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REVIEW OF SIMPLE REGRESSION
Modeling refers to the development of mathematical expressions that describe in some sense the behavior of a random variable of interest. This variable may be the price of wheat in the world market, the number of deaths from lung cancer, the rate of growth of a particular type of tumor, or the tensile strength of metal wire. In all cases, this variable is called the dependent variable and denoted with Y. A subscript on Y identifies the particular unit from which the observation was taken, the time at which the price was recorded, the county in which the deaths were recorded, the experimental unit on which the tumor growth was recorded, and so forth. Most commonly the modeling is aimed at describing how the mean of the dependent variable E(Y ) changes with changing conditions; the variance of the dependent variable is assumed to be unaffected by the changing conditions.
 Other variables which are thought to provide information on the behaviour of the dependent variable are incorporated into the model as predictor or explanatory variables. These variables are called the independent variables and are denoted by X with subscripts as needed to identify different independent variables. Additional subscripts denote the observational unit from which the data were taken. The Xs are assumed to be known constants. In addition to the Xs, all models involve unknown constants, called parameters, which control the behavior of the model. These parameters are denoted by Greek letters and are to be estimated from the data.

The mathematical complexity of the model and the degree to which it is a realistic model depend on how much is known about the process being studied and on the purpose of the modeling exercise. In preliminary studies of a process or in cases where prediction is the primary objective, the models usually fall into the class of models that are linear in the parameters. That is, the parameters enter the model as simple coefficients on the independent variables or functions of the independent variables. Such models are referred to loosely as linear models. The more realistic models, on the other hand, are often nonlinear in the parameters. Most growth models, for example, are nonlinear models. Nonlinear models fall into two categories: intrinsically linear models, which can be linearized by an appropriate transformation on the dependent variable, and those that cannot be so transformed.
The Linear Model and Assumptions

The simplest linear model involves only one independent variable and states that the true mean of the dependent variable changes at a constant rate as the value of the independent variable increases or decreases. Thus, the functional relationship between the true mean of Yi, denoted by E(Yi), and Xi is the equation of a straight line:
E(Yi) = β0 + β1 Xi.
β0 is the intercept, the value of E(Yi) when X = 0, and β1 is the slope of the line, the rate of change in E(Yi) per unit change in X.

The observations on the dependent variable Yi are assumed to be random observations from populations of random variables with the mean of each population given by E(Yi). The deviation of an observation Yi from its population mean E(Yi) is taken into account by adding a random error ei to give the statistical model
Yi = β0 + β1Xi + ei .
The subscript i indicates the particular observational unit, i = 1, 2, . . . , n. The Xi are the n observations on the independent variable and are assumed to be measured without error. That is, the observed values of X are assumed to be a set of known constants. The Yi and Xi are paired observations; both are measured on every observational unit.
The random errors ei have zero mean and are assumed to have common variance σ2 and to be pairwise independent. Since the only random element in the model is ei, these assumptions imply that the Yi also have common variance σ2 and are pairwise independent. For purposes of making tests of significance, the random errors are assumed to be normally distributed, which implies that the Yi are also normally distributed. The random error assumptions are frequently stated as 
ei ∼ NID(0, σ2), 
where NID stands for “normally and independently distributed.” The quantities in parentheses denote the mean and the variance, respectively, of the normal distribution.
Least Squares Estimation
The simple linear model has two parameters β0 and β1, which are to be estimated from the data. If there were no random error in Yi, any two data points could be used to solve explicitly for the values of the parameters. The random variation in Y, however, causes each pair of observed data points to give different results. (All estimates would be identical only if the observed data fell exactly on the straight line.) A method is needed that will combine all the information to give one solution which is “best” by some criterion.
The least squares estimation procedure uses the criterion that the solution must give the smallest possible sum of squared deviations of the observed Yi from the estimates of their true means provided by the solution. Let β0 and β1 be numerical estimates of the parameters β0 and β1, respectively, and let
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 is the observed residual for the ith observation. The summation indicated by 
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The estimators for β0 and β1 are obtained by using calculus to find the values that minimize SS(Res). The derivatives of SS(Res) with respect to 
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in turn are set equal to zero. This gives two equations in two unknowns called the normal equations:


[image: image13.wmf]å

å

=

+

i

i

Y

X

n

1

0

ˆ

)

(

)

ˆ

(

b

b



[image: image14.wmf]å

å

å

=

+

.

