion we leave the student with the following 
comments.

1. The shell model is most useful when applied to closed-shell or near closed-shell nuclei. 
2. Away from closed-shell nuclei collective models taking into account the rotation and 
vibration of the nucleus are more appropriate. 
3. Simple versions of the shell model do not take into account pairing forces, the effects 
of which are to make two like-nucleons combine to give zero orbital angula momentum. 
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4. Shell model does not treat distortion effects (deformed nuclei) due to the attraction 
between one or more outer nucleons and the closed-shell core. When the nuclear core is 
not spherical, it can exhibit “rotational” spectrum. 

Prediction of Ground-State Spin and Parity 
There are three general rules for using the shell model to predict the total angular 
momentum (spin) and parity of a nucleus in the ground state. These do not always work, 
especially away from the major shell breaks. 

1. Angular momentum of odd-A nuclei is determined by the angular momentum of the 
last nucleon in the species (neutron or proton) that is odd. 
2. Even-even nuclei have zero ground-state spin, because the net angular momentum 
associated with even N and even Z is zero, and even parity. 
3. In odd-odd nuclei the last neutron couples to the last proton with their intrinsic spins in 
parallel orientation.

To illustrate how these rules work, we consider an example for each case. Consider the 
odd-A nuclide Be

9 

which has 4 protons and 5 neutrons. With the last nucleon being the 
fifth neutron, we see in Fig. 9.6 that this nucleon goes into the state 1p

3/2 
( =1, 

j=3/2). Thus we would predict the spin and parity of this nuclide to be 3/2
-

. For an even-
even nuclide we can take A

36

, with 18 protons and neutrons, or Ca
40

, with 20 protons and 
neutrons. For both cases we would predict spin and parity of 0

+

. For an odd-odd nuclide 
we take Cl

38

, which has 17 protons and 21 neutrons. In Figure 3.11 we see that the 17
th 

proton goes into the state 1d
3/2 

( =2, j=3/2), while the 21
st 

neutron goes into the state 

1 f
7/2 

( =3, j=7/2). From the and j values we know that for the last proton the orbital 

and spin angular momenta are pointing in opposite direction (because j is equal to -1/2). 
For the last neutron the two momenta are pointing in the same direction (j = +1/2). Now 
the rule tells us that the two spin momenta are parallel, therefore the orbital angular 
momentum of the odd proton is pointing in the opposite direction from the orbital angular 
momentum of the odd neutron, with the latter in the same direction as the two spins. 
Adding up the four angular momenta, we have +3+1/2+1/2-2 = 2. Thus the total angular 
momentum (nuclear spin) is 2. What about the parity? The parity of the nuclide is the 
product of the two parities, one for the last proton and the other for the last neutron. 
Recall that the parity of a state is determined by the orbital angular momentum quantum 
number , π= (−1)



. So with the proton in a state with = 2, its parity is even, while the 
neutron in a state with = 3 has odd parity. The parity of the nucleus is therefore 
odd. Our prediction for Cl

38 

is then 2
-

. The student can verify, using for example the 
Nuclide Chart, the foregoing predictions are in agreement with experiment. 

Potential Wells for Neutrons and Protons 
We summarize the qualitative features of the potential wells for neutrons and protons. If 
we exclude the Coulomb interaction for the moment, then the well for a proton is known 
to be deeper than that for a neutron. The reason is that in a given nucleus usually there are 
more neutrons than protons, especially for the heavy nuclei, and the n-p interactions can 
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occur in more ways than either the n-n or p-p interactions on account of the Pauli 
exclusion principle. The difference in well depth ∆V

s 
is called the symmetry energy; it is 

approximately given by 

MeV
A

ZN
Vs

)(
27


 3.46

where the (+) and (-) signs are for protons and neutrons respectively. If we now consider 
the Coulomb repulsion between protons, its effect is to raise the potential for a proton. In 
other words, the Coulomb effect is a positive contribution to the nuclear potential which 
is larger at the center than at the surface. Combining the symmetry and the Coulomb 
effects we have a sketch of the potential for a neutron and a proton as indicated in Figure 
3.12. 

Figure 3.12. Schematic showing the effects of symmetry and Coulomb interactions on the 
potential for a neutron and a proton [from Marmier and Sheldon].

One can also estimate the well depth in each case using the Fermi Gas model. One 
assumes the nucleons of a fixed kind behave like a fully degenerate gas of fermions 
(degeneracy here means that the states are filled continuously starting from the lowest 
energy state and there are no unoccupied states below the occupied ones), so that the 
number of states occupied is equal to the number of nucleons in the particular nucleus. 
This calculation is carried out separately for neutrons and protons. The highest energy 
state that is occupied is called the Fermi level, and the magnitude of the difference 
between this state and the ground state is called the Fermi energy EF. It turns out that EF 

is proportional to n2/3, where n is the number of nucleons of a given kind, therefore EF 

(neutron) > EF (proton). The sum of EF and the separation energy of the last nucleon 
provides an estimate of the well depth. (The separation energy for a neutron or proton is 
about 8 Mev for many nuclei.) Based on these considerations one obtains the results 
shown in Figure 3.13.
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Figure 3.13. Nuclear potential wells for neutrons and protons according to the Fermi-gas 
model, assuming the mean binding energy per nucleon to be 8 MeV, the mean relative 
nucleon admixture to be N/A  1/1.8m Z/A 1/2.2, and a range of 1.4 F (a) and 1.1 F (b) 
[from Marmier and Sheldon]

We have so far considered only a spherically symmetric nuclear potential well. We know 
there is in addition a centrifugal contribution of the form (1)

2 

/2mr 
2 

and a spin-orbit 
contribution. As a result of the former the well becomes narrower and shallower for the 
higher orbital angular momentum states. Since the spin-orbit coupling is attractive, its 
effect depends on whether S is parallel or anti-parallel to L. The effects are illustrated in 
Figures 3.14 and 3.15. Notice that for = 0 both are absent.

We conclude this lecture with the remark that in addition to the bound states in the 
nuclear potential well there exist also virtual states (levels) which are positive energy 
states in which the wave function is large within the potential well. This can happen if the 
deBroglie wavelength is such that approximately standing waves are formed within the 
well. (Correspondingly, the reflection coefficient at the edge of the potential is large.) A 
virtual level is therefore not a bound state; on the other hand, there is a non-negligible 
probability that inside the nucleus a nucleon can be found in such a state. See Figure 
3.16. 
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Figure 3.14. Energy levels and wave functions for a square well for l = 0, 1, 2, and 3 
[from Cohen].
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Figure 3.15. The effect of spin-orbit interaction on the shell-model potential [from 
Cohen]

Figure 3.16. Schematic representation of nuclear levels [from Meyerhof].
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SUMMARY

 We have seen that the liquid drop model allows a reasonably 
good descriptions of the binding energy. It also gives a 
qualitative explanation for spontaneous fission. 

 The Fermi gas model, assuming a simple 3D square well 
potential (different for protons and neutrons) explained the 
terms in the semi-empirical mass formula that were not derived 
from the liquid drop picture.

 We’ve also seen that nucleons can move freely inside the 
nucleus. This agrees with the idea that they experience an 
overall effective potential created by the sum of the other 
nucleons. 

 We have also looked at further experimental evidence, that the 
Fermi gas model cannot explain and we have invoked the shell 
model to explain them. The Shell Model has explained the 
existence of magic number nuclei as evidence of the existence 
of nuclear shell structures..

   EXERCISE 3

4. List the analogies between liquid drop and a nucleus.
5. What are the main assumptions on which the Fermi gas model is 

based?
6. What are magic numbers? Give three examples of ‘doubly-

magic’ nuclei.
7. What are the predictions of the nuclear shell model on the 

ground state values angular momentum and parity of nuclei?
8. Using the shell model predictions, determine the total angular 

momenta and parities for the ground states of 11B5 and 12C6.
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Lecture 4: Radioactivity

Introduction
In previous lectures, we have pointed out that while some nuclei are particularly 
stable many more are not. A nucleus does not remain indefinitely in an unstable state. 
Unstable nuclei have the property of radioactivity, i.e. the property to transform from 
one nuclear state to another in a process that involves emission of radiation. In this 
lecture we will examine the phenomenon called radioactivity and the general 
characteristics of the different types of radioactive decay, as well as establish the 
relationship between radioactive nuclei and their decay products.

4.1. Decay of Unstable Nuclei

A nucleus in an excited state is unstable because it can always undergo a transition 
(decay) to a lower-energy state of the same nucleus. Such a transition will be 
accompanied by the emission of gamma radiation. A nucleus in either an excited or 
ground state also can undergo a transition to a lower-energy state of another nucleus. 
This decay is accomplished by the emission of a particle such as an alpha, electron or 
positron, with or without subsequent gamma emission. A nucleus which undergoes a 
transition spontaneously, that is, without being supplied with additional energy as in 
bombardment, is said to be radioactive. It is found experimentally that naturally 
occurring radioactive nuclides emit one or more of the three types of radiations, α− 
particles, β− particles, and γ− rays. Measurements of the energy of the nuclear 
radiation provide the most direct information on the energy-level structure of 
nuclides.

Radioactivity is the transformation of one nuclear specie into another accompanied
with the emission of radiation. It is a property of some unstable nuclei. It is not a 
process. The transformation can also be referred to as radioactive decay or 
disintegration.

