
UNIVERSITY OF AGRICULTURE, ABEOKUTA

OGUN STATE, NIGERIA

Course Code CSC 303

Course Title ASSEMBLY LANGUAGE PROGRAMMING

Course Lecturer Dr. ONASHOGA, S. A. (Mrs.)

 DEPT. OF COMPUTER SCIENCE

 UNIVERSITY OF AGRICULTURE,

 ABEOKUTA, OGUN STATE

 NIGERIA.

COURSE REQUIREMENTS

This is a compulsory course for all students in the University. In view of this, students are

expected to participate in all the course activities and have mininmum of 75% attendance to be

able to write the final examination.

COURSE CONTENTS

Binary number systems and other systems, types of encoding, mode of representation of data,

e.g. integer, floating, packaged decimal, characteristics, basic structure of the computer

instruction set and corresponding machine language, modes of addressing, instruction execution

and flow of control programming in assembly language, input and output, subroutines and

central sections macros, linkages interfacing, assembly language programmes.

SECTION ONE

INTRODUCTION TO ASSEMBLY LANGUAGE PROGRAMMING

1.1 Programming language

Different programming language are as follows:

 (1) Machine language:

 E.g 5 8 1 3

 0101 = 5 , 1000 = 8 , 0001 = 1 , 0011 = 3

Advantages of machine language

 (A) It uses computer‟s storage more efficiently.

 (B) It takes less time to process in a computer than any other programming language.

 Disadvantages of machine language

 (A) It is time consuming

 (B) It is very tedious.

 (C) It is subjected to human error.

(2) LOW LEVEL LANGUAGE(LLL)

 Advantages of LLL

 (a) It is more efficient than machine language.

 (b) It may be useful for security reason.

(3) HIGH LEVEL LANGUAGE (HLL) e.g BASIC, Pascal, C++

Note: Compiler is used to convert HLL to machine Language. Every language has a type of

translator to itself.

1.2 Why learn Assembling Language?

 (1) There are still some programming tasks that are best done in Assembling Language for

reasons of efficiency and access to machine capabilities not available in HLL.

(2) AL is just a way of expressing the actual native language of the computer, namely machine

code, the study of assembly is therefore in a sense a study of the machines and its architecture.

(3) Its study helps to develop a deeper understanding of computer system.

 Advantages of machine language

It is the easiest form of a program for the machine to understand.

 Disadvantages

Very tedious, errors prone and time consuming.

Very difficult for human to read.

1.3 ASSEMBLY ASPECTS OF ASSEMBLY LANGUAGE PROGRAMMING

This course, Assembly language programming deals with the software aspects of assembly

language , assemblers and machine language. It also deals with the hardware aspects of what the

computers does to execute programs.

It is an introduction to the study of computer architecture , the interface between hardware and

software.

1.3.1 COMPUTER ARCHITECTURE

The relationship between hardware (stuff you can touch) and software (programs, code). I can

design a computer that has hardware which executes programs in any programming language.

For example: a computer that directly executes Pascal.

So, why don't we do just that?

 1. From experience (in the engineering community), we know that the hardware that executes

HLL programs directly are slower than those that execute a more simple, basic set of

instructions.

2. Usability of the machine. Not everyone wants a Pascal machine. ANY high level language

can be translated into assembly language.

In this class, in whatever language you are writing programs, it will look like you have a

machine that executes those programs directly.

BASIC COMPUTER OPERATION

Simplified diagram of a computer system (hardware!)

 ------- ----------

 | CPU | <---------> | memory |

 ------- | ----------

 |

 |

 | I/O |

CPU -- controls the running of programs, executes instructions, makes requests of the memory.

CPU stands for central processing unit.

 CPU and processor are synonyms (book uses the term processor)

NOTE: Many PC users incorrectly identify the term CPU with whatever is in the box that their

display sits on top of. Chances are the real CPU is inside that box, but there will be many more

things in there as well.

memory -- where programs and program variables are stored handles requests from the CPU

 Fetch and execute instruction

How does the CPU execute a program ? CPU executes a program by repeatedly fetching one

instruction from memory and executing the instruction in an endless cycle called the Fetch/

Execute Cycle.

