
http://www.unaab.edu.ng

1
OPERATING SYSTEM II

Course Code//Semester:- CSC 413/First

Course Title:- Computer Operation II

Course Unit:- 3 Units

Course Lecturer:- DR. A. S. SODIYA

Contact Hours:- 4hrs per week

Files system, memory management, job management and mathematical theory of jobs

scheduling operating systems implementation techniques, modular and abstraction:

synchronization, PSV operation, detailed studies of some operating systems.

The course will be examined at the end of the semester and the examination score is 70%.

Continuous Assessment Test (CAT) will be 30%, making a total of 100% for the course. The

CAT consists of Mid-Semester Test, Practical, Assignment, Quiz and Presentation.

CHAPTER ONE - UNIX OPERATING SYSTEM

1.0 INTRODUCTION TO UNIX OPERATING SYSTEM

An operating system is the suite of programs which make the computer work.

COURSE DETAILS:

COURSE CONTENT:

COURSE REQUIREMENTS:

LECTURE NOTES

http://www.unaab.edu.ng

2
OPERATING SYSTEM II

The UNIX operating system was designed to let a number of programmers access the computer

at the same time and share its resources. This real-time sharing of resources makes UNIX one of

the most powerful operating systems ever.

 Features of UNIX operating system:

• Multitasking capability (UNIX lets a computer do several things at once,)

• Multiuser capability (The computer can take the commands of a number of users --

determined by the design of the computer -- to run programs, access files, and print

documents at the same time.)

• Portability (permit to move from one brand of computer to another with a minimum of

code changes.)

• Library of application software

COMPONENT OF UNIX O/S :

The UNIX operating system is made up of three parts; the kernel, the shell and the programs.

1. The kernel :

The kernel of UNIX is the hub of the operating system: it allocates time and memory to

programs and handles the file storage and communications in response to system calls.

An illustration of the way that the shell and the kernel work together, suppose a user types rm

myfile (which has the effect of removing the file myfile). The shell searches the filestore for the

file containing the program rm, and then requests the kernel, through system calls, to execute the

program rm on myfile. When the process rm myfile has finished running, the shell then returns

the UNIX prompt to the user, indicating that it is waiting for further commands.

2. The shell :

The shell acts as an interface between the user and the kernel. When a user logs in, the login

program checks the username and password, and then starts another program called the shell.

The shell is a command line interpreter (CLI) which interprets the commands the user types in

and then arranges for them to be carried out.

http://www.unaab.edu.ng

3
OPERATING SYSTEM II

The commands are themselves programs. When they terminate, the shell would give the user

another prompt.

The adept user can customize his/her own shell, and users can use different shells on the same

machine. As an illustration the shell may be customized with certain features to help the user in

inputting commands, filename Completion - By typing part of the name of a command, filename

or directory and pressing the [Tab] key, the shell will complete the rest of the name

automatically. If the shell finds more than one name beginning with the letters that has been

typed, it would beep, prompting the user to type a few more letters before pressing the tab key

again.

3. Programs

Program consists of the tools and applications that offer additional functionality to the operating

system. Typically, tools are grouped into categories for certain functions, such as word

processing, business applications, or programming.

2.0 HISTORY

The history of UNIX starts back in 1969, when a small group composed of Ken Thompson,

Dennis Ritchie and others started working on the "little-used PDP-7 in a corner" at Bell Lab and

what was to become UNIX. For 10years,the development of UNIX proceeded at AT&T in

numbered versions. The 1974 version was re-written in C, a major mile stone for the operating

system’s portability among different systems .The 1975 version was the first to become available

outside Bell Lab. It became the basis of the first version of UNIX developed at the university of

California Berkely. By 1983, Computer Research Group (CRG), UNIX System Group (USG)

and a third group merge to become UNIX System Development Lab and AT&T announces

UNIX System V, the first supported release. Installed base was 45,000. The goals of the group

were to design an operating system to satisfy the following objectives:

• Simple and elegant

http://www.unaab.edu.ng

4
OPERATING SYSTEM II

• Written in a high level language rather than assembly language

• Allow re-use of code

The group worked primarily in the high level language in developing the operating system. The

first edition was released in 1971, it had an assembler for a PDP-11/20, file system, fork(), roff

and ed. It was used for text processing of patent document.

In 1998, X/Open introduced the UNIX 95. In 1995, a branding programme for implementations

of the Single UNIX Specification. Novell sold UnixWare business line to SCO and was Digital

UNIX introduced in the same year.