ˆ

)

(

ˆ

)

(

1

2

0

i

i

i

i

Y

X

X

X

b

b


Solving the normal equations simultaneously for 
[image: image15.wmf]0

ˆ

b

and 
[image: image16.wmf]1

ˆ

b

 gives the estimates

of β0 and β1 as
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Note that xi = (Xi −
[image: image19.wmf]X

) and yi = (Yi − 
[image: image20.wmf]Y

) denote observations expressed

as deviations from their sample means 
[image: image21.wmf]X

 and 
[image: image22.wmf]Y

, respectively. The more

convenient forms for hand computation of sums of squares and sums of

products are



[image: image23.wmf]å

å

å

-

=

n

X

X

x

i

i

i

2

)

(

2

2





[image: image24.wmf]å

å

å

å

-

=

n

Y

X

Y

X

y

x

i

i

i

i

i

i

)

)(

(


Thus, the computational formula for the slope is 
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These estimates of the parameters give the regression equation
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ANALYSIS OF VARIANCE (ANOVA)

Analysis of Variance (ANOVA) was introduced by Sir Ronald Fisher and is essentially an arithmetic process for partitioning a total sum of squares into components associated with recognized source of variation. It has been used to advantage in all fields of research where data are measured quantitatively.   Suppose in an industrial experiment that an engineer is interested in how the mean absorption of moisture in concrete varies among 5 different concrete aggregate. The samples are exposed to moisture for 48 hours. It decided that 6 tested. The data are presented in Table 1.

The model for this situation is considered as follows. There are 6 observations taken from each of 5 populations with means 
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	Aggregate:
	1
	2
	3
	4
	5
	

	
	551
	595
	639
	417
	563
	

	
	457
	580
	615
	449
	631
	

	
	450
	508
	511
	517
	522
	

	
	731
	583
	573
	438
	613
	

	
	499
	633
	648
	415
	656
	

	
	632
	517
	677
	555
	679
	

	Total
	3320
	3416
	3663
	2791
	3664
	16,854

	Mean
	553.33
	569.33
	610.50
	465.17
	610.67
	561.80


In addition, we may be interested in making individual comparisons among these 5 population means.
Two Sources of Variability in the Data
In the ANOVA procedure, it is assumed that whatever variation exist between the aggregate average is attributed to (1) variation in absorption among observations within aggregate types, and (2) variation due to aggregate type, that  is, due to differences in the chemical composition of the aggregates. The within aggregate variation is, of course, brought about by various causes. Perhaps humidity and temperature conditions were kept entirely constant throughout the experiment. It is possible that there was a certain amount of heterogeneity in the batches of raw materials that were used. At any rate, we shall consider the within sample variation to be chance or random variation, and part of the goal of the ANOVA is to determine if the differences among the 5 sample means are what we would expect due to random variation alone.
Many pointed questions appear at this stage concerning the preceding problem. For example, how many samples must be tested for each aggregate? This is a question that continually haunts the practitioner. In addition, what if the within sample variation is so large that it is difficult for a statistical procedure to detect the systematic differences? Can we systematically control extraneous sources of variation and thus remove them from portion we call random variation? We shall attempt to answer these and other questions in this course.
Completely Randomized Design (One-Way ANOVA) 
Random samples of size n are selected from each of k populations. The k different populations are classified on the basis of a single criterion such as different treatments or groups. Today the term treatment is used generally to refer to the various classifications, whether they are different aggregates, different analysts, different fertilizers, or different regions of the country.