To execute a program , CPU implements this cycle in five steps as below:

Table 1: Steps in Fetch Execute Cycle

 General Fetch/ Execute

(1) Initialize CPU IP = 0

(2) Fetch instruction at IP (PC) MAR = IP

 MDR = Memory [MAR]

 IR = MDR

(3) PC = next instruction address IP = IP + 1

(4) Decode instruction OP = IR operation failed

 Addr = IR address failed

(5) Execute operation OP

(6) GOTO 2

*Intel calls PC an IP, others call it PC

SECTION TWO

DATA REPRESENTATION

2.1 NUMBER SYSTEM

BINARY TO DECIMAL CONVERSION.

The Binary number system uses just two symbols , 0 or 1

 4 3 2 1 0

 1 1 0 1 12

 2
4
 + 2

3
 + 0 + 2

1
 + 1

 16 + 8 + 2 + 1 = 27.

 DECIMAL TO BINARY CONVERSION.

 Repeated division by 2 for this conversion. For example

 25 / 2 = 12 r 1

 12 / 2 = 6 r 0

 6 / 2 = 3 r 0

 3 / 2 = 1 r 1

 1 / 2 = r 1

 1 1 0 0 1

 2510 = 1 1 0 0 12

OCTAL TO DECIMAL CONVERSION:

An octal number can be early converted to its decimal equivalent in multiplying each octal digit

by its positional weight.

 For example: 3 7 28 = 3 * 8
2 +

7 * 8
1

 + 2 * 8
0

 = (3 * 64) + (7 * 8) + (2 * 1)

 = 25010

Another example;

 2 4 . 6
 =

 2 * 8
1
 + 4 * 8

0
 + 6 * 8

-1

 = 16 + 4 + 0.75

 = 20.7510

DECIMAL TO OCTAL CONVERSION

Convert 10910 to base 8

Using repeated division by 8

 109/8 = 13 r 5

 13/8 = 1 r 5

 1/8 = 0 r 1

 10910 = 1558

OCTAL TO BINARY CONVERSION:

 The conversion is done by converting each octal digit to its 3-bit binary equivalent

 for example:

 4 7 28

 100 111 010

 4728 = 1001110102

BINARY TO OCTAL CONVERSION

To do this, the bits of the binary number are grouped into groups of three bits at the LSB, then

each group is converted to its octal equivalent.

 1 0 0 1 1 1 0 1 0

 4 7 28

Hexadecimal to Decimal conversion:

These are numbers to base 16 with 16 possible digit symbols. 0 through 9 plus the letter A B C

D E F which are equivalent to 10 11 12 13 14 15 16 decimal.

 3 5 6 = 3 * 16
2
 + 5 * 16

1
 + 6 * 16

0

 = 768 + 80 + 6

 = 285410

 2 A F16 = 2 * 16
2
 + 10 * 16

1
 + 15 * 16

0

 = 512 + 160 + 15

 = 68710

DECIMAL TO HEXADECIMAL CONVERSION

 10 910

 Using the repeated division

 109/16 = 6 r 13 = D

 6 / 16 = 0 r 6

 10910 = 6D16

 21410 to hex

 214/16 = 13 r 6

 13 / 16 = 0 r 13 = D

2.1.1 INTEGER REPRESENTATION

Integer representation:

 True magnitude form

 e.g +52 = 00110100

 -52 = 10110100

In this representation , the msb represents the sign 0 for +ve and (for –ve , The remaining part

represents the magnitude of the number).

The 1‟s complement form of any binary number is obtained simply by changing each 0 in the

number to a 1 and each 1 to a 0.

e.g 1‟s complement of 1101101 is 0010010

When –ve numbers are represented in 1‟s complement form, the sign bit is made as 1 and the

magnitude as converted from true binary form to its 1‟s complement.

 e.g -52 = 10110100 (true magnitude form)

 = 11001011(1‟s complement form)

2‟s complement form:

 e.g 00110100

 11001011 (1‟s complement add 1 to LSB to form 2‟s complement)

 1

 11001100

Class Work: Confirm that 2‟s complement of -419 on a 16-bit machine is FE5D.

 Convert 72458 to 8‟s complement.

 7777

 7245

 0532

+ 1

 0533

2.2 FLOATING POINT DATA REPRESENTATION

 Convert 38410 to floating point

 384 = 1100000002

 normalise = .11 * 2
9

= .11 * 2
1001

 9 = 1001 in binary

Take to hex = 9h

Fraction = 11

Exponent = 10012 = 9h

Sign = 0

Biased exponent = 9h + 7Eh

 = 87h to binary

 = 100001112

Representation

Sign Exponent fraction

0 10000111 10000000000000000000000

Memory content = 4 3 C0 00 00h

2.3 NON-NUMERIC CHARACTER REPRESENTATION

ASCII code:

 e.g The following is a message encoded in ASCII code , What is the message?

