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Lecture 1(complex numbers)

1.1 Preamble: Classical Physics,with a few exceptions, relies on real numbers for
its mathematical basis. Quantum mechanics marked the entry of complex
numbers,in a fundamental way,into physics.

Here in this lecture,we define what is a complex number and we review the main
properties of complex numbers for use in the remainder of this course.

1.2 Definition of complex number :A complex number z is an ordered pair (a,b)
of real numbers a and b,written as z =a+ib, where a,b are real numbers and

i,called the imaginary unit,has the property that i’ = 1.

1.3 Operations with complex numbers:

(a) in cartesian(or rectangular)coordinates representation
Addition and Subtraction of complex numbers are easy;just as for 2-D vectors,the
real and imaginary parts are added or subtracted separately:

(@a+bi)+(c+di)=(a+c)+(b+d)i (1.31)

(@a+bi)—(c+di)=(a—c)+(b—d)i (1.32)
Multiplication and division are more subtle.
(a+bi)(c+di)=(ac—bd)+ (bc+ad)i (1.33)

a+bi _ ac +bd +bc—ad
c+di c*+d? c*+d?

(1.34)
(b) in polar representation

i9—'£'21'3i'4i'5
e _l+(|0)+2(|0) +6(|0) +24(|0) +120(|0) +...

:[1—592 +i94 — | 0—193 +i05 -
2 24 6 120
=cosf+isin@ (1.35)



(c) Powers and Roots

Consider z =a+bi=Re" =Rcosf +iRsin (1.36)
R is called the modulus or the absolute value of z, and 6 is called the
argument of z. Note that & must be expressed in radians.
Clearly, the n-th power of z is given by:

2" = (a+bi)" =(Re"?)" = R"e™ (1.37)
Where by de Moivre’s theorem, "’ =cosné +isinné (1.38)
Similarly, the n-th root of z is given by:

Yz =2/ = (a+bi)’" = (Re")

= R%[ei(t‘ﬂ]} = R%(cos[e +nZk”j+ i sin[e +nZk” D

k=012,..n-1 (1.39)

1.4 Tutorial 1
1. Express each of the following operations as a complex number :

@x3—mf,a»[%ig (@ drDe+snE-2) o 5 10

, (d)
2. Express inpolar form: (@) -2-2i , (b) 33 +3i

(L+2i)°(1-i) 3-4i @ 4+3i

3. Express in Cartesian form : (a) [2(cos25° +isin 25°)][5(cos110° +isin110°)],
12cis16°
b) —— o
(3cis447)(2cis62”)

4. Express the function f(z)=1Inz in both (i) Cartesian and (ii) plane-polar
coordinates.

5. Obtain the 4 complex numbers, whose 4" power is 1+ i



Lecture 2(Analytic function of complex variables)

2.1 Definition of function of complex variables: A function f(z) of complex
variables is given by f(z)=U(x,y)+iV(X,Y);
where U and V are complex variables.
For example, given f(z) =z +3z, it can be shown that:

U=x"-y*+3x; andV =2xy+3y

2.2 Definition of Analytic function: A function f(z) is analytic in a domain D if
f(z) is
(1) defined and (ii) differentiable at all points in D.
For example, given complex constants c,,c,,C,,....C
the polynomials  f(z) =c,+c,z+¢,z° +.....+¢,z" are analytic in the entire
complex plane.

2.3 Cauchy-Riemann Equations (a test for analyticity of a Complex function)
Given, f(z)=U(XYy)+iV(x,y), f(2)isanalytic inadomain D iff:
U, =V,
U, =-V, (2.31)
For example, Consider f(z) = z°
Clearly, it can be verified that:
U,=2x, V,=2x, =U,=V,
and U, =-2y, V, =2y, =>U =-V,
which therefore = f is analytic.

2.4 Cauchy Integration Formula (a consequence of analyticity of a Complex

function)
Given C is a simple closed curvature in a domain D and let a be an interior
point to C; then f (a) = i_jﬁﬂdz (2.41)
2mi*z—a

where the contour C is taken in the positive sense.
Note that : (i) f(z)is analytic at the point a ,
(i) its derivatives of all orders are also analytical at the point a
I
In other words, f™(a) = L’_§Mdz (2.42)
2micz—a
Where n is the order of the derivative.



2.5 Tutorial 2
1.1f f(z2)=2°, showthat f(z)is analytic.

2. Use Cauchy integral formula to evaluate the following integrals :
. z " sin z
i dz , (ii
L iﬁ22 +1 W) i URY:
(Z—Z)

dz where ¢ is the circle |z| =2



Lecture 3(Power Series of a complex function)

3.1 Definition of Power Series of a complex function: A power series expansion
or development of the function f(z) of complex variables is given by

i.e. f(z) is an infinite series of the form given in equation (3.1) where
a,C,,C;,Cy,.....Cp ... Are given complex numbers and z is a complex variable

about a.

For example, f(z2) =li=1+ Z2+2°+7%+.....
~z

3.2 Taylor series : is a power series of the form given in equation (3.1) where

%=fW@4 (3.2)

ie. f(2)=f(a)+ @) z-a)+ Bz ays. . (3.3)

2!