Objectives
At the end of this lecture you should be able to 

1. Explain what we mean by radioactivity
2. Differentiate between stable and unstable/radioactive 

nuclei
3. Define Activity, Half-life, Mean life, and decay constant
4. Give examples of spontaneous and induced radioactivity
5. Derive the decay law
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Radiation
It is a mode of energy transfer through space or materials. Radiation can be ionizing 
or non-ionizing. Ionizing radiation is very energetic and so its able to separate 
electrons from the atoms of materials. They could be particle radiation, e.g. beta 
particle, alpha particle, neutron, etc., or electromagnetic, e.g. gamma and X-rays.

Naturally occurring and Artificially induced radioactivity
Radioactivity can occur naturally (spontaneously) or it can be artificially induced. As 
a rule, natural radioactivity is displayed by the heavy nuclei at the end of the periodic 
table, usually beyond lead, e.g. 238U, 232Th, etc. But there are some naturally light 
nuclei, such as 87Rb, 40K, 14C, 3H, etc. 

Radioactive radionuclides are produced by bombardment of stable nuclei with:
(i) Alpha bombardment, e.g.;

27Al + 4He => 30Si + 1H

(ii) Neutron bombardment, as in the nuclear reactors, e.g.; 
14N + 1n => 14C + 1H
31P + 1n => 32P + 

Importance of some of these artificially produced radio-isotopes will be discussed 
later.

The nucleus that undergoes decay is called PARENT, the intermediate products are 
called DAUGHTERS and the final stable elements are called END PRODUCTS.

NOTE

What is radioactivity?

Radioactivity is a property of unstable nuclei, rather than a 
process. It is the transformation of one nuclear specie into another 
accompanied with emission of ionizing radiation
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4.2. The decay law 

The number of parent nuclei decreases with time due to radioactive decay. If there are 
N untransformed nuclei or atoms at time t, and N-N untransformed nuclei at time 
t+t. The number of nuclei that transform within time t is therefore directly 
proportional to the number of available nuclei (N) and also to the time interval t , 
i.e.:

)()( tNtN   and ttN  )( 4.1

Where  is the proportionality sign. Equation(1) can be re-written as:

ttNtN  )()(   or ttNtN  )()(  4.2

Where  (called decay constant) is the proportionality constant, and it is the 
probability of decay per unit time. The negative sign indicates that the change N(t) is 
a decrease as t increases.

Activity

This the rate of decay or disintegration 
dt

tdN )(
 and it is given by:

)(
)()(
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tN
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






4.3

The S.I unit of activity is Bequerel (Bq). 1 Bq = 1 disintegration per second. The old 
unit is Curie (Ci). 1 Ci = 3.7 x 1010 disintegrations per second.

 
tN

N

dt
N

dN

00



tN
tN

N 0
)(

0

ln 

Where N0 is the initial number of parent nuclei (i.e. at time t = 0). The equation 
reduces to

NOTE

What is radiation?
Radiation is a form of energy transfer through space or material 
medium. Ionizing radiation can be particle or electromagnetic 
wave. Example of particle radiation include alpha, beta, neutron, 
neutrino, and antineutrino, while examples of the electromagnetic 
radiation  include x-ray and gamma-ray.
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t
N

N 








0

ln  or te
N

N 
0

Hence

teNtN  0)( 4.4 

Equation 4.4 is called the exponential decay law.

Half –life (T1/2) 
Decay or disintegration is a statistical or probabilistic process, i.e., it is impossible to 
tell when a particular nucleus/atom will decay. It can however be stated that after a 
certain time interval a certain fraction or percentage of the atoms/nuclei originally 
present in the material would have decayed. The time it takes for half of the atoms 
originally present to decay is called half life. Thus when the number of available 
radioactive atoms, i.e. N(t) is equal to N0/2, t = T1/2. Substituting these into the decay 
law, we obtain a relation between T1/2 and :

2
1

0
0

2
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eN
N 



i.e. 
2
1)

2

1
ln( T  or 
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12ln T

hence 

693.0

2
1 T 4.5

Note that  has dimension of reciprocal of time. Also, the definition of T1/2 does not 
imply that all the nuclei in the sample material will decay in a time equal to two T1/2. 
Rather, after two T1/2, the number of untransformed or undecayed nuclei will be half 
of N0/2, i.e. N0/4.

Mean life ()
In a sample of radioactive materials, the particles live for different times, some longer 
than others. Therefore the actual life time of any particular atom or nucleus can have 
any value between 0 and . The average life of a large number of atoms/nuclei is, 
referred to as mean life () of the sample, can therefore be defined as the average time 
it takes before a typical atom decays. It can also be described as the average of all 
possible life times, i.e.
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Exercise
Derive equation (4.7).

Solution

0

0

0

0

0

0

0

N

tdN

dN

tdN
N

N

N






 4.8

Recall that NdtdN   and teNtN  0)( . This implies that for N(t) = 0, t = ; and 

for N(t) = N0, t = 0. Therefore (4.8) becomes:
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 



 and using the integration-by-parts 

relation, i.e.   vduuvudv , where ut   and dvtde t  )( . Equation (4.7) is 

obtained after applying this relation as well as the limits of integration.

4.3. Decay Series

Radioisotope Production by Bombardment 

There are two general ways of producing radioisotopes, activation by particle or 
radiation bombardment such as in a nuclear reactor or an accelerator, and the decay of 
a radioactive series. Both methods can be discussed in terms of a differential equation 
that governs the number of radioisotopes at time t, N(t). This is a first-order linear 
differential equation with constant coefficients, to which the solution can be readily 
obtained. Although there are different situations to which one can apply this equation, 
the analysis is fundamentally quite straightforward. We will treat the activation 
problem first. Let Q(t), the rate of production of the radioisotope, have the form 
shown in the sketch below. 

This means the production takes place at a constant Qo for a time interval (0, T), after 
which production ceases. During production, t < T, the equation governing N(t) is 

)(
)(

tNQ
dt

tdN
o  4.9
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Because we have an external source term, the equation is seen to be inhomogeneous. 
The solution to (4.9) with the initial condition that there is no radioisotope prior to 
production, N(t = 0) = 0, is 

Tte
Q

tN to   ),...,1()( 


4.10

For t>T, the governing equation is (4.9) without the source term. The solution is  

)()1()( TtTo ee
Q

tN  


4.11

A sketch of the solutions (4.10) and (4.11) is shown in Figure 4.1. One sees a build up 
of N(t) during production which approaches the asymptotic value of Qo/ λ , and after 
production is stopped N(t) undergoes an exponential decay, so that if λT >>1,

)()( Tto e
Q

tN  


4.12

Figure 4.1. Time variation of number of radioisotope atoms produced at a constant 
rate Qo for a time interval of T after which the system is left to decay

Radioisotope Production in Series Decay 

Radioisotopes also are produced as the product(s) of a series of sequential decays.
Consider the case of a three-member chain;

where λ
1 
and λ

2 
are the decay constants of the parent (N1) and the daughter (N2) 

respectively. The governing equations are:

)(
)(

11
1 tN

dt

tdN
 4.13
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)()(
)(

2211
2 tNtN

dt

tdN
  4.14

)(
)(

22
3 tN

dt

tdN
 4.15

For the initial conditions we assume there are N1,0 nuclides of species 1 and no 
nuclides of species 2 and 3. The solutions to (4.13) – (4.15) are

teNtN 1
0,11 )(  4.16

)()( 21

12

1
0,12

tt eeNtN 
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  


 4.17
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
  tt ee

NtN 4.18

Equations (12.16) through (12.18) are known as the Bateman equations. One can use 
them to analyze situations when the decay constants λ

1 
and λ

2 
take on different 

relative values. We consider two such scenarios, the case where the parent is short-
lived, λ

1 
>> λ

2
 and the opposite case where the parent is long- lived, λ

2 
>> λ

1
. 

One should notice from (4.13) – (4.15) that the sum of these three differential 
equations is zero. This means that N1(t) + N2(t) + N3(t) = constant for any t. We also 
know from our initial conditions that this constant must be N1,0. One can use this 
information to find N3(t) given N1(t) and N2(t), or use this as a check that the solutions 
given by (4.16) – (4.18) are indeed correct.

Series Decay with Short-Lived Parent 
In this case one expects the parent to decay quickly and the daughter to build up 
quickly. The daughter then decays more slowly which means that the grand daughter 
will build up slowly, eventually approaching the initial number of the parent. Figure
4.2 shows schematically the behavior of the three isotopes. The initial values of N2(t) 
and N3(t) can be readily deduced from an examination of (4.17) and (4.18).
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Figure 4.2. Time variation of a three member decay chain for the case 21   .

Series Decay with Long-Lived Parent 

When λ
1 

<< λ
2 

, we expect the parent to decay slowly so the daughter and grand 

daughter will build up slowly. Since the daughter decays quickly the long-time 
behavior of the daughter follows that of the parent. Figure 4.3 shows the general 
behavior of the radioisotopes.

Figure 4.3. Time variation of a three-member chain with a long-lived parent

In this case we find teNtN 


 

2

1
0,12 )(  or )()( 1122 tNtN   . The condition  of 

approximately equal activities is called secular equilibrium. Generalizing this to an 
arbitrary chain, we can say for the series 

........321  NNN

If ,......., 1312    then ......332211  NNN 
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This condition can be used to estimate the half life of a very long-lived radioisotope. 