 1001000 1000101 1001100 1010000

 solution

 convert the 7-bit code to its hex equivalent, The results are

 48 45 4c 50

Now locate these hex values in the table and determine the xter represented by each.

 The results are H E L P

 The first 3-bits is called the ZONE bits and the last 4, the NUMERIC bits

For ASCII

 Xters Zone Numeric bit

 0-9 011 0000-1001

 A-0 100 0001-1111

 P-Z 101 0000-1010

 a-o 110 0001-1111

 p-z 111 0000-1010

EBCDIC code

The EBCDIC representation can be summarised as follows

 characters Zone-Bits Numeric Bits

 0-9 1111 0000-1001

 A-I 1100 0001-1001

 J-R 1101 0001-1001

 S-Z 1110 0001-1000

e.g ADE2 in EBCDIC

 A - 1100 0001

 D - 1100 0100

 E - 1100 0101

 2 - 1111 0010

ADE2 = 11000001110001001100010111110010

SECTION THREE

ERROR IN DATA TRANSMISSION

3.1 INTRODUCTION

The movement of binary data and codes from one location to another is most frequent operation

performed in digital systems. For example:

 The reading of instruction codes and data from internal memory as a computer

executes a program.

 The storage and retrieval of data from external memory devices such as magnetic

tape and disk.

 The transmission of information from a computer to a remote user terminal or

another computer.

3.2 PARITY METHOD

 Parity Bit

It is an extra bit that is attached to a code group that is being transferred from one location to

another. The Bit is made up of 0 or 1 depending on the number of 1s that are contained in the

code group.

Even Parity

 e.g 1000011 = ASCII character

 Thus, it becomes 11000011

 parity bit

 added

Odd Parity : The Odd parity is used except that the binary bit is chosen so that the total number

of 1s including the parity bit is an odd number.

 e.g 1000001 = 11000001

 added

It would be apparent that this parity would not work if two bits were in error , because two errors

would not change the “oddness” or “evenness” of the number of 1s in the code.

Exercise: A transmitter is sending ASCII coded data to a receiver with an even-parity bit. Show

the actual code when the transmitter is sending the message “HELLO”.

SECTION FOUR

ASSEMBLY LANGUAGE PROGRAMMING

4.1 PROCESS OF ASSEMBLY

 The process of creating working assembly language programs involves a number of steps ,

which I will describe in a general way.

 Later , we will see how to carry out these steps in details.

Assembly language is a compiled language , in the sense that assembly language source-code

must first be created with a text-editor program, and then the source-code must be compiled.

Assembly language compilers are universally call “assemblers”.

Five types of auxiliary programs are commonly used in 8088 assembly language programming .

First , as mentioned above, is the text-editor , which is used to type in assembly language source

code and then to edit it when errors are discovered . Second is the assembler. The assembler

“assembles ” the source code , creating “object” code in the process. The object code is neither

executable nor human-readable. The third program is the linker . The linker combines object

code modules created by the assembler or by various high-level compilers.

For example, If we wrote a program yesterday to convert hexadecimal numbers to decimal, and

we write a program today to convert decimal numbers to hexadecimal, then we may want to

write a third programme tomorrow which, when linked with this, reads two-decimal numbers

from the keyboard, converts them to hexadecimal, adds them, and writes the back to the screen

in decimal. The fourth programme, the loader, is actually built into the operating system and is

never explicitly executed. The loader takes the “relocatable” code created by the linker, “loads”

it into the memory at the lowest available location and runs it.

4.2 INTEL 8088 AND ABOVE CPU REGISTERS

Generally (though not always) when we program in a high-level language we think in terms of

the following types of constructs: CONSTANTS numerical, string, or some other quantities

whose unchanging actual values are known when the program written VARIABLES quantities

(whose initial values may or may not be known) whose values change as the program executes

PROCEDURES functions or subroutines which may or may not have arguments and may or may

not return answers

None of these items has any real direct equivalent in terms of assembly language. Each, in

practice, is a combination of several assembly language features. In assembly language, on the

other hand, much thought goes into the use of the computer's memory (considered as a sequence

of bytes or words) and the CPU's registers. A register is like a memory location in that it can

store a byte (or word) value. [These register sizes apply to CPUs like the 8088, 8086, 8080, Z80,

etc. The 68000 CPU has all 4-byte registers. The Z8000 CPU has registers that can be grouped

in various ways to contain anything from one byte to 8 bytes. Some TI microprocessors have no

registers at all.] However, a register has no address in the computer's memory. Registers are not a

part of the computer's memory, but are built into the CPU itself.