In 1999, the UNIX system reaches its 30th anniversary. Linux 2.2 kernel was released. The Open

Group and the IEEE commence joint development of a revision to POSIX and the Single UNIX

Specification.

In 2003, The core volumes of Version 3 of the Single UNIX Specification were approved as an

international standard.

In addition, while initially designed for medium-sized minicomputers, the operating system was

soon moved to larger, more powerful mainframe computers. As personal computers grew in

popularity, versions of UNIX found their way into these boxes, and a number of companies

produce UNIX-based machines for the scientific and programming communities.

UNIX POPULARITY

 Many vendors have decide to use UNIX because of the following reasons :

• UNIX is relatively easy to run. Only a very small amount of its codes are written in

assembly language. UNIX is nearly the unanimous choice of operating system for

computer companies started since 1985. The user benefit which results from this is that

UNIX runs on a wide variety of computer systems. Many traditional vendors have made

UNIX available on their systems in addition to their proprietary operating systems.

http://www.unaab.edu.ng

5
OPERATING SYSTEM II

• The application program interface allows many different types of applications to be easily

implemented under UNIX without writing assembly language. These applications are

relatively portable across multiple vendor hardware platforms. Third party software

vendors can save costs by supporting a single UNIX version of their software rather than

four completely different vendor specific versions requiring four times the maintenance.

• Vendor-independent networking allows users to easily network multiple systems from

many different vendors.

3.0 DESIGN ISSUES OF UNIX

UNIX is a stable, multi-user, multi-tasking system for servers, desktop and laptop. It has a

graphical user interface (GUI) similar to Microsoft Windows which provides an easy to use

environment.

Everything in UNIX is either a file or a process.

A process is an executing program identified by a unique PID (process identifier).

A file is a collection of data. They are created by users using text editors, running compilers etc.

All the files are grouped together in the directory structure.

3.1 The design of the unix operating system

Memory management Policies:

• Allocating swap space

• Freeing swap space

• Swapping

• Demand paging

MEMORY

Primary memory is a precious resource that frequently cannot contain all active processes in the

system

The memory management system decides which processes should reside (at least partially) in

main memory

It monitors the amount of available primary memory and may periodically write processes to a

secondary device called the swap device to provide more space in primary memory

http://www.unaab.edu.ng

6
OPERATING SYSTEM II

At a later time, the kernel reads the data from swap device back to main memory

UNIX Memory Management Policies

• Swapping

Easy to implement

Less system overhead

• Demand Paging

Greater flexibility

Swapping

The swap device is a block device in a configurable section of a disk

Kernel allocates contiguous space on the swap device without fragmentation

It maintains free space of the swap device in an in-core table, called map

The kernel treats each unit of the swap map as group of disk blocks

As kernel allocates and frees resources, it updates the map accordingly

Algorithm: Allocate Swap Space

• malloc(address_of_map, number_of_unit)

– for (every map entry)

• if (current map entry can fit requested units)

– if (requested units == number of units in entry)

» Delete entry from map

– else

» Adjust start address of entry

– return original address of entry

– return -1

http://www.unaab.edu.ng

7
OPERATING SYSTEM II

Swapping Process Out

 Memory Swap device

 Kernel swap out when it needs memory

1. When fork() called for allocate child process

2. When called for increase the size of process

3.When process become larger by growth of its stack

4. Previously swapped out process want to swap in but not enough memory

The kernel must gather the page addresses of data at primary memory to be swapped out Kernel

copies the physical memory assigned to a process to the allocated space on the swap device.The

mapping between physical memory and swap device is kept in page table entry Demand Paging

Not all page of process resides in memory

When a process accesses a page that is not part of its working set, it incurs a page fault.

The kernel suspends the execution of the process until it reads the page into memory and makes

it accessible to the process

3.3 INTERRUPT HANDLERS

 [Macro]

system: with-enabled-interrupts specs &rest body

This macro should be called with a list of signal specifications, specs. Each element of specs

should be a list of two elements: the first should be the Unix signal for which a handler should be

established, the second should be a function to be called when the signal is received One or more

signal handlers can be established in this way. with-enabled-interrupts establishes the correct

signal handlers and then executes the forms in body. The forms are executed in an unwind-

protect so that the state of the signal handlers will be restored to what it was before the with-

enabled-interrupts was entered. A signal handler function specified as NIL will set the Unix

http://www.unaab.edu.ng

8
OPERATING SYSTEM II

signal handler to the default which is normally either to ignore the signal or to cause a core dump

depending on the particular signal.