An example is U
238 

whose half life is so long that it is difficult to determine by directly 

measuring its decay. However, it is known that U
238 

→ Th
234 

→ … → Ra
226 

→ …, and in 

uranium mineral the ratio of N(U
238

)/N(Ra
226

) = 2.8 x 10
6 

has been measured, with 

t1/2(Ra
226

) = 1620 yr. Using these data we can write

)(

)(

)(

)(
226

226

238

238

2
1

2
1 Rat

RaN

Ut

UN
 or t

1/ 2
(U 

238

) = 2.8 x 10
6 

x 1620 = 4.5 x 10
9 

yr. 

In so doing we assume that all the intermediate decay constants are larger than that of 

U
238

. It turns out that this is indeed true, and that the above estimate is a good result. 

For an extensive treatment of radioactive series decay, the student should consult the 

atomic nucleus by Evans.

SUMMARY

In this lecture we have:
1 Explained what we mean by radioactivity;
2 Differentiate between stable and unstable/radioactive 

nuclei;
3 Defined some terms including Activity, Half-life, Mean 

life, and decay constant;
4 Given examples of spontaneous and induced radioactivity;
5 Derived the decay law;
6 Explain the relationship between radioactive parents and 

progenies in decay series.
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   EXERCISE 4

1. The activity of a radioisotope is found to decrease by 30% in 1 wk. 
What are the values of its (a) decay constant, (b) half-life (c) mean life?

2. What percentage of the original activity of a radionuclide remains 
after (a) 5 half-lives (b) 10 half-lives?

3. The isotope 132I decays by β– emission into stable 132Xe with a half-
life of 2.3 h (a) How long will it take for 78% of the original 132I atoms 
to decay? (b) How long it will take for a sample of 132I to lose 95% of its
activity?

4. A radioactive sample consists of a mixture of 35S and 32P. Initially, 
5% of the activity is due to the 35S and 95% to the 32P. At what 
subsequent time will the activities of the two nuclides in the sample be 
equal?
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Lecture 5: Applications of Nuclear Physics

Introduction
In this lecture we will consider some of the ways in which the nucleus affects our 
lives and the world around us. Its most important role is an indirect one as the center 
of the atom; its electric charge determines the number of electrons it attracts to form 
atoms, which in turn determines all chemical behaviour and physical properties of 
materials. However, there are several areas in which the structure of the nucleus, its 
decay properties, and the reactions it undergoes have a direct and controlling 
influence. These include the production of energy in stars, the origin of the elements 
(nucleosynthesis), the development of energy sources to power our technological 
civilization, and a wide variety of uses for radioactivity. These form the subject of this 
chapter. 

5.1. Tracer Techniques

Radio-isotopes are widely used as tracers. The radioactivity of a nuclide is not 
affected by the chemical and physical properties of the matrix containing it, e.g., the 
radioactivity in 24Na is not destroyed by forming a compound such as 24NaCl (salt), 
nor is it destroyed by dissolving it in water or adding it to cooking soup. Therefore the 
presence of radioactive isotopes in compounds can be traced as they pass through 
matter. Such (tracer) methods are used in industry, agriculture, medicine, 
environmental studies, etc.

Uses in industry
Beta emitters are used as thickness gauges in the manufacture of paper, plastics, 
linoleum, etc. The beta emitter is placed below the material and a detector, e.g., a 
Geiger-Muller detector is placed above the material. The flux or intensity of the 
radiation from the source is attenuated as it passes though the material, and the thicker 
the material the more the attenuation. Therefore, the intensity of radiation reaching the 

Objectives
At the end of this lecture you should be able to 

1. List some of the major applications of Nuclear Physics
2. Describe at least one application of nuclear physics in each 

of the following areas; medicine, power production, 
agriculture, industry

3. Give some examples of the dangers posed to the world by 
negative applications of nuclear physics 
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detector is inversely proportional to the thickness of the material. The detector can be 
calibrated such that its count-rate is read in thickness directly. 

Radiation sources are also used as level indicators in automatic control of 
manufacturing process, e.g., to check the filling of toothpaste tubes, cement bags, 
powder soap packets, etc.

Uses in agriculture
Phosphorous is an essential element in any fertilizer. Uptake of phosphorous by 
growing plants from soil or manure can be studied by labeling the fertilizer with the 
radioactive isotope 32P and its uptake is followed through the root system to the 
foliage by means of a radiation décor (e.g. Geiger Muller  tube). This method has 
been used to find out whether a plant require root or foliage feeding.

Carbon-14 is also used to study the kinetics of plant photosynthesis. It has been 
shown that, by growing plants in controlled atmosphere containing 14CO2, it is 
possible to understand thoroughly the complicated biochemical reactions involved in 
photosynthesis.

5.2. Diagnostic and Therapeutic Applications (uses in Medicine)

Na-24, as soluble 24NaCl, is used to study the flow dynamics of the body. If 
radioactive sodium is injected at one end of the body it can be detected within a few 
seconds at the other extreme end. The flow of blood can therefore be followed and 
any constrictions in blood vessels can be readily detected. 24Na is short-lived, 
transforming to stable 24Mg.

I-131 is known to accumulate in the thyroid gland and in the brain. It is a -emitter 
and therefore it is useful in locating deep-seated disorders such as brain tumors and 
malignant thyroid tumors.

REFERENCES

1. W. E. Meyerhof, Elements of Nuclear Physics (McGraw-Hill, New 
York, 1967)

2. R. D. Evans, The Atomic Nucleus (McGraw-Hill, New York, 1955).
3. MIT Applied Nuclear Physics Lecture 10 (Nuclear Shell Model)   
2006
3. P. Marmier and E. Sheldon, Physics of Nuclei and Particles 
(Academic Press, New York, 1969), vol. II, Chap.15.2. 
4. Bernard L. Cohen, Concepts of Nuclear Physics (McGraw-Hill, 
New York, 1971). 



67

Lecture 6: Introduction to Radiation Protection and Dosimetry

Introduction

The importance of nuclear radiation in our everyday life has exposed the human and 
the non-human species of the environment to various levels of the radiation. It is 
therefore important to be aware of the likely effects of nuclear radiation on matter 
(Biological matter), and the need for regulation and control in applications of nuclear 
physics. Radiation dosimetry is a subject dedicated to the quantification of radiation 
interaction with matter – particularly in the living matters. The aim of radiation 
dosimetry is to protect living matter from damaging effects of radiation, i.e. Radiation 
Protection. This will be the subject of this lecture, but we will start with the 
quantifications of radiation in matter.

6.1. Definitions of Dosimetric Quantities

Exposure (X)
Exposure is defined for gamma and X rays in terms of the amount of ionization they 
produce in air. The unit of exposure is called the roentgen (R) and was introduced at 
the Radiological Congress in Stockholm in 1928. It was originally defined as that 
amount of gamma or X radiation that produces in air 1 esu of charge of either sign per 
0.001293 g of air. (This mass of air occupies 1 cm3 at standard temperature and 
pressure.) The charge involved in the definition of the roentgen includes both the ions 
produced directly by the incident photons as well as ions produced by all secondary 
electrons. Since 1962, exposure has been defined by the International Commission on 
Radiation Units and Measurements (ICRU) as the quotient Q/m, where Q is the 
sum of all charges of one sign produced in air when all the electrons liberated by 
photons in a mass m of air are completely stopped in air. The unit roentgen is now 
defined as

1 R = 2.58×10–4 Ckg–1. 6.1

Objectives
At the end of this lecture you should be able to 

1. Define dosimetric quantities, such as dose, dose rate, 
exposure, absorbed dose, dose equivalent, effective dose, 
etc.

2. Give examples of external and internal exposures to 
radiation

3. Differentiate between deterministic and stochastic effects 
of radiation

4. List the basic elements of radiation protection 
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The concept of exposure applies only to electromagnetic radiation; the charge and
mass used in its definition, as well as in the definition of the roentgen, refer only to 
air.

Example
Show that 1 esu cm–3 in air at STP is equivalent to the definition (6.1) of 1 R of
exposure.

Solution
Since the density of air at STP is 0.001293 g cm–3 and 1 esu = 3.34×10–10 C, we have
1 esu/cm3 = (3.34×10–10 C)/ (0.001293 g × 10–3 kg g–1) = 2.58×10–4 Ckg–1.

Absorbed dose (D)
The concept of exposure and the definition of the roentgen provide a practical, 
measurable standard for electromagnetic radiation in air. However, additional 
concepts are needed to apply to other kinds of radiation and to other materials, 
particularly tissue. The primary physical quantity used in dosimetry is the absorbed 
dose. It is defined as the energy absorbed per unit mass from any kind of ionizing 
radiation in any target. The unit of absorbed dose, J kg–1, is called the gray (Gy). The 
older unit, the rad, is defined as 100 erg g–1. It follows that

1 Gy ≡ 1 J kg-1 = 107 erg /103 g1 = 104 erg g-1 = 100 rad. 6.2

The absorbed dose is often referred to simply as the dose. It is treated as a point
function, having a value at every position in an irradiated object. One can compute the 
absorbed dose in air when the exposure is 1 R. Photons produce secondary electrons 
in air, for which the average energy needed to make an ion pair is W = 34 eV per ion 
pair = 34 JC–1. Using a more precise W value) one finds

1 R= 2.58 × 10–4 C/kg × 33.97 J/C = 8.76 × 10–3 Jkg–1. 6.3

Thus, an exposure of 1 R gives a dose in air of 8.76 × 10–3 Gy (= 0.876 rad).
Calculations also show that a radiation exposure of 1 R would produce a dose of 9.5 × 
10–3 Gy (= 0.95 rad) in soft tissue. This unit is called the rep (“roentgen equivalent-
physical”) and was used in early radiation-protection work as a measure of the change 
produced in living tissue by radiation. The rep is no longer employed.