Registers are so important in assembly language programming (on microcomputers) for various

reasons. First, the variety of instructions using registers tends to be greater than that for

operating on values stored at memory locations. Second, these instructions tend to be shorter

(i.e., take up less room to store in memory). Third, register-oriented instructions operate faster

than memory-oriented instructions since the computer hardware can access a register much faster

than a memory location. The 8086-family of microprocessors have a number of registers, all of

which are partially or totally dedicated to some specific type of use. Here is a list of the registers

and their uses. Do not worry if their uses do not seem clear yet. For the present, it suffices for us

that the italicized registers are so specialized that they can only be used for their special purpose,

while the registers in normal type can often be used just like 16-bit (word) memory locations:

1. AX - The accumulator

2. BX - The pointer register

3. CX- The loop counter

4. DX- Used for multiplication and division

5. SI- The "source" string index register

6. DI -The "destination" string index register

7. BP- Used for passing arguments on the stack

8. SP- The stack pointer

9. IP -The instruction pointer

10. CS- The "code segment" register

11. DS -The "data segment" register

12. SS -The "stack segment" register

13. ES- The "extra segment" register

14. FLAG- The flag register

The first seven registers might reasonably be called "general purpose" registers since they can be

used rather flexibly to manipulate word values until (or unless) their special functions are

needed. AX, BX, CX, and DX are more flexible than the others in that they may be used either

as word registers (containing 16-bit values) or as pairs of byte registers (containing 8-bit values).

The byte-sized registers gotten this way are known as AL, BL, CL, DL, AH, BH, CH, and DH.

For example,

AL contains the less significant byte of AX, while AH contains the more significant byte.

Several of these special register types are common among microprocessors: The accumulator is

often a special register which is designated to contain the results of certain arithmetic operations.

Many instructions execute faster when operating on the accumulator then they do when

operating on other registers, which are in turn faster than operations on memory variables. The

8088 has the 8-bit accumulator AL and the 16-bit accumulator AX. The instruction pointer (or

program counter) is a register controlling the execution of programs. Recall that both programs

and data are stored in the computer's memory. Most program code is stored in memory in such a

way that sequentially executed instructions are actually stored sequentially in memory. The IP

(instruction pointer) register contains the address of the next instruction to be executed.

For every instruction fetched from memory, the IP is automatically incremented by the number

of bytes in the instruction. The stack pointer (SP) contains the address of the next memory

location to the added to the stack. We will discuss stacks later. The flag register contains a

number of bit-sized "flags" describing the status and configuration of the CPU. Its main use is in

controlling conditional execution of parts of a program.

4.3 MODES OF ADDRESSING THE REGISTERS

Table 2 shows different types of addressing mode, with the calculation of how these addresses

are generated.

Table 2: Addressing Modes

TYPE INSTRUCTION SOURCE ADDRESS GENERATION DESTINATION

Register MOV AX,BX

Immediate MOV CH, 3AH

Direct MOV [1234H],AX

Register indirect MOV [BX],CL

Base-plus-index MOV [BX+SI],BP

Register relative MOV CL,[BX+4]

Base

Relative MOV ARRAY [BX+SI],DX

plus-index

Scaled index MOV [EBX+2xESI], AX

Notes: EBX = 000000300H, ESI = 00000200H, ARRAY = 1000H, and DS = 1000H

Register

BX

Register

AX

Register

3AH

Register

CH

Register

3AH

DSx10H+DISP

10000H+1234

H

Memory

address

11234H

Register

CL
DSx10H+BX

10000H+0300

H

Memory

address

10300H

Register

SP

DSx10H+BX+SI

10000H+0300H+020

0H

Memory

address

10500H

Memory

address

10304H

DSx10H+BX+4

10000H+0300H+4

Register

CL

Register

DX

DSx10H+ARRAY+BX+SI

10000H+1000H+0300H+020

0H

Memory

address

11500H

Register

AX

DSx10H+EBX+2+ESI

10000H+00000300H+000004

00H

Memory

address

10700H

4.4 ASSEMBLY LANGUAGE INSTRUCTION

4.4.1 INSTRUCTION FORMAT

Each statement in a program consists of four parts or fields in the following format:

Label Opcode Operand Comment

Label – used to store a symbolic name for the memory location that it represents. All labels

begin with a letter or one of the following special characters : , $ or ?. A label may be of any

length from 1-35 characters .The label appears in a program to identify the name of a memory

location for storing data.