Assumptions and Hypotheses in One-Way ANOVA
It is assumed that the k populations are independent and normally distributed with means 
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. These assumptions are made more palatable by randomization. We wish to derive appropriate methods for testing the hypothesis
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Let 
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treatment and arrange the data as in Table 2. Here,
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Model for One-Way ANOVA
Each observation may be written in the form 
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-term represents random error and plays the same role as the error terms in the regression models. An alternative and 

Table  2. k Random Samples
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Preferred form of this equation is obtained by substituting 
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The null hypothesis that the k population means are equal against the alternative that at least two of the means are unequal may now be replaced by the equivalent hypothesis.
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Resolution of Total Variability into Components

Our test will be based on a comparison of two independent estimates of the common population variance
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. These estimates will be obtained by partitioning the total variability of our data, designated by the double summation
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Theorem 13.1:  Sum-of-squares Identity
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It will be convenient in what follows to identify the terms of the sum-of-squares identify by the following notation:

Three Important Measures of Variability 
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 treatment sum of squares,
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 error sum of squares,
The sum-of squares identity can then be represented symbolically by the equation
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F-Ratio for Testing Equality of Means
When 
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 is a value of the random variable F having the F-distribution with k-1 and k(n-1) degrees of freedom. Since 
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is false, we have a one-tailed test with the critical region entirely in the right tail of the distribution.
The null hypothesis 
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Another approach, the P-value approach, suggests that the evidence in favour of or against 
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The computations for ANOVA problem are usually summarized tabular form as shown in Table 3.
ANOVA for the One-Way ANOVA

	Source of Variation
	Sum of Squares
	Degrees of Freedom
	Mean Square
	Computed f

	Treatments 
	SSA
	k-1
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	Error 
	SSE
	k(n-1)
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Example 1. Test the hypothesis 
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 at the 0.05 level of significance for the data of Table 1 on absorption of moisture by various types of cement aggregates.
Solution: 
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Critical region: 
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 degrees of freedom. The sum of squares computations give


SST=209,377


SSA=85,356

SSE=124,021.
	Source of Variation
	Sum of Squares
	Degrees of Freedom
	Mean Square
	Computed f

	Treatments 
	85356.47
	4
	21339.12
	4.30

	Error 
	124020.33
	25
	4960.81
	

	Total
	209376.80
	29
	
	


Decision: Reject H0 and conclude that the aggregates do not have the same mean absorption. 
Randomized Complete Block Designs
A typical layout for the randomized complete block design (RCB) using 3 measurements in 4 blocks is as follows:

       Block 1

 
Block 2

Block 3

      Block 4

	t2
	t1
	t3
	t2

	t1
	t3
	t2
	t1

	t3
	t2
	t1
	T3


The t’s denote the assignment to blocks of each of the 3 treatments. Of course, the true allocation of treatments to units within blocks is done at random. Once the experiment has been completed, the data can be recorded as in the following 

	Treatment Block
	1
	2
	3
	4

	1
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where 
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 represents the response obtained by using treatment 1 in block 1, 
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 represents the response obtained by using treatment 1 in block 2, . . . and 
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represents the response obtained by using treatment 3 in block4.

Let us now generalize and consider the case of k treatments assigned to b blocks. The data may summarized as shown in the 
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 Array for the RCB Design
Block
	Treatment
	1
	2
	.
	.
	.
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	B
	Total
	Mean
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Let 
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represent the average (rather than the total) of the b population means for the ith treatment. That is,
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Similarly, the average of the population means for the jth  block,  
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To determine if part of the variation is our observations is due to differences among the treatments, we consider the test
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Model for the RCB Design

Each observation may be written in the form
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where 
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is, as before, the effect of the ith treatment and 
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 is the effect of the 
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 block. It is assumed that the treatment and block effects are additive. Hence we may write
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The basic concept is much like that of the one way classification except that we must account in the analysis for the additional effect due to blocks, since we are now systematically controlling variation in two directions.
ANOVA for the Randomized Complete Block Design

	Source of Variation
	Sum of Squares
	Degrees of Freedom
	Mean Square
	Computed f
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Example 2. Four different machines, M1, M1, M3 and M4, are being considered for the assembling of a particular product. It is decided that 6 different operators are to be used in a randomized block experiment to compare the machines. The machines are assigned in a random order to each operator. The operation of the machines requires physical dexterity, and it is anticipated that there will be a difference among the operators in the speed with which they operate the machines (Table 5). The amount of time (seconds) were recorded for assembling the product:
Test the hypothesis 
[image: image187.wmf]0

H

, at the 0.05 level significance, that the machines perform at the same mean rate of speed.