NOTE

Exposure is a measure of the ability of photons to cause ionization 
in air. It is defined as the sum of the charge of one sign (+ or -) 
produced by photon irradiation per unit mass of air. The traditional 
unit of exposure is the Roentgen (R). No new unit for exposure, 
although Coulomb/kg is sometime applicable. The use of exposure 
has since been de-emphasized.
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Absorbed dose in a medium can also be given in terms of the number of ion pairs 
(ionization) caused:

mass

Nxw
Dose  6.4

Where N = no of ion pairs formed and w = energy required to form 1 ion pair.

Example

A point source of radiation causes ionization at a point in air. Calculate the dose (in 
Gy) at the point in air where the ionization is 2.4 ion pairs per cm3. Take the energy 
required to produce one ion pair as 34 eV and density of air to be 1.29 x 10-3 of dry air 
kg m-3.

Solution 
Equation 6.4 can be rewritten as:

kgJ
x

xxx

volume
mass

wvolume
N

mass

Nxw
Dose /

)1029.1(

)106.134)(104.2()(
3

196







Dose Equivalent (H)

It has long been recognized that the absorbed dose needed to achieve a given level of 
biological damage (e.g., 50% cell killing) is often different for different kinds of 
radiation. Radiation with a high linear energy transfer (LET) is generally more 
damaging to a biological system per unit dose than radiation with a low LET.

To allow for the different biological effectiveness of different kinds of radiation, the 
International Commission on Radiological Protection (ICRP), introduced the concept 
of dose equivalent for radiation-protection purposes. The dose equivalent H is defined 
as the product of the absorbed dose D and a dimensionless quality factor Q, which 
depends on LET:

H= QD. 6.5

In principle, other multiplicative modifying factors can be included along with Q to 
allow for additional considerations (e.g., dose fractionation), but these are not
ordinarily used. Until the 1990 recommendations made in ICRP Publication 60, the 
dependence of Q on LET was defined as given in Table 6.1. Since then, the ICRP has
defined Q in accordance with Table 6.2. In the context of quality factor, LET is the 
unrestricted stopping power, L∞. For incident charged particles, it is the LET of the 
radiation in water, expressed in keV per µm of travel. For neutrons, photons, and 
other uncharged radiation, LET refers to that which the secondary charged particles 
they generate would have in water. Like absorbed dose, dose equivalent is a point 
function. When dose is expressed in Gy, the (SI) unit of dose equivalent is the sievert 
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(Sv). With the dose in rad, the older unit of dose equivalent is the rem (“roentgen-
equivalent man”). Since 1 Gy = 100 rad, 1 Sv = 100 rem.

Table 6.1 Dependence of Quality factor Q on LET of radiation as formerly 
recommended by  ICRP (Turner, 2007)
LET (keV m-1 in water) Q

3.5 or less
3.5 – 7.0
7.0 – 23
23 – 53
53 -175
Gamma rays, X-rays, electrons, positrons 
of any LET

1
1-2
2-5
5-10
10-20

1

Table 6.2 Dependence of Quality factor Q on LET as currently recommended by 
ICRP (Turner, 2007)
LRT, L(keV m-1 in water) Q

<10
10-100
>100

1
0.32L – 2.2
300/L

Dose equivalent has been used extensively in protection programs as the quantity in 
terms of which radiation limits are specified for the exposure of individuals. Dose 
equivalents from different types of radiation are simply additive.

Example
A worker receives a whole-body dose of 0.10 mGy from 2-MeV neutrons. Estimate 
the dose equivalent, based on Table 6.1.

Solution
Most of the absorbed dose is due to the elastic scattering of the neutrons by the
hydrogen in tissue. To make a rough estimate of the quality factor, we first find Q for 
a 1-MeV proton — the average recoil energy for 2-MeV neutrons. The stopping 
power for a 1-MeV proton in water is 270 MeVcm–1 = 27 keV µm–1. Under the 
current recommendations of the ICRP, Q is defined according to Table 6.2. However, 
the older recommendations, which include Table 6.1, are still in effect.

We see from Table 6.1 that an estimate of Q  6 should be reasonable for the recoil
protons. The recoil O, C, and N nuclei have considerably higher LET values, but do 
not contribute as much to the dose as H. (LET is proportional to the square of a
particle’s charge.) Without going into more detail, we take the overall quality factor,
Q  12, to be twice that for the recoil protons alone. Therefore, the estimated dose
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equivalent is H  12 × 0.10 = 1.2 mSv. [The value Q = 10 is obtained from detailed
calculations] We note that Table 6.2 implies a comparable value, Q = 6.4, for the 
protons.

By the early 1990s, the ICRP had replaced the use of LET-dependent quality factors 
by radiation weighting factors, w, specified for radiation of a given type and energy. 
The quantity on the left-hand side of the new equation, H = wD, is then called the 
equivalent dose. In some regulations the older terminology, dose equivalent and 
quality factor, is still employed. However, the latter has come to be specified by 
radiation type and energy, rather than LET.

Equivalent Dose
The equivalent dose, HT,R, in a tissue or organ T due to radiation R, is defined as the 
product of the average absorbed dose, DT,R, in T from R and a dimensionless
radiation weighting factor, wR, for each radiation:

HT,R = wRDT,R. 6.6

The values of wR specified by the ICRP are shown in Table 6.3. When the radiation 
consists of components with different wR, then the equivalent dose in T is given by 
summing all contributions:


R

RTRT DwH , 6.7

With DT,R expressed in Gy (1 Gy = 1 Jkg–1), HT,R and HT are in Sv (1 Sv = 1 Jkg–1).

NOTE
The equivalent dose replaces the dose equivalent for a tissue or organ, defined earlier. 
The two are conceptually different. Whereas dose equivalent in an organ is defined as 
a point function in terms of the absorbed dose weighted by a quality factor 
everywhere, equivalent dose in the organ is given simply by the average absorbed 
dose weighted by the factor wR.

Table 6.3 Radiation weighting factors, wR by ICRP
Radiation wR

- X and gamma rays, electrons, positrons, and muons
- Neutrons, energy <10 keV
       10 keV to 100 keV
       >100 keV to 2 MeV
       > 2 MeV to 20 MeV
       > 20 MeV
- Protons, other than recoil protons and energy > 2 
MeV
- Alpha particles, fission fragments, and nonrelativistic 
heavy nuclei

1
5
10
20
10
5
5

20
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For radiation types and energies not included in Table 6.3, the ICRP give a 
prescription for calculating an approximate value of wR as an average quality factor, 

Q . For this purpose, the quality factor Q is defined in terms of the linear energy 
transfer L by means of Table 6.2, given earlier in the text. One computes the dose–
average value of Q at a depth of 10 mm in the standard tissue sphere of diameter 30 
cm specified by the ICRU. Specifically, at the prescribed depth, one calculates





0

)()(
1

dLLDLQ
D

QwR , 6.8

where D(L)dL is the absorbed dose at linear energy transfer (LET) between L and L + 
dL.

Effective Dose (E)
Since different tissues of the body respond differently to radiation, the probability for 
stochastic effects that result from a given equivalent dose will generally depend upon 
the particular tissue or organ irradiated. To take such differences into account, the 
ICRP assigned dimensionless tissue weighting factors wT, shown in Table 6.4, which 
add to unity when summed over all tissues T. The equivalent dose HT in a given 
tissue, weighted by wT, gives a quantity that is intended to correlate with the overall 
detriment to an individual, independently of T. The detriment includes the different 
mortality and morbidity risks for cancers, severe genetic effects, and the associated 
length of life lost. Table 6.4 implies, for example, that an equivalent dose of 1 mSv to 
the lung entails the same overall detriment for stochastic effects as an equivalent dose 
to the thyroid of (0.12/0.05)×(1 mSv) = 2.4 mSv.

Table 6.4 Tissue weighting factors, wT

Tissue or Organ wT

Gonads
Bone marrow
Colon
Lung
Stomach
Bladder
Breast
Liver
Esophagus
Thyroid
Skin
Bone surface
Remainder*

0.20
0.12
0.12
0.12
0.12
0.05
0.05
0.05
0.05
0.05
0.01
0.01
0.05

* Note: The data refer to a reference population of equal numbers of both sexes and a wide range 
of ages. In the definition of effect dose, they apply to workers, to the whole population, and to 
either sex. The wT are based on rounded values of the organ’s contribution to the total detriment.
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The risk for all stochastic effects for an irradiated individual is represented by the 
effective dose, E, defined as the sum of the weighted equivalent doses over all tissues:


T

TT HwE 6.9

Like HT, E is expressed in Sv. The risk for all stochastic effects is dependent only on
the value of the effective dose, whether or not the body is irradiated uniformly. In the 
case of uniform, whole-body irradiation, HT is the same throughout the body. Then, 
since the tissue weighting factors sum to unity,

  
T T

TTTTT HwHHwE 6.10

the value of the equivalent dose everywhere. The effective dose replaces the earlier
effective dose equivalent. The latter quantity was defined the same way as E in
Equation 6.9, with HT being the organ or tissue dose equivalent.