Opcode - is designed to hold the instruction or opcode e.g ADD

Operand – Contains information used by the Opcode e.g in MOV AL, BL instruction has

opcode MOV and operands BL and AL

Comment - begins with a „;‟

4.4.2 ASSEMBLY LANGUAGE INSTRUCTION

Types of instructions

i. Transfer instruction

MOV INSTRUCTION

Purpose: Data transfer between memory cells, registers and the accumulator.

Syntax: MOV Destination, Source

Where Destination is the place where the data wiil be moved and Source is the place whrere the

data is.

ii. Stack Instructions

These instructions allow the use of the stack to store or retrieve data.

Purpose: It recovers a piece of information from the stack

Syntax: POP destination

Examples:

POP

POPF

PUSH

PUSHF

POP instruction

PUSH instruction

The PUSH instruction decreases by two the value of SP and then transfers the content of the

source operator to the new resulting address on the recently modified register.

iii. Arithmetic instruction e.g. MUL instruction

Purpose: multiplication with sign

Syntax: MUL source

iv. INC and DEC instructions

Syntax: INC destination ; destination = destination + 1

 DEC destination ; destination = destination - 1

Here are other some simple instructions you should know to get you started:

Instruction Description

ADD* reg/memory, reg/memory/constant ------- Adds the two operands and stores the

result into the first operand. If there is a result with carry, it will be set in CF.

SUB* reg/memory, reg/memory/constant ----- Subtracts the second operand from the

first and stores the result in the first operand.

AND* reg/memory, reg/memory/constant ----- Performs the bitwise logical AND operation on

the operands and stores the result in the first operand.

OR* reg/memory, reg/memory/constant ----- Performs the bitwise logical OR operation on the

operands and stores the result in the first operand.

XOR* reg/memory, reg/memory/constant ----- Performs the bitwise logical XOR operation on

the operands and stores the result in the first operand. Note that you cannot XOR two memory

operands.

MUL reg/memory ----- Multiplies the operand with the Accumulator Register and stores the

result in the Accumulator Register.

DIV reg/memory ----- Divides the Accumulator Register by the operand and stores the result in

the Accumulator Register.

INC reg/memory ----- Increases the value of the operand by 1 and stores the result in the

operand.

DEC reg/memory ---- Decreases the value of the operand by 1 and stores the result

in the operand.

NEG reg/memory ----- Negates the operand and stores the result in the operand.

NOT reg/memory ---- Performs the bitwise logical NOT operation on the operand and stores the

result in the operand.

PUSH reg/memory/constant ---- Pushes the value of the operand on to the top of the stack.

POP reg/memory---- Pops the value of the top item of the stack in to the operand.

MOV* reg/memory, reg/memory/constant---- Stores the second operand's value in the first

operand.

CMP* reg/memory, reg/memory/constant ---- Subtracts the second operand from the first

operand and sets the respective flags. Usually used in conjunction with a JMP, REP, etc.

JMP**---- label Jumps to label.

LEA reg, memory ---- Takes the offset part of the address of the second operand and stores the

result in the first operand.

CALL subroutine Calls another procedure and leaves control to it until it returns.

RET Returns to the caller.

INT constant Calls the interrupt specified by the operand.

SAMPLE PROGRAM ON TRANSFER INSTRUCTION

 In FORTRAN :

 A = B + 1

 C = D – 1 (where A,B,C,D ARE INTEGERS*2)

ASSEMBLY code equivalent:

; Version 1

(A, B, C and D are all defined as DW ?)

MOV AX, B ; A = B

MOV A , AX; C = D

MOV AX , D

MOV C, AX; C = D

ADD A, 1; A = A + 1

SUB C, 1; C = C - 1

; Version 2

MOV AX, B

ADD AX, 1

MOV A, AX; A = B + 1

MOV AX, D

SUB AX, 1

MOV C, AX

SECTION FIVE

ASSEMBLY PROGRAMS

5.1 PROGRAMMING OVERVIEW

5.1.1 ASSEMBLING LANGUAGE OVERVIEW

An assembly program is written using a simple text editor. Each assembler has specific syntax

rules regarding the structure of the source file and the names that are used to represent assembler

directives , opcodes , and operands . There are also syntax rules regarding comments in the file.