3.3 Tutorial 3
1. Expand the following function in Taylor’s series: f(z) =li around z
-z



Lecture 4(Poles and Residue)

4.1 Singular Point: A singular point of a function f(z) is a value at which f(z)
fails to be analytic.
If f(z) is analytic everywhere in some region except at an interior point z=a,
then z=a is called an isolated singularity of f(z).

For example, if f(z) :ﬁ , then, z =3 is an isolated singularity of

f(2)
4.2 Poles: Consider the function; f(z)= (z¢(2)” ,0(@)=0 (4.21)
f (z) has an isolated singularity at z=a which is called a pole of order n.

If n=1, the pole is often called a simple pole; if n=2, it is called a double
pole,etc.

z
(z-3)*(z+1)

f (z) has a pole of order 2(or double pole) at z=3, and a pole of order 1(simple
pole) at z = -1.

For example, consider f(z) =

4.3 Laurent’s Series: This is an extension of Taylor’s series. Here f(z) is given as

(z-a)" (z-a)" (z-a)
{ Principal part } { analytical  part }

f(Z)={ - a*”*17+ ..... % }+{a0+a1(z—a)+a2(z—a)2+ ...... }(4.31)

4.4 Residue :The coefficient a_; in equation (4.31) is called the residue of f(z) at

the pole z=a.
It is of considerable importance and can be found from the formula in
equation (4.41) :

{(z-2)"1(2)} (4.41)

. 1 d™t
a,=lim———
za (n-=1)!dz

where n is the order of the pole.

4.5 Residue Theorem: This is given by equation (4.51) as:

dz O,nx1 4.51)
i(z—a)”_ 27i,n=1 '

:>§C f (z)dz = 27ia,




4.6 Tutorial 4

1. Find the residues at those singular points which lie inside the

circle [z| =2
: 3z2+6 . z*
O —S 7 ) —5—
(z+1)(z° +16) 2°—1z2+2
2 —_—
2. Using residue theorem, evaluate §%dz , wWhere c is
c Z—

the unit circle.

3

3.(a) Express f(z)=—
(z+

as a Laurent series about the point
2)?

71=-2;
23

(z+2)

dz where c is the circle

(b) hence, or otherwise evaluate § 5
C

2=2



Lecture 5(Differential Equations)

5.1 Definition of Differential Equation : A differential equation is an equation
which involves at least 1 derivative of an unknown function.

Examples are: % =sin X (5.11)
X
xﬂ:y2+l (5.12)
dx

Many problems in Physics,chemistry,engineering,etc can be formulated in the
form of differential Equations. Thus differential equations play an important role
in the application of mathematics to Scientific problems.

5.2 Illustrative examples of differential equations
(1) Rate of decay of a radioactive substance is proportional to the amount
present.

. dy

Le. ot ky (5.21)

where y is the amount of the radioactive substance present at time t and k
IS a constant.

(2) Newton’s Law of cooling states that the rate of change of temperature in
a cooling body is proportional to the difference in temperature between
the body and its surroundings.

Le. %—fzk(@—HR) (5.22)

where 6, is temperature of the surrounding and Kk is a constant.

(3) Newton’s Law of gravitation states that the acceleration of a particle is
inversely proportional to the square of the distance between the particle
and the centre of the earth.

: d’x  k
e L= (5.23)
5.3 Basic Concepts of Partial Differential Equation(P.D.E.)
(1) Definition : A p.d.e. is any equation of the type:

F(X Y, 2, U,U Uy Uy Uy e ) =0 (5.31)
Which involves several independent variables x,y,....... one dependent
2
variable u, and some of its p.d. u, =a—u,... U, =a—l:
OX OX

(2) Order is the order of the highest derivative in the equation.
Consider the following examples :

. 0%
W OXoy

=2x-Yy Iisap.d.eof order 2



2
(i) y[Z—uJ =siny isap.d.e. of order 1
X

(3) Linear :A p.d.e. is linear if it is of 1% degree in the dependent variable

and its partial derivative.
2

An examplea—u = 48—2 is linear, and of 2" order .
ot OX

(4) Homogeneous: each term of a p.d.e. contains either the dependent
variable or one of its
Derivatives ; otherwise nonhomogeneous.

. o’y oy
Consider the example aiyjt a, &+ azy = f(x) (5.32)
Where a ,a,,a, are real constants, and a, #0
If f(x)=0, the equation (5.32) is said to be homogeneous.

5.4 Tutorial 5

1. Determine whether each of the following partial differential equations is
linear or non-linear.
State the order of each equation and name the dependent and
independent variables

i) 22-42¢ GDV§¥=thm(é?]+G2J=1
or ou

ot o ov

. 0°R 0°R (p o*p 07 Q_
iv) X =y3 +
() oy? y ox? v ) ay2 0z°

2. For each of the following partial dlfferentlal equations state :
(a) the dependent variable(s);
(b) the independent variable(s);
(c) the order of the equation;
(d) the degree of the equation;
(e) whether the equation is linear or non-linear;
(f) whether the equation is homogeneous or non-homogeneous.