It is sometimes necessary to execute a piece a code that can not be interrupted. This macro the

forms in body with interrupts disabled. Note that the Unix interrupts are not actually disabled,

rather they are queued until after body has finished executing.

When executing an interrupt handler, the system disables interrupts, as if the handler was

wrapped in a without-interrupts. The macro with-interrupts can be used to enable interrupts while

the forms in body are evaluated. This is useful if body is going to enter a break loop or do some

long computation that might need to be interrupt

For some interrupts, such as SIGTSTP (suspend the Lisp process and return to the Unix shell) it

is necessary to leave Hemlock and then return to it. This macro executes the forms in body after

exiting Hemlock. When body has been executed, control is returned to Hemlock.

[Function]

This function establishes function as the handler for signal.

Unless you want to establish a global signal handler, you should use the macro with-enabled-

interrupts to temporarily establish a signal handler. enable-interrupt returns the old function

associated with the signal.

[Function]

system: ignore-interrupt signal

Ignore-interrupt sets the Unix signal mechanism to ignore signal which means that the Lisp

process will never see the signal. Ignore-interrupt returns the old function associated with the

signal or nil if none is currently defined.

http://www.unaab.edu.ng

9
OPERATING SYSTEM II

Default-interrupt can be used to tell the Unix signal mechanism to perform the default action for

signal.

3.4 UNIX PROCESS SCHEDULING

There is the need for processes on a system to occasionally request services from the kernel.

Some older operating systems had a rendezvous style of providing these services - the process

would request a service and wait at a particular point, until a kernel task came along and serviced

the request on behalf of the process.

UNIX works very differently. Rather than having kernel tasks service the requests of a process,

the process itself enters kernel space. This means that rather than the process waiting "outside"

the kernel; it enters the kernel itself (i.e. the process will start executing kernel code for itself).

When a process invokes a system call, the hardware is switched to the kernel settings. At this

point, the process will be executing code from the kernel image.

The Kernel in UNIX

• Controls the execution of processes by allowing their creation, termination,

communication.

• Schedules processes fairly for execution on CPU

• Allocates main memory for an executing process

• Allocates secondary memory for efficient storage and retrieval of user data

• Allows controlled peripheral device access to processes

3.4.1 Basic operations on processes in UNIX

Creation of processes in UNIX

 Establish a new process

 Assign a new unique process identifier (PID) to the new process

http://www.unaab.edu.ng

10
OPERATING SYSTEM II

 Allocate memory to the process for all elements of process image, including private user

address space and stack; the values can possibly come from the parent process; set up any

linkages, and then, allocate space for process control block

 Create a new process control block corresponding to the above PID and add it to the

process table; initialize di erent values in there such as parent PID, list of children

(initialized to null), program counter (set to program entry point), system stack pointer

(set to de ne the process stack boundaries)

 Initial CPU state, typically initialized to Ready or Ready, suspend Add the process id of

new process to the list of children of the creating (parent) process

 r0. Initial allocation of resources

 k0. Initial priority of the process

 Accounting information and limits

 Add the process to the ready list

 Initial allocation of memory and resources must be a subset of parent’s and be assigned

as shared Initial priority of the process can be greater than the parent’s

Management of processes in UNIX

How processes are managed after creation in UNIX

1. Suspend - Change process state to suspended

 A process may suspend only its descendants

 May include cascaded suspension

 Stop the process if the process is in running state and save the state of the

processor in the process control block

http://www.unaab.edu.ng

11
OPERATING SYSTEM II

 If process is already in blocked state, then leave it blocked, else change its state

to ready state

 If need be, call the scheduler to schedule the processor to some other process

2. Activate - Change process state to active

 Change one of the descendant processes to ready state

 Add the process to the ready list

3. Destroy - Remove one or more processes

 Cascaded destruction

 Only descendant processes may be destroyed

 If the process to be “killed" is running, stop its execution

 Free all the resources currently allocated to the process

 Remove the process control block associated with the killed process

4. Change priority - Set a new priority for the process

 Change the priority in the process control block

 Move the process to a different queue to reflect the new priority

3.4.2 Scheduling in UNIX

Scheduler decides the process to run first by using a scheduling algorithm

3.4.2.1 Type of scheduling used in UNIX

Pre-emptibility

 In UNIX, Processes in user space are pre-emptible - what this means is that a process may have

the CPU taken away from it arbitrarily. This is how pre-emptive multitasking works: the

scheduling routine will periodically suspend the currently executing process, and possibly

schedule another task to run on that CPU. This means that theoretically, a process can be in a

situation where it never gets the CPU back. In reality the scheduling code has an interest in

http://www.unaab.edu.ng

12
OPERATING SYSTEM II

fairness and will try to give the CPU to each process with a weak level of fairness, but there are

no guarantees

 Algorithms are:

 Shortest Remaining Time Scheduling

o Preemptive version of shortest job next scheduling

o Preemptive in nature (only at arrival time)

o Highest priority to process that need least time to complete

o Priority function P

o Schedule for execution

o Average waiting time calculations

 Round-Robin Scheduling

o Preemptive in nature

o Preemption based on time slices or time quanta

o Time quantum between 10 and 100 milliseconds

o All user processes treated to be at the same priority

o Ready queue treated as a circular queue

Desirable features of a scheduling algorithm

1. Fairness: Make sure each process gets its fair share of the CPU

2. Efficiency: Keep the CPU busy 100% of the time

3. Response time: Minimize response time for interactive users

4. Turnaround: Minimize the time batch users must wait for output

5. Throughput: Maximize the number of jobs processed per hour

3.5 DEVICE MANAGEMENT

To perform useful functions, processes need access to the peripherals connected to the computer,

which are controlled by the kernel through device drivers. For example, to show the user

something on the screen, an application would make a request to the kernel, which would

forward the request to its display driver, which is then responsible for actually plotting the

character/pixel.

http://www.unaab.edu.ng

13
OPERATING SYSTEM II

3.5.1 Special features of Device management in UNIX

Device drivers run as part of the kernel, either compiled in or as run-time loadable modules. The

kernel architectures, Monolithic kernel does this and it have the advantage of speed and

efficiency.

 Device manager

 Device manager will be the interface between the device drivers and the both the rest of the

kernel and user applications.

 The device manager needs to do two things:

1. Isolate devices drivers from the kernel so that driver writers can worry about interfacing

to the hardware and not about interfacing to the kernel

2. Isolate user applications from the hardware so that applications can work on the majority

of devices the user might connect to their system

 In most operating systems, the device manager is the only part of the kernel that

programmers really see. Writing a good interface will make the difference between an efficient

and reliable OS which works with a variety of devices and an OS which you spend all your own

time writing and debugger drivers for.

 Capabilities of device manager

1. Asynchronous I/O: that is, applications will be able to start an I/O operation and continue to

run until it terminates.

2. Plug and Play: drivers will be able to be loaded and unloaded as devices are added to and

removed from the system. Devices will be detected automatically on system startup, if

possible.

 Drivers

Because we want our kernel to be plug-and-play capable, it isn’t enough for drivers to be added

to the kernel at compile time, as Minix and old Linux do. We must be able to load and unload

them at run time. This isn’t difficult: it just means we have to extend the executable file interface

to kernel mode.

http://www.unaab.edu.ng

14
OPERATING SYSTEM II

 Interfaces

Once we’ve detected the devices installed in the system we need to keep a record of them

somewhere. The standard Unix model, employed by Minix and Linux, is to keep directory

somewhere in the file system. This directory is filled with special directory entries, directory

entries which don’t point to any data, each of which refers to a specific device via major and

minor device numbers. The major device number specifies the device type or driver to use and

the minor number specifies a particular device implemented by that drivers.

3.6 Security

An important kernel design decision is the choice of the abstraction levels where the security

mechanisms and policies should be implemented. Kernel security mechanisms play a critical role

in supporting security at higher levels.

One approach is to use firmware and kernel support for fault tolerance (see above), and build the

security policy for malicious behavior on top of that (adding features such as cryptography

mechanisms where necessary), delegating some responsibility to the compiler. Approaches that

delegate enforcement of security policy to the compiler and/or the application level are often

called language-based security.

The lack of many critical security mechanisms in current mainstream operating systems impedes

the implementation of adequate security policies at the application abstraction level. In fact, a

common misconception in computer security is that any security policy can be implemented in

an application regardless of kernel support.