Assembler process:

Create source file using a text editor and save it (.ASM)

Execute commands from a DOS prompt to assembler your text file and create an output hex file

with a .HEX extension (e.g ASM51) <filename> [options])

If errors occur during the assembly, edit the source file to correct the syntax error. A listing file

(.LST) may be used to see what error the assembler encountered. (e.g, to create a .LST file, use:

ASM51<filename>-F)

Once the assembler executes without error, load the .HEX file into a simulator, or into your

target hardware (into EPROM , flash , or RAM)

Execute your code and continue the debugging process

5.1.2 Getting Started

To program in assembly, you will need some software, namely an assembler and an editor. There

is quite a good selection of Windows programs out there that can do these jobs.

An Assembler takes the written assembly code and converts it into machine code. Often, it will

come with a linker that links the assembled files and produces an executable from it. Windows

executables have the .exe extension. Here are some of the popular ones:

1. MASM – This is the assembler this tutorial is geared towards, and you should use this

while going through this course. Originally by Microsoft, it's now included in the

MASM32v8 package, which includes other tools as well. You can get it from

http://www.masm32.com/

ABOUT MASM

 One instruction , declaration per line

 Comments are anything on a line following „;‟

http://www.masm32.com/

For declaration, MASM has 3 basic types; integer, float(real) and character

In Pascal var sum: integer

Declaration

In Pascal: VAR variablename : type;

In C or C++: TYPE variablename e.g. int sum, String sum

In MASM : Variablename TYPE value

Type is dd if integer ; define doubleword (allocates a memory space of 32 bits)

db if character; define byte (allocates a memory space of 8bits)

dd if floating point;

dw; define word (allocates a memory space of 16 bits, this could be for integer as well)

 value is required -- it gives the variable an initial value

 -- to explicitly leave value undefined, use the '?' character

EXAMPLES

counter dd 0 ; tells the assembler to allocate 32 bits

variable4 dd ?

constant dd 2.71828

letter db „a‟ ; tells the assembler to allocate 8 bits

string10 db „This is a string‟ , 0 ; null terminated string example

string4 db „Another string‟, Oah , 0 ;Oah is the newline character and this is

 string

; null terminated

2. TASM – Another popular assembler. Made by Borland but is still a commercial product,

 so you can not get it for free.

3. NASM – A free, open source assembler, which is also available for other platforms. It is

 available at http://sourceforge.net/projects/nasm/. Note that NASM can't assemble most

 MASM programs and vice versa.

Editors: An editor is where you write your code before it is assembled. Editors are personal

preferences; there are a LOT of editors around, so try them and pick the one you like.

1. Notepad – Comes with Windows; although it lacks many features, it's quick and simple to

use.

2. Visual Studio – Although it's not a free editor, it has excellent syntax highlighting features to

make your code much more readable.

5.2 USING DEBUGGER

WHAT IS A DEBUGGER?

A debugger displays the contents of memory and lets you view registers and variables as they

change. You can step through a program one line at a time (called Tracing), making it easier to

find logic errors.

DEBUGGING FUNCTIONS

Some of the most rudimentary functions that any debugger can perform are the following

 Assemble short programs

 View a program‟s source code along with its machine code

 View the CPU registers and flags

 Trace or execute a program, watching variables for changes

 Enter new values into memory

 Search for binary or ASCII values in memory

 Move a block of memory from one location to another

 Fill a block of memory

 Load and write disk files and sectors

Debug commands may be divided into four categories namely

Program Creation and Debugging

i. A Assemble a program using instruction mnemonics

e.g. A 100 ; Assembles at CS:100h

When you press Enter at the end of each line, debug prompts you for the next line of input. Each

input line starts with a segment-offset address. To terminate input, press the Enter key on a blank

line. For example:

- A 100

5514:0100 MOV AH, 2

5514: 0102 MOV DL, 41

5514: 0104 INT 21

5514: 0106

ii. G Execute the program currently in memory

iii. R Display the contents of registers and flags

iv. P Proceed past an instruction, procedure, or loop

v. T Trace a single instruction

vi. U Disassemble memory into assembler mnemonics

Memory Manipulation

i. C Compare one memory range with another

ii. D Dump (display) the contents of memory

iii. E Enter bytes into memory

iv. F Fill a memory range with a single value

v. M Move bytes from one memory range to another

vi. S Search a memory range for specific value(s)