It should be understood that the procedures embodied in Equation 6.9 have been set
up for use in radiological protection. As the note to Table 6.4 specifies, the values of 
wT are simplified and rounded for a reference population of equal numbers of males 
and females over a wide range of ages. They “should not be used to obtain specific 
estimates of potential health effects for a given individual.”

Committed Equivalent Dose
When a radionuclide is taken into the body, it can become distributed in various
tissues and organs and irradiate them for some time. For the single intake of a
radionuclide at time t0, the committed equivalent dose over a subsequent time τ in an 
organ or tissue T is defined as





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
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t

TT dtHH  6.11

where TH is the equivalent-dose rate in T at time t. Unless otherwise indicated, an
integration time τ = 50 y after intake is implied for occupational use and 70 y for
members of the public.

Committed Effective Dose
By extension, the committed effective dose E(τ ) following the intake of a 
radionuclide is the weighted sum of the committed equivalent doses in the various 
tissues T:


T

TT HwE )()(  6.12

The effective half-life of a radionuclide in a tissue is determined by its radiological 
half-life and its metabolic turnover rate. For radionuclides with effective half-lives of 
no more than a few months, the committed quantities, Eqs. (6.11) and (6.12), are 
practically realized within one year after intake. If a radionuclide is retained in the 
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body for a long time, then the annual equivalent and effective doses it delivers will be 
considerably less than the committed quantities.

The committed effective dose replaces the earlier committed effective dose 
equivalent. The latter is defined like Eq. (6.12), with HT representing the committed 
dose equivalent in the organ or tissue T.

Collective Quantities
The quantities just defined relate to the exposure of an individual person. The ICRP 
has defined other dosimetric quantities that apply to the exposure of groups or 
populations to radiation. The collective equivalent dose and the collective effective
dose are obtained by multiplying the average value of these quantities in a population
or group by the number of persons therein. The collective quantities are then 
expressed in the unit, “person-sievert,” and can be associated with the total
consequences of a given exposure of the population or group. 

The Commission additionally defines collective dose commitments as the integrals 
over infinite time of the average individual TH and E due to a specified event, either 
for a critical population group or for the world population.

Other Dosimetric Concepts and Quantities

Kerma

A quantity related to dose for indirectly ionizing radiation (photons and neutrons) is 
the initial kinetic energy of all charged particles liberated by the radiation per unit 
mass. This quantity, which has the dimensions of absorbed dose, is called the kerma 
(Kinetic Energy Released per unit mass). By definition, kerma includes energy that 
may subsequently appear as bremsstrahlung and it also includes Auger-electron 
energies. The absorbed dose generally builds up behind a surface irradiated by a beam 
of neutral particles to a depth comparable with the range of the secondary charged 
particles generated. The kerma, on the other hand, decreases steadily because of the
attenuation of the primary radiation with increasing depth. The two are identical as 
long as all of the initial kinetic energy of the recoil charged particles can be 
considered as being absorbed locally at the interaction site. Specifically, kerma and 
absorbed dose at a point in an irradiated target are equal when charged-particle 
equilibrium exists there and bremsstrahlung losses are negligible. It is often of interest 
to consider kerma or kerma rate for a specific material at a point in free space or in 
another medium. The specific substance itself need not actually be present. Given the 
photon or neutron fluence and energy spectra at that point, one can calculate the 
kerma for an imagined small amount of the material placed there. It is thus convenient 
to describe a given radiation field in terms of the kerma in some relevant, or 
reference, material. For example, one can specify the air kerma at a point in a water 
phantom or the tissue kerma in air. Additional information on kerma can be found in 
the references listed at the end of the lecture.
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6.2 Biological Effects of Radiation

The process of ionization charges atoms and molecules. In cells, some of the initial 
changes may have both short and long-term consequences. Cellular damages as a 
result of irradiation (ionization) may lead to cell’s death, its impairment to reproduce, 
or its modification. These outcomes have profoundly differently implications for the 
organism as a whole.

It is generally assumed that biological effects on the cell result from both direct and 
indirect action of radiation. Direct effects are produced by the initial action of the 
radiation itself and indirect effects are caused by the later chemical action of free 
radicals and other radiation products. An example of a direct effect is a strand break in 
DNA caused by an ionization in the molecule itself. An example of an indirect effect 
is a strand break that results when an OH radical attacks a DNA sugar at a later time 
(between about 10–12 s and about 10–9 s). 

Depending on the dose, kind of radiation, and observed endpoint, the biological
effects of radiation can differ widely. Some occur relatively rapidly while others may 
take years to become evident. Table 6.3 (13.1) includes a summary of the time scale
for some important biological effects caused by ionizing radiation. Probably by about 
10–3 s, radicals produced by a charged-particle track in a biological system have all 
reacted. Some biochemical processes are altered almost immediately, in less than 
about 1 s. Cell division can be affected in a matter of minutes. In higher organisms, 
the time at which cellular killing becomes expressed as a clinical syndrome is related 
to the rate of cell renewal. Following a large, acute, whole-body dose of radiation, 
hematopoietic death of an individual might occur in about a month. A higher dose 
could result in earlier death (1 to 2 wk) from damage to the gastrointestinal tract. At 
still higher doses, in the range of 100 Gy, damage to membranes and to blood vessels 
in the brain leads to the cerebrovascular syndrome and death within a day or two. 
Other kinds of damage, such as lung fibrosis, for example, may take several months to 
develop. Cataracts and cancer occur years after exposure to radiation. Genetic effects, 
by definition, are first seen in the next or subsequent generations of an exposed 
individual.

Classification of Radiation effects

The biological effects of radiation can be divided into two general categories, 
stochastic and deterministic, or nonstochastic. 

Stochastic effects
As the name implies, stochastic effects are those that occur in a statistical manner. 
Cancer is one example. If a large population is exposed to a significant amount of a 
carcinogen, such as radiation, then an elevated incidence of cancer can be expected. 
Although we might be able to predict the magnitude of the increased incidence, we 
cannot say which particular individuals in the population will contract the disease and 
which will not. Also, since there is a certain natural incidence of cancer without 
specific exposure to radiation, we will not be completely certain whether a given case 
was induced by or would have occurred without the exposure. In addition, although 
the expected incidence of cancer increases with dose, the severity of the disease in a 
stricken individual is not a function of dose. 
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Stochastic effects of radiation have been demonstrated in man and in other organisms
only at relatively high doses, where the observed incidence of an effect is not likely 
due to a statistical fluctuation in the normal level of occurrence. At low doses, one 
cannot say with certainty what the risk is to an individual. As a practical hypothesis, 
one usually assumes that any amount of radiation, no matter how small, entails some 
risk. However, there is no agreement among experts on just how risk varies as a 
function of dose at low doses.

Deterministic effects
In contrast, deterministic effects are those that show a clear causal relationship 
between dose and effect in a given individual. Usually there is a threshold below 
which no effect is observed, and the severity increases with dose. Skin reddening is an 
example of a deterministic effect of radiation. Other examples include blistering, loss 
of skin surface, induction of opacities in the lens and visual impairment (cataract); 
inflammation of organs, death; mental retardation in case of exposure in uterus.

6.3. Basics of Radiation Protection
Man benefits greatly from the use of X rays, radioisotopes, and fissionable materials
in medicine, industry, research, and power generation. However, the realization of 
these gains entails the routine exposure of persons to radiation in the procurement and 
normal use of sources as well as exposures from accidents that might occur. Since any 
radiation exposure presumably involves some risk to the individuals involved, the 
levels of exposures allowed should be worth the result that is achieved. 

In principle, therefore, the overall objective of radiation protection is to balance the 
risks and benefits from activities that involve radiation. If the standards are too lax, 
the risks may be unacceptably large; if the standards are too stringent, the activities 
may be prohibitively expensive or impractical, to the overall detriment to society.

The balancing of risks and benefits in radiation protection cannot be carried out in an 
exact manner. The risks from radiation are not precisely known, particularly at the 
low levels of allowed exposures, and the benefits are usually not easily measurable
and often involve matters that are personal value judgments. Because of the existence 
of legal radiation-protection standards, in use everywhere, their acceptance rests with 
society as a whole rather than with particular individuals or groups. Even if the risks 
from low-level radiation were established quantitatively on a firm scientific basis, the 
setting of limits would still represent a social judgment in deciding how great a risk to 
allow. The setting of highway speed limits is an example of such a societal decision—
one for which extensive quantitative data are available at the levels of risk actually 
permitted and accepted.

The specific objectives of radiation protection are:

(1) to prevent the occurrence of clinically significant radiation-induced deterministic 
effects by adhering to dose limits that are below the apparent threshold levels and
(2) to limit the risk of stochastic effects, cancer and genetic effects, to a reasonable
level in relation to societal needs, values, benefits gained and economic factors.
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Elements of Radiation-Protection Programs
Different uses of ionizing radiation warrant the consideration of different exposure
guidelines. Medical X rays, for example, are generally under the control of the
physician, who makes a medical judgment as to their being warranted. Specific
radiation-protection standards, such as those recommended by the International
Commission on Radiological Protection (ICRP), have been traditionally applied to the 
“peaceful uses of atomic energy,” the theory being that these activities justify the 
exposure limits being specified. In contrast, different exposure criteria might be 
appropriate for military or national-defense purposes or for space exploration, where 
the risks involved and the objectives are of an entirely different nature than those for 
other uses of radiation.