4.0 ADVANTAGES OF UNIX O/S

http://www.unaab.edu.ng

15
OPERATING SYSTEM II

- Unix is more flexible and can be installed on many different types of machines, including

main-frame computers, supercomputers and micro-computers.

- Unix is more stable and does not go down as often as Windows does, therefore requires less

administration and maintenance.

- Unix has greater built-in security and permissions features than Windows.

- Unix possesses much greater processing power than Windows.

- Unix is the leader in serving the Web. About 90% of the Internet relies on Unix operating

systems running Apache, the world's most widely used Web server.

- Software upgrades from Microsoft often require the user to purchase new or more hardware or

prerequisite software. That is not the case with Unix.

- The mostly free or inexpensive open-source operating systems, such as Linux and BSD, with

their flexibility and control, are very attractive to (aspiring) computer wizards. Many of the

smartest programmers are developing state-of-the-art software free of charge for the fast growing

"open-source movement”.

- Unix also inspires novel approaches to software design, such as solving problems by

interconnecting simpler tools instead of creating large monolithic application programs.

http://www.unaab.edu.ng

16
OPERATING SYSTEM II

CHAPTER TWO - LINUX

Introduction

What is Linux?

Linux is a UNIX-like operating system that runs on many different computers. Linux was first

released in 1991 by its author Linus Torvalds at the University of Helsinki and developed by

Linus Torvalds (author) and Andrew Morton. Linux is the operating system kernel, which comes

with a distribution of software The Linux kernel is an operating system kernel used by a family

of Unix-like operating system. It started out as a personal computer system used by individuals,

and has since gained the support of several large operations such as HP, IBM, and Sun

http://www.unaab.edu.ng

17
OPERATING SYSTEM II

microsystem. It now used mostly as the server operating system. It’s a prime example of open

source development system. It’s written in C

Since then it has grown tremendously in popularity as programmers around the world embraced

his project of building a free operating system, adding features, and fixing problems. Linux is

portable, which means you’ll find versions running on name-brand or clone PCs, Apple

Macintoshes, Sun workstations, or Digital Equipment Corporation Alpha-based computers.

Linux also comes with source code, so you can change or customize the software to adapt to

your needs. Finally, Linux is a great operating system, rich in features adopted from other

versions of UNIX. The term Linux distribution is used to refer to the various operating systems

that run on top of the Linux kernel. Linux is one of the most prominent examples of free/open

source software. Today, the Linux kernel has received contributions from thousands of

programmers.

Event Leading To the Creation

The UNIX operating system was conceived and implemented in 1960 and first released in 1970.

Its portability and availability caused it to the widely adopted and modified by academic

institutions and businesses. In 1983, Richard Stallman started the GNU project with the goal of

creating a free UNIX like operating system. As part of the work, he wrote the GNU general

public license (GPL). By the early 1990’s there was almost enough available software to create a

full operating system. However, the GNU kernel called HURD, failed to attract attention from

developers leaving GNU incomplete. A solution seemed to appear in form of MINIX. It was

released by Andrew S Tanenbaum in 1987, as an operating system, MINIX was not a superb one

while source code was available, modification and retribution was restricted. This factors and

lack of widely adopted free kernel made Torvalds start is project.

Processes

The concept of a process is fundamental to any multiprogramming operating system. A process

is usually defined as an instance of a program in execution; thus, if 16 users are running vi at

http://www.unaab.edu.ng

18
OPERATING SYSTEM II

once, there are 16 separate processes (although they can share the same executable code).

Processes are often called "tasks" in Linux source code.

Properties of processes

• Static

• Dynamic

Process Descriptor

In order to manage processes, the kernel must have a clear picture of what each process is doing.

It must know, for instance, the process's priority, whether it is running on the CPU or blocked on

some event, what address space has been assigned to it, which files it is allowed to address, and

so on. This is the role of the process descriptor, that is, of a task_struct type structure whose

fields contain all the information related to a single process. As the repository of so much

information, the process descriptor is rather complex. Not only does it contain many fields itself,

but some contain pointers to other data structures that, in turn, contain pointers to other

structures. The figure below describes the Linux process

descriptor schematically.

Figure 1 The Linux Process Descriptor

http://www.unaab.edu.ng

19
OPERATING SYSTEM II

The five data structures on the right side of the figure refer to specific resources owned by the

process. These resources will be covered in future chapters. This chapter will focus on two types

of fields that refer to the process state and to process parent/child relationships.