Miscellaneous

i. H Perform hexadecimal addition and subtraction

ii. Q Quit Debug and return to DOS

Input-Output

I. I input a byte from a port

II. L load data from disk

iii. O Send a byte to a port

iv. N Create a filename for use by the L and W commands

v. W Write data from memory to disk

5.2.1 ASSEMBLY PROGRAMS

A program that multiplies AX register by 10 , store the result in the BX register

Example 1:

In Pascal

Var ax, bx, cx : integer

begin

 bx:= 0;

for cx := 10 downto 1 do bx:= bx + ax

end;

We have used downto in the for loop rather than to because in assembler loops with count

down are much easier to implement than loops which count up.

 mov bx, o ; the BX register holds the running sum

 mov cl, 10 ; this time , use CL as the loop counter

 again:

 add bx, ax ; bx:= bx+ ax

 dec cl ; decrement the loop counter

 jnz again ; repeat only if the loop counter isn‟t zero

 In DEBUG , the program would look like this:

-A100

4410:0100 MOV BX ,0

4410:0103 MOV CL ,10

4410:0105 MOV BX ,AX

4410:0107 DEC CL

4410:0109 JNZ 105

4410:010B

To unassembled:

-U100 , 10A

4410:0100 BB0000 MOV BX ,0000

4410:0103 B110 MOV CL ,10

4410:0105 01C3 ADD BX ,AX

4410:0107 FEC9 DEC CL

4410:0109 75FA JNZ 0105

Example 2: To add 1 to 10 --- A detailed Version

.data ; data segment

answer label byte

 db „the number is ‟, 0

i label byte

 db dup(?)

sum label byte

 db 0

.code

main proc near

 mov i, 1

 jmp L1

 jmp L2

L2 : mov ax, i

 add sum, ax

 inc i

L1 : cmp i, 11

 j L L2

 push sum

 mov ax, offset answer

 push ax

 call _printf

.end

SECTION SIX

MACROS AND PROCEDURES

A macros is a group of repetitive instructions on a program which are codified only once and can

be used as many times as necessary.

The main difference between a macro and a procedure is that in the macro the passage of

parameters is possible and in the procedure it is not, this is only applicable to the TASM – there

are other programming languages which do not allow it. At the moment the macro is executed

each parameter is substituted by the name or value specified at the time of the call.

We can say then that a procedure is an extension of a determined program, while the macro is a

module with specific functions which can be used by different programs.

Another difference between a macro and procedure is the way of calling each one, to call a

procedure the use of directive is required , on the other hand the call of macros is done as if it

were an assembler instruction.

SYNTAX OF A MACRO

The parts which make a macro are:

Declaration of the macro

Code of the macro

Macro termination directive

The declaration of the macro is done the following way:

NameMacro MACRO [parameter1, parameter2…]

Syntax of a Procedure

There are two types of procedures , The intrasegments, which are found on the same segments of

instructions , and the inter-segments which can be stored on different memory segments.

To divert the flow of a procedure (calling it), the following directive is used:

CALL NameOfTheProcedure

The part which make a procedure are:

i. Declaration of the procedure

ii. Code of the procedure

iii. Return directive

iv. Termination of the procedure

For example, if we want a routine which adds two bytes stored in AH and AL each one , and

keep the addition in the BX register.

Adding Proc Near ; Declaration of the procedure

Mov BX, 0; Content of the procedure

Mov B1, Ah

Mov Ah, 00

Add Bx, Ax

Ret ; Return directive

Add Endp ; End of procedure declaration

On the declaration of first word, Adding , corresponds to the name of out procedure , Proc

declares it as such and the word Near indicates to the MASM that the procedure is intrasegment.

The Ret directive loads the IP address stored on the stack to original program, lastly , the Add

Endp directive indicates the end of the procedure.

REFERENCES

1. D.J BRADLEY “ASSEMBLY LANGUAGE PROGRAMS FOR THE IBM PERSONAL

 COMPUTERS”

2 BERRY BREY ”THE INTEL PROCESSOR 8086/8088, 80186/80188, 80286, 80386,

 80486, PENTIUM AND PENTIUM PRO PROCESSOR ARCHITECTURE

 PROGRAMMING INTERFACE”.