The maximum levels of exposure permitted are deemed acceptable in view of the 
benefits to mankind, as judged by various authorities and agencies who, in the end, 
have the legal responsibility for radiation safety. Since, in principle, the benefits 
justify the exposures, the limits apply to an individual worker or member of the public 
independently of any medical, dental, or background radiation exposure he or she 
might receive.

Different permissible exposure criteria are usually applied to different groups of
persons. Certain levels are permitted for persons who work with radiation. These
guidelines are referred to as “occupational” or “on-site” radiation-protection 
standards. Other levels, often one-tenth of the allowable occupational values, apply to
members of the general public. These are referred to as “non-occupational” or 
“offsite” guides. Several philosophical distinctions can be drawn in setting 
occupational and nonoccupational standards. In routine operations, radiation workers 
are exposed in ways that they and their employers have some control over. The 
workers are also compensated for their jobs and are free to seek other employment. 
Members of the public, in contrast, are exposed involuntarily to the gaseous and 
liquid effluents that are permitted to escape from a site where radioactive materials 
are handled. In addition, off-site exposures usually involve a larger number of persons
as well as individuals in special categories of concern, such as children and pregnant
women. (Special provisions are also made for occupational radiation exposure of 
women of child-bearing age.)

On a worldwide scale, the potential genetic effects of radiation have been addressed in 
setting radiation standards. Exposure of a large fraction of the world’s population to 
even a small amount of radiation represents a genetic risk to mankind that can be 
passed on indefinitely to succeeding generations. In contrast, the somatic risks are 
confined to the persons actually exposed.

An essential facet of the application of maximum permissible exposure levels to 
radiation-protection practices is the ALARA (as low as reasonably achievable)
philosophy. The ALARA concept gives primary importance to the principle that
exposures should always be kept as low as practicable. The maximum permissible
levels are not to be considered as “acceptable,” but, instead, they represent the levels
that should not be exceeded.

Another consideration in setting radiation-protection standards is the degree of control 
or specificity that the criteria may require. The ICRP has generally made 
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recommendations for the limits for individual workers or members of other groups in 
a certain length of time, for example, a year or three months. Without requiring the 
specific means to achieve this end, the recommendations allow maximum flexibility 
in their application. Many federal and international agencies, however, have very 
specific regulations that must be met in complying with the ICRP limits.

Occupational Limits
The ICRP recommends occupational annual effective-dose limit of 50 mSv. However, 
its cumulative limit is different, being simply 100 mSv in any consecutive 5-y period.

For preventing deterministic effects, the ICRP recommends the following annual 
occupational equivalent-dose limits: 150 mSv for the crystalline lens of the eye and 
500 mSv for localized areas of the skin, the hands, and feet. The limits for 
deterministic effects apply irrespective of whether one or several areas or tissues are 
exposed.

Nonoccupational Limits
Historically, limits for nonoccupational exposures have been one-tenth those for 
occupational exposures. That practice continues. The following recommendations for 
the exposure of an individual to man-made sources (natural background and medical
exposures are not to be included) apply:

For continuous (or frequent) exposure, it is recommended that the annual effective 
dose not exceed 1 mSv. Furthermore, a maximum annual effective dose limit of 5 
mSv is recommended to provide for infrequent annual exposures.

For deterministic effects, the recommendations in ICRP Publication 60 are: An 
individual annual effective dose limit of 1 mSv is also set for nonoccupational 
exposures. There is a proviso that a higher annual limit may be applied, if the annual
average over 5 y does not exceed 1 mSv.

Principle of External Radiation Protection

We now describe procedures for limiting the dose received from radiation sources
outside the human body. There are other procedures for limiting dose received from 
radionuclides that can enter the body.

Distance, Time, and Shielding
In principle, one’s dose in the vicinity of an external radiation source can be reduced
by increasing the distance from the source, by minimizing the time of exposure, and 
by the use of shielding. Distance is often employed simply and effectively. For 
example, tongs are used to handle radioactive sources in order to minimize the dose to 
the hands as well as the rest of the body. Limiting the duration of an exposure 
significantly is not always feasible, because a certain amount of time is usually 
required to perform a given task. Sometimes, though, practice runs beforehand
without the source can reduce exposure times when an actual job is carried out.

While distance and time factors can be employed advantageously in external radiation
protection, shielding provides a more reliable way of limiting personnel exposure by 
limiting the dose rate. In principle, shielding alone can be used to reduce dose rates to 
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desired levels. In practice, however, the amount of shielding employed will depend on 
a balancing of practical necessities such as cost and the benefit expected.
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   EXERCISE 6

1. Define the following dosimetric quantities: Exposure, absorbed dose, 
Dose equivalent, equivalent dose, and effective dose.

2. What are the specific objectives of radiation protection?

3. A worker receives a lung dose of 6 mGy from alpha radiation from an 
internally deposited radionuclide plus a 20-mGy uniform, whole-body 
dose from external gamma radiation.
(a) What is the equivalent dose to the lung?
(b) What is the his or her effective dose?

4. Calculate the effective dose for an individual who has received the 
following exposures: 1 mGy alpha to the lung; 2 mGy thermal neutrons, 
whole body; 5 mGy gamma, whole body; 200 mGy beta to the thyroid.
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Lecture 7: Introduction to Elementary Particle

Introduction

So far in our discussions we have identified electrons, photons, protons and neutrons 
as the fundamental constituents of the atom. But recent studies, using nuclear 
accelerators, show that there are about a hundred so called elementary particles. In 
Particle physics, also called High-Energy Physics, we study the interactions between 
elementary constituents of the nucleus and the rules governing their behaviours. These 
particles are actively being studied presently, and the effort is leading to a deeper 
understanding of nature. A systematic treatment of particle interactions is beyond the 
level of this study material. In this lecture we will limit our discussions to the 
grouping of particles into different families and identifying the major characteristics 
that distinguish one family from the others. The material in this lecture is adopted 
from Nuclear Physics by Nuclear Physics Panel (NPP, 1986).   

7.1. THE ELEMENTARY PARTICLES – Historical review

The experimental study of elementary-particle physics—also known by the inexact 
name high-energy physics—diverged from that of nuclear physics around 1950,
when developing accelerator technology made it relatively easy to search for other—
and ultimately more basic—''elementary" particles apart from the hitherto well 
known proton and neutron. An enormous variety of sub-nuclear particles has by
now been discovered and characterized, some of which are truly elementary (as far
as we can tell in 1984), but most of which are not.

Along  with  the  discovery  of  these  particles  came  major  theoretical advances,   
such   as   the   electroweak   synthesis,   and mathematical theories attempting to
classify and explain the seemingly arbitrary proliferation of particles (several hundred
by now) as accelerator energies becomes higher. Chief among these theories, 
because of their great power and generality, are the quantum field theories of the
fundamental interactions. All such theories are relativistic, i.e., they incorporate

Objectives
At the end of this lecture you should be able to 

1. Classify elementary particles into Leptons, Hadrons and 
list the distinguishing characteristics

2. List the six basic kinds of quacks;
3. Explain the existence of nuclear forces as a vestige of two 

forces: (1) ‘color’ force between quacks and (2) exchange 
force between hadrons;

4. Give at least three examples of particles and their 
corresponding antiparticles
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relativity into a quantum- mechanical framework suitable to the problem at hand.
They thus represent the deepest level of understanding of which we are currently
capable.

7.2 Classes of elementary particles

The nucleus as we now perceive it does not consist of just protons and neutrons, 
which are not even elementary particles to begin with. To understand the atomic
nucleus properly, therefore, we must take into account all the other particles  that 
exist there under various conditions, as well as the compositions  of  the  
nucleons and of these other particles.

Physicists now believe that there are three classes of elementary particles— leptons,  
quarks,  and  elementary  vector  bosons—and  that  every  particle, elementary or
not, has a corresponding antiparticle. Here we must make a short digression into 
the subject of antimatter. An antiparticle differs from its ordinary particle only 
in having some opposite elementary properties, such as electric charge. Thus, the 
antiparticle of the electron is the positively charged positron; the antinucleons are
the negatively charged antiproton and the neutral antineutron. The antiparticle of 
an antiparticle is the original particle; some neutral   particles,  such  as   the  
photon,   are  considered to  be  their  own antiparticles. In general, when a particle
and its corresponding antiparticle meet, they can annihilate each other (vanish
completely) in a burst of pure energy, in accord  with  the  Einstein  mass-energy  

equivalence  formula,  E  =  mc2. Antiparticles are routinely observed and used 
in many kinds of nuclear-and particle-physics experiments, so they are by no 
means hypothetical. In the ensuing discussions of the various classes of particles, it
should be remembered that for every particle mentioned there is also an antiparticle.

7.2.1. Leptons
Leptons are weakly interacting particles, i.e., they experience the weak 
interaction but not the strong interaction; they are considered to be pointlike, 
structureless entities. The most familiar lepton is the electron, a very light 
particle (about 1/1800 the mass of a nucleon) with unit negative charge; it 
therefore  also  experiences  the  electromagnetic  interaction.  The  muon  is 
identical to the electron, as far as we know, except for being about 200 times 
heavier. The tau particle, or tauon, is a recently discovered lepton that is also 
identical to the electron except for being about 3500 times heavier (making it 
almost twice as heavy as a nucleon). The very existence of these "heavy electrons"

NOTE
The three classes of elementary particles are:

(i) Leptons
(ii) Quarks
(iii) Elementary vector bosons
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and "very heavy electrons" is a major puzzle for physicists.