Table 4: Time, in Seconds, to Assemble Product





Operator
	Machine
	1
	2
	3
	4
	5
	6
	Total

	1
	42.5
	39.3
	39.6
	39.9
	42.9
	43.6
	247.8

	2
	39.8
	40.1
	40.5
	42.3
	42.5
	43.1
	248.3

	3
	40.2
	40.5
	41.3
	43.4
	44.9
	45.1
	255.4

	4
	41.3
	42.2
	43.5
	44.2
	45.9
	42.3
	259.4

	Total
	163.8
	162.1
	164.9
	169.8
	176.2
	174.1
	1010.9
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(machine effects are zero),



[image: image189.wmf]:

1

H

 At least one of the 
[image: image190.wmf]s

i

'

a

 is not equal to zero
Table 5. ANOVA Table for Table 4
	Source of variation
	Sum of 

Squares
	Degree of Freedom
	 Mean square
	Computed        f

	Machines
	15.93
	3
	5.31
	3.34

	Operators
	42.09
	5
	8.42
	

	Error
	23.84
	15
	1.59
	

	Total
	81.86
	23
	
	


using 5% as at least an approximate yardstick, we conclude that the machines do not perform at the same mean rate of speed.
Latin Squares
The randomized block design is very effective for reducing experimental error by removing one source of variation. Another design that is particular useful in controlling two sources of variation, while reducing the required number of treatment combinations, is called the Latin square. Suppose that we are interested in the yields of 4 varieties of wheat using 4 different fertilizers over a period of 4 years. The total number of treatment combinations for a completely randomized design would be 64. By selecting the same number of categories for all three criteria of classification, we may select a Latin square design and perform the analysis of variance using the results of only 16 treatment combinations. A typical Latin square, selected at random from all possible 
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The four letters, A, B, C, and D, represent the 4 varieties of wheat that are referred to as the treatments. The rows and columns, represented by the 4 fertilizers and the years, respectively, are the two sources of variation that we wish to control. We now see that each treatment occurs exactly once in each row and each column. With such a balanced arrangement the analysis of variance enables one to separate the variation due to the different fertilizers and different years from the error sum of squares and thereby obtain a more accurate test for differences in the yielding capabilities of the 4 varieties of wheat. When there is interaction present between any of the sources of variation, the f-values in the analysis of variance are no longer valid. In that case, the Latin square design would be inappropriate.

Generalization to the Latin Square
We now generalized and consider an 
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 column corresponding to 
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where we impose the restrictions
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As before, the 
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 are assumed to be values of independent random variables having normal distributions with means
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And common variance 
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 The hypothesis to be tested is as follows:
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The ANOVA (Table 6) indicates the appropriate F-test for treatments.

Table  4. ANOVA for an 
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To illustrate the analysis of a Latin square design, let us return to the experiment where the letters A, B, C and D represent 4 represent 4 varieties of wheat; the rows represent 4 different fertilizers; and the columns account for 4 different years. The data in Table 5 are the yields for the 4 varieties of wheat, measured in kilograms per plot. It is assumed that the various sources variation do not interact. Using a 0.05 level of significance, test the hypothesis H0: There is no difference in the average yields of the 4 varieties of wheat.
Table 7. Yields of Wheat (kilograms per plot)
	Fertilizer Treatment 
	1981
	1982
	1983
	1984

	t1
	A:70
	B:75
	C:68
	D:81

	t2
	D:66
	A:59
	B:55
	C:63

	t3
	C:59
	D:66
	A:39
	B:42

	t4
	B:41
	C:57
	D:39
	D:55


Solution:
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Table 8. ANOVA for the Data of Table 7
Source of
Sum of 
Degrees of

Mean  


    Computed 
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519.00

Year

418

    3


139.33

Treatments
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2.02


Error
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43.50

Total

2500

    15  


We therefore, conclude that wheat varieties significantly affect wheat yield.
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