.07 oz N 81// Oy 52)’ o’y _

—t—== = , (I -4 =X,
() S+ o= (D we=50r (i) S5 -4

2 2 2 2

(iv) P 0y 8¢ 0,(v)(><+y)aT o1

=—+
ox’ 88y oy’ x> oy’



Lecture 6(Classification of Partial Differential Equations)

An equation of the form : A¢, + B¢, +Co,, =F(X,y,4,6,,6,) (6.1)

is said to be :
Elliptic if : B2—4AC <0 (6.2)
Parabolic if: B2—4AC =0 (6.3)
Hyperbolic if: B> -4AC >0 (6.4)

Note that A,B,C may be functions of x and y and the type of equation (6.1) may
be different in different parts of the xy-plane.
For example consider equation (6.5) :

x> oy°
Clearly, A=1,B=0,C=1

Thus, B2 —4AC = -4
= equation (6.5) is elliptic

Tutorial 6

1. Classify each of the following equations as elliptic,hyperbolic or parabolic.

2 2 2 2 2
M2 0o iy M0y i )a 202 1292 _yiay
ox? oy X oxoy 88y o
2 2 2
(iv) x2 U oy SU 20U g
ox gy

o%u o°u o°u ou au
v) (x? -1 +2X +(Y-)—=X—+y—
(v) ( )8x2 yaay (y° )ay x yay




Lecture 7(Important Linear Partial Differential Equations of the 2™ Order)

7.1 Wave Equation : This is of the form given in equation (7.11) :

0’p _ .09
In1-D, —=C"— 7.11
ot? ox’ (7.1
0°¢ _ 20°¢ _ oo
In3-D, —-=c¢"—-=cV 7.12
ot? or? ¢ (7.12)
0° o° o0° ©o°
Where ¢=¢(r,t) and V?=—= L
p=9rt) or’ (ax2 oy? azzj
Note that ¢ may be a scalar or a vector as it occurs in electromagnetic
waves .

7.2 Helmholtz equation : Consider the wave equation (7.12).
If the time dependence of ¢ =¢(r,t) is of the form:

$(r,t) =U (F)e"™ (7.21)
Then, equation (7.12) reduces to :
(V2+k5U () =0 (7.22)
6()2
Where k? =7 (7.23)

An example is the time-independent Schrodinger equation in Quantum
Mechanics.

7.3 Heat Equation or Diffusion Equation : This is of the form given in
equation(7.31) as :

2
In 1-D, %=c2% (7.31)
ot OX
0p _ 209 _ 2
In3-D, —=c¢"—-=c°V 7.32
ot or? ¢ (7:32)
Where ¢ = ¢(T,t) (7.33)

7.4 Laplace Equation :This is of the form given in equation (7.41) as:
V=0 (7.41)
Note that ¢ =¢(r) is the potential equation.
¢ can represent the following potentials:

Q) electric potential at any point where there is no charge
(i) gravitational potential at a point where there is no mass present
(iii)  the temperature T (T,t) in the steady-state,inside a conductor where
there is no source or sink of Heat.
7.5 Poisson Equation :This is of the form given in equation (7.51) as:
Vip=1()=0 (7.51)



7.6 Tutorial 7
1 Show that: (i) the Heat equation is parabolic. (ii) the wave equation is
Hyperbolic, (iii) the Laplace equation is elliptic, (iv) the Triconi
equation : yg,, +¢,, =0 is of mixed type(elliptic in the upper half-plane

and hyperbolic in the lower half-plane).



Lecture 8(Solution of Partial Differential Equations)

8.1 Definition of solution : A function ¢(X,Y,.....) is said to be a solution of a
Partial Differential Equation if when substituted into the p.d.e., it yields an
identity in the independent variable . That is, it satisfies the equation
identically.

8.2 Types of solution :
(a) general solution : one which contains a number of arbitrary independent
functions equal to the order of the equation.
(b) particular solution : one which can be obtained from the general solution
by particular choice of the arbitrary function.
(c) singular solution :is one which cannot be obtained from the general
solution by particular choice of the arbitrary function.

8.3 Tutorial 8
1. Stating the arbitrariness thereof, solve (i) y,, =0 ; (ii) v, =2xyw

2. The function y (X, y) obeys the Laplace equation,

2 2
81/2/+81/2/:0
oX~ oy

Show whether or not v = x*—3xy” is a solution.




Lectures 9-12(Second order Partial Differential Equations )

Solution of Problems on Second order Partial Differential Equations, Boundary
value using the method of separation of variables.

Tutorial 9

1. In Quantum mechanics,the time-dependent Schrodinger equation is given
by:
2
ih% = —;—sz/(r,t)+V(r)y/(r,t) where v (r,t) is a function in
m
Space rand time t.
(N separate this into space and time parts.
(i) Deduce that for a free particle(\VV=0), the spatial part reduces to
Helmholtz equation.
(iii)  Solve this equation(Helmholtz)by a method of separation of
variables in Cartesian coordinates.