Associated with each of the three charged leptons is a lepton called a neutrino: 
thus there is an electron neutrino, a muon neutrino, and a tauon neutrino.
Neutrinos are electrically neutral and therefore do not experience the 
electromagnetic interaction. They have generally been assumed to have zero rest
mass and must therefore move at the speed of light, according to relativity, but the 
question of their mass is currently controversial. If the electron neutrino, in 
particular, does have any mass, it is very slight indeed. The possible existence of
such a mass, however, has great cosmological significance: because there are so
many neutrinos in the universe, left over from the big bang, their combined 
mass might exert a gravitational effect great enough to slow down and perhaps 
halt the present outward expansion of the universe.

Neutrinos and antineutrinos are commonly produced in the radioactive process 
called beta decay (a weak-interaction process). Here a neutron in a nucleus 
emits an electron (often called a beta particle) and an antineutrino, becoming a 
proton in the process. Similarly, a proton in a nucleus may beta- decay to emit a 
positron and a neutrino, becoming a neutron in the process. Neutrinos and 
antineutrinos  thus play an important role in nuclear physics. Unfortunately, they 
are extremely difficult to detect, because in addition to being neutral, they have
the capability of passing through immense distances of solid matter without being 
stopped. With extremely large detectors and much patience, however, it is possible 
to observe small numbers of them.

We have now seen that there are three pairs, or families, of charged and neutral
weakly interacting leptons, for a total of six; there are therefore also six antileptons.
Let us next look at the quarks, of which there are also three pairs— but there the
similarity ends.

7.2.2 Quarks
Quarks are particles that interact both strongly and weakly. They were 
postulated theoretically in 1964 in an effort to unscramble the profusion of 
known particles, but experimental confirmation of their existence was relatively slow 
in coming. This difficulty was due to the quarks' most striking single 
characteristic: they apparently cannot be produced as free particles under any 
ordinary conditions. They seem instead always to exist as bound combinations of
three quarks, three antiquarks, or a quark-antiquark pair.

Thus, although they are believed to be truly elementary particles, they can be 
studied—so far—only within the confines of composite particles (which are
themselves often inside a nucleus). This apparent inability of quarks, under 
ordinary conditions, to escape from their bound state is called quark confinement.
There are six basic kinds of quarks, classified in three pairs, or families; their
names are up and down, strange and charm, and top and bottom. Only the top quark
has not yet been shown to exist, but preliminary evidence for it was reported in the
summer of 1984. The six varieties named above are called the quark flavors, and
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each flavor is believed to exist in any of three possible states called colors. (None 
of these names have any connection with their usual meanings in everyday 
life; they are all fanciful and arbitrary.) Flavor is a property similar to that 
which distinguishes the three families of leptons electron, muon, and tauon), 
whereas color is a property more analogous to electric charge.

Another odd property of quarks is that they have fractional electric charge; unlike all 
other charged particles, which have an integral value of charge, quarks have a
charge of either -1/3 or + 2/3. Because free quarks have never been observed,
these fractional charges have never been observed either—only inferred. They are
consistent, however, with everything we know about quarks and the composite 
particles they constitute. These relatively large composite particles are the
hadrons, all of which experience the strong interaction as well as the weak 
interaction. Although all quarks are charged, not all hadrons are charged; some are 
neutral, owing to cancellation of quark charges. There are two distinctly different
classes of hadrons: baryons and mesons. Baryons—which represent by far the 
largest single category of subnuclear particles—consist of three quarks 
(antibaryons consist of three antiquarks) bound together inside what is referred to
as a bag. This is just a simple model (not a real explanation) to account for the not 
yet understood phenomenon of quark confinement: the quarks are assumed to be 
"trapped" in the bag and cannot get out.

Now, finally, we can say what nucleons really are: they are baryons, and they 
consist of up (u) and down (d) quarks. Protons have the quark structure uud, and
neutrons have the quark structure udd. A larger class of baryons is that of  the  
hyperons,  unstable  particles  whose  distinguishing  characteristic  is strangeness, 
i.e., they all contain at least one strange (s) quark. In addition, there are dozens
of baryon resonances, which are massive, extremely unstable baryons with lifetimes

so short (about 10-23 second) that they are not considered to be true particles.

The other class of hadrons is the mesons, of which there are also many kinds. 
These are unstable particles consisting of a quark-antiquark pair, to which the 
bag model can also be applied. Like the baryons, all mesons experience  the  
strong  and  weak  interactions,  and  the  charged  ones  also experience the 
electromagnetic interaction. The most commonly encountered mesons are pi
mesons (pions) and K mesons (kaons); the latter are strange (in the quark sense) 
particles. All hadrons are subject to the strong force. But the strong force, as it turns 

What are nucleons?

They are baryons, and they consist of up (u) and down (d) 
quarks. 
Protons have the quark structure uud, and neutrons have the
quark structure udd.
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out, is merely a vestige of the much stronger force that governs the interactions 
among the quarks themselves: the color force. The two forces are actually the same 
force being manifested in different ways, at different levels of strength.

These two manifestations of the force that holds nuclei together are of great 
importance, because they underlie  two distinctly  different levels  of 
understanding of nuclear phenomena, beyond the simple view that encompasses only
nucleons as constituents of the nucleus. The strong force is related to the presence 
of large numbers of mesons (especially pions) in the nucleus, and many 
concepts of nuclear physics cannot be understood unless the nucleus is viewed as
consisting of baryons and mesons. The color force, on the other hand, is related to 
the presence of particles  called gluons inside the baryons and mesons
themselves; this represents a different and much deeper view of nuclear 
phenomena—one that is not nearly so well understood, from either theoretical 
arguments or experimental evidence. Gluons belong to the third class of 
elementary  particles, the elementary  vector bosons,  which we will examine 
shortly, after a brief introduction to the concept of spin. In addition to their mass 
and charge, all subatomic particles (including nuclei themselves) possess an
intrinsic quality called spin, which can be viewed naively in terms of an object 
spinning about an axis. The values of spin that particles can have are quantized:
that is, they are restricted to integral values (0, 1, 2,....) or half-integral values (1/2,
3/2, 5/2,...) of a basic quantum-mechanical unit of measure. All particles that have
integral values of spin are called bosons, and all particles that have half-integral
values are fermions. Thus, all particles, regardless of what else they may be called,
are also either bosons or fermions. Following the sequence of particles that we 
have discussed thus far, the classification is as follows: all leptons are fermions; 
all quarks are fermions; hadrons are divided—all baryons are fermions, but all 
mesons are bosons. In broad terms, fermions are the building-block particles that
comprise nuclei and atoms, and bosons are the particles that mediate the fundamental 
interactions.

The significance of the fermion-boson classification lies in a quantum-
mechanical law called the Pauli exclusion principle, which is obeyed by 
fermions but not by bosons. The exclusion principle states that in any system of 
particles, such as a nucleus, no two fermions are allowed to coexist in the 
identical quantum state (i.e., they cannot have identical values of every physical 
property). This means that all the protons and all the neutrons in a nucleus must be in
different quantum states, which places restrictions on the kinds of motions that they
are able to experience. No such restrictions apply to mesons, however, because they
are bosons. This situation has profound consequences in the study of nuclear physics.

Most of the bosons to be discussed in the next section are elementary 
particles—unlike mesons—and are called vector bosons (because they have spin 
1).
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7.2.3 Elementary Vector Bosons
Earlier it was mentioned that the fundamental interactions are mediated by the 
exchange of  certain particles between the interacting particles. These exchange 
particles are the elementary  vector bosons (and some mesons, as mentioned
below), whose existence is predicted by the quantum field theories of the 
respective interactions. For example, the theory of the electromagnetic interaction, 
called quantum electrodynamics (QED), predicts the photon to be the carrier of the
electromagnetic force. A photon acting as an exchange particle is an example of a 
virtual particle, a general term used for particles whose ephemeral existence 
serves no purpose other than to mediate a force between two material particles: in
a sense, the virtual particles moving from one material particle to the other are the
force between them (see Figure 7.1).

The virtual particle appears spontaneously near one of the particles and disappears 
near the other particle. This is a purely quantum-mechanical effect allowed by a 
fundamental law of nature called the Heisenberg uncertainty principle. 
According to this principle, a virtual particle is allowed to exist for a time that is 
inversely proportional to its mass as a material particle. (Under certain 
conditions, a virtual particle can become a material particle.) The allowed lifetime of
a virtual  particle  determines  the  maximum  distance  that  it  can  travel  and, 
therefore, the maximum range of the force that it mediates. Hence, the greater the
mass of the material particle, the shorter the distance it can travel as a virtual particle,  
and  vice  versa.  Photons  have  zero  mass,  so  the  range  of  the 
electromagnetic force is infinite.

By contrast with QED, the theory of the weak interaction (the electroweak theory, 
actually) predicts the existence of three different carriers of the weak force, all of 
them extremely massive: about 90 to 100 times the mass of a nucleon. These

elementary particles are the W+, W-, and Z0 bosons, collectively called the 
intermediate vector bosons. Their discovery in 1983 dramatically confirmed the
validity of the electroweak theory. Because of their great mass, these particles are 
restricted by the uncertainty principle to lifetimes so short that they can travel

only about 10-28 m before disappearing. This explains the extremely short range of
the weak force. The  strong  force  exists  in  two  guises,  as  we  have  seen.  
Here  the fundamental quantum field theory, called quantum chromodynamics 
(QCD), predicts the existence of no less than eight vector bosons—the gluons 
—to mediate the color force between quarks. Experimental evidence for the gluons 
has been obtained. Gluons are massless, like photons, but because of quark 
confinement, the range of the color force does not extend beyond the confines

Nuclear force manifests in two ways:

There are two manifestations of nuclear force: the exchange
force and the colour force. The two forces are actually the same 
force being manifested in different ways, at different levels of
strength.
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of the hadrons (the quark bags).

In its second, vestigial guise, the strong force is experienced by hadrons (baryons 
and mesons) and is mediated by mesons—by pions at the largest distances.
Here we have a type of particle, the meson (which is a boson, but not an elementary 
one and not necessarily of the vector kind), that can act as its own exchange
particle, i.e., material mesons can interact through the exchange of virtual mesons. 
(This is not a unique case, however, because the gluons, which themselves
possess an intrinsic color, are also self-interacting particles.) The range of the 
strong force—very short, yet much longer than that of the weak force—is
explained by the mesons' moderate masses, which are typically less than that of a 
nucleon and very much less than that of an intermediate vector boson. What is
most significant for nuclear physics is that the nucleons interact via the exchange of
virtual mesons, so the nucleus is believed always to contain swarms of these particles
among its nucleons.

Thus the traditional picture of the nucleus as consisting simply of protons and 
neutrons has given way to a more complex picture in which the strong nucleon-
nucleon interactions must be viewed in terms of meson-exchange effects. And
even this view is just an approach to the deeper understanding of nuclear structure
and dynamics that can come about only through detailed considerations of the
quark-gluon nature of the nucleons and mesons themselves. Ultimately, the nucleus
must be explainable in terms of a very complex many-body system of interacting 
quarks and gluons. The experimental and theoretical challenges posed by this goal
are enormous, but so are the potential rewards in terms of our understanding of the
nature of nuclear matter.
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Figure7.1 The way in which force is transmitted from one particle to another can
be visualized (crudely) through the example of two roller skaters playing different 
games of catch as they pass each other. Throwing and catching a ball tends to push
the skaters apart, but using a boomerang tends to push them together. (After D.
Wilkinson, in The Nature of Matter, J. H. Mulvey, ed., Oxford University Press,
Oxford, 1981.)
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7.3. CONSERVATION LAWS AND SYMMETRIES

The total amounts of certain quantities in the universe, such as electric charge,  
appear  to  be  immutable.  Physicists  say  that  these  quantities  are conserved,
and they express this idea in the form of a conservation law.

The law of the conservation of charge, for example, states that the total charge of 
the universe is a constant—or, simply, "charge is conserved." This means that no 
process occurring in any isolated system can cause a net change in its charge. 
Individual charges may be created or destroyed, but the algebraic sum of all such 
changes in charge must be zero, thus conserving the original charge, whatever
it might have been.

Another  important quantity  that  is  conserved is  mass-energy. Before Einstein,  
it  was  thought  that  mass  and  energy  were  always  conserved separately, but
we now know that this is not strictly true: mass and energy are interconvertible, so 
it is their sum that is conserved. Mass, in the form of elementary or composite
particles, can be created out of pure energy, or it can be destroyed (annihilated) to 
yield pure energy; both of these processes are commonplace in nuclear and 
particle physics. This example illustrates the important point that although any
conserved quantity may change its form, the conservation law is not invalidated. 
Energy itself, for instance, can exist in many  different  forms—chemical,  
electrical,  mechanical,  and  nuclear,  for example—all of which are
interconvertible in one way or another without any net gain or loss, provided one
accounts for any mass-energy conversion effects. Such effects are significant only 
in subatomic processes and are, in fact, the basis of nuclear energy.

Two other conserved quantities, linear momentum and angular momentum, are 
related to the linear and rotational motions, respectively, of any object. 
Conservation laws for these quantities and the others mentioned above apply to all
processes, at every level of the structure of matter. However, there are also 
conservation laws that have meaning only at the subatomic level of nuclei and 
particles. One such law is the conservation of baryon number, which states that
baryons can be created or destroyed only as baryon-antibaryon pairs. 

All baryons have baryon number + 1, and all antibaryons have baryon number -1; 
these numbers cancel each other in the same way that opposite electric charges 
cancel. Thus, a given allowed process may create or destroy a number of 
baryons, but it must also create or destroy the same number of antibaryons, 
thereby conserving baryon number. Processes that violate this law are assumed to  
be  forbidden—none  has  ever  been  observed  to  occur.  

There  is  no conservation law for meson number, so mesons, as well as other 
bosons, can proliferate without such restrictions. A law of nature that predicts which
processes are allowed and which are forbidden—with virtual certainty and great 
generality, and without having to take into account the detailed mechanism by
which the processes might occur— represents a tool of immeasurable value in the 
physicist's effort to understand the subtleties and complexities of the universe.
Conservation laws are therefore often regarded as the most fundamental of the 
laws of nature. Like all such laws, however, they are only as good as the
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experimental evidence that supports them. Even a single proved example of a 
violation of a conservation law is enough to invalidate the law—for that class 
of processes, at least—and to undermine its theoretical foundation. We will see 
that violations of certain conservation laws do occur, but first let us examine
another important aspect of conservation laws: their connections with the symmetries
of nature. Symmetry of physical form is so common in everything we see around us—
and in our own bodies—that we take it for granted as a basic (though clearly not 
universal) feature of the natural world. For example,   the fundamental symmetry
of space and time with respect to the linear motions and rotations of objects leads
directly to the laws of the Conservation of linear and angular momentum. 
Similarly, the mathematical foundations of the quantum field theories imply 
certain symmetries of nature that are manifest as various conservation laws in the
subatomic domain. One such symmetry, called parity, has to do with the way 
in which physical laws should behave if every particle in the system in question 
were converted to its mirror image in all three spatial senses (i.e.,  if right were 
exchanged for left, front for back, and up for down). Conservation of parity 
would require that any kind of experiment conducted on any kind of system 
should produce identical results when performed on the kind of mirror-image 
system described above. For many years, it. was believed that parity was an exact
(universal) symmetry of nature. In 1956, however, it was discovered by nuclear and
particle physicists that this is not so; parity is not conserved in weak interactions, 
such as beta decay. However, it is conserved, as far as we know, in all the other
fundamental interactions and thus represents a simplifying principle of great 
value in constructing mathematical theories of nature.

A similar, albeit isolated, example of symmetry violation has been found for  the  
equally  fundamental  and  useful  principle  called  time-reversal invariance,
which is analogous to parity except that it entails a mirror imaging with respect to
the direction of time rather than to the orientation of particles in space. This
symmetry has been found to be violated in the decays of the neutral kaon. No other 
instances of the breakdown of time-reversal invariance are known—yet—but
physicists are searching carefully for other cases in the hope of gaining a better
insight into the underlying reason for this astonishing flaw in an otherwise perfect
symmetry of nature.

The implications of such discoveries extend far beyond nuclear or particle physics;
they are connected to basic questions of cosmology, such as the ways in which the 
primordial symmetry that is believed to have existed among the fundamental 
interactions at the instant of the big bang was then ''broken" to yield the
dramatically different interactions as we know them now. The efforts of theoretical
physicists to construct Grand Unified Theories of the fundamental interactions,  in  
which  these  interactions  are  seen  merely  as  different manifestations  of  a  
single  unifying  force  of  nature,  depend  strongly  on experimental observations 
pertaining to symmetries, conservation laws, and their violations.

A most important observation in this regard would be any evidence of a violation
of the conservation of baryon number, which may not be a universal law after all. 
Certain of the proposed Grand Unified Theories predict, in fact, that such a
violation should occur, in the form of spontaneous proton decay— not in the sense 
of a radioactive beta decay, in which a proton would be converted to a 
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neutron (thus conserving baryon number) but rather as an outright 
disappearance of a baryon (the proton) as such. Extensive searches have been
mounted to find evidence for proton decay, so far without success.

Also of great importance would be any violation of the conservation of lepton
number. This law, which is also obeyed in all currently known cases, is analogous 
to the conservation of baryon number, but with an added twist: lepton number
(+ 1 for leptons, -1 for antileptons) appears to be conserved not only for leptons as a
class but also for each of the three families of leptons individually (the electron,
muon, and tauon, with their respective neutrinos). Any violation of lepton-number
conservation would mean that neutrinos are not, in fact, massless and that they can
oscillate (change from one family to another) during their flight through space. 
Exactly these properties are also predicted by certain of the proposed Grand Unified
Theories, and this provides the impetus for searching for them in various types of
nuclear processes. Such searches for violations of conservation laws represent 
an important current frontier of nuclear physics as well as of particle physics.

   EXERCISE 7

1. What are quacks? Explain the difference between the various types of 
quacks.

2. Differentiate among quacks, leptons, and elementary vector bosons.

3. What is color force?

4. Explain how the nuclear force between nucleons is a vestige of both 
color force between quacks and exchange force between hadrons

5. Mention and describe any two examples of symmetry violation.
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