Process State

As its name implies, the ‘state’ field of the process descriptor describes what is currently

happening to the process. It consists of an array of flags, each of which describes a possible

process state. In the current Linux version these states are mutually exclusive, and hence exactly

one flag of state is set; the remaining flags are cleared. The following are thepossible process

states:

TASK_RUNNING

http://www.unaab.edu.ng

20
OPERATING SYSTEM II

The process is either executing on the CPU or waiting to be executed.

TASK_INTERRUPTIBLE

The process is suspended (sleeping) until some condition becomes true. Raising a

hardware interrupt, releasing a system resource the process is waiting for, or delivering a signal

are examples of conditions that might wake up the process, that is, put its state back to

TASK_RUNNING.

TASK_UNINTERRUPTIBLE

Like the previous state, except that delivering a signal to the sleeping process leaves its state

unchanged. This process state is seldom used. It is valuable, however, under certain specific

conditions in which a process must wait until a given event occurs without being interrupted. For

instance, this state may be used when a process opens a device file and the corresponding device

driver starts probing for a corresponding hardware device. The device driver must not be

interrupted until the probing is complete, or the hardware device could be left in an unpredictable

state.

TASK_STOPPED

Process execution has been stopped: the process enters this state after receiving a SIGSTOP,

SIGTSTP, SIGTTIN, or SIGTTOU signal. When a process is being monitored by another (such

as when a debugger executes a ptrace() system call to monitor a test program), any signal may

put the process in the TASK_STOPPED state.

TASK_ZOMBIE

http://www.unaab.edu.ng

21
OPERATING SYSTEM II

Process execution is terminated, but the parent process has not yet issued a wait()- like system

call (wait2(), wait3(), wait4(), or waitpid()) to return information about the dead process.

Before the wait()-like call is issued, the kernel cannot discard the data contained in the dead

process descriptor because the parent could need it

Identifying A Process

Any Unix-like operating system, on the other hand, allows users to identify processes by means

of a number called the Process ID (or PID). The PID is a 32-bit unsigned integer stored in the

PID field of the process descriptor. PIDs are numbered sequentially: the PID of a newly created

process is normally the PID of the previously created process incremented by one. However, for

compatibility with traditional Unix systems developed for 16-bit hardware platforms, the

maximum PID number allowed on Linux is 32767. When the kernel creates the 32768th process

in the system, it must start recycling the lower unused PIDs.

Memory Management

The memory management subsystem is one of the most important parts of the operating system.

Since the early days of computing, there has been a need for more memory than exists physically

in a system. Strategies have been developed to overcome this limitation and the most successful

of these is virtual memory. Virtual memory makes the system appear to have more memory than

is physically present by sharing it among competing processes as they need it. Virtual memory

does more than just make your computer's memory go farther. The memory management

subsystem provides:

Large Address Spaces

http://www.unaab.edu.ng

22
OPERATING SYSTEM II

The operating system makes the system appear as if it has a larger amount of memory than it

actually has. The virtual memory can be many times larger than the physical memory in the

system.

Protection

Each process in the system has its own virtual address space. These virtual address spaces are

completely separate from each other and so a process running one application cannot affect

another. Also, the hardware virtual memory mechanisms allow areas of memory to be protected

against writing. This protects code and data from being overwritten by rogue applications.

Memory Mapping

Memory mapping is used to map image and data files into a process' address space. In memory

mapping, the contents of a file are linked directly into the virtual address space of a process.

Fair Physical Memory Allocation

The memory management subsystem allows each running process in the system a fair share of

the physical memory of the system.

Shared Virtual Memory

Although virtual memory allows processes to have separate (virtual) address spaces, there are

times when you need processes to share memory. For example there could be several processes

in the system running the bash command shell. Rather than have several copies of bash, one in

each process's virtual address space, it is better to have only one copy in physical memory and all

of the processes running bash share it. Dynamic libraries are another common example of

executing code shared between several processes.

Shared memory can also be used as an Inter Process Communication (IPC) mechanism, with two

or more processes exchanging information via memory common to all of them. Linux supports

the Unix System V shared memory IPC.

http://www.unaab.edu.ng

23
OPERATING SYSTEM II

3.1 An Abstract Model of Virtual Memory

Figure 3.1: Abstract model of Virtual to Physical address mapping

Before considering the methods that Linux uses to support virtual memory it is useful to consider

an abstract model that is not cluttered by too much detail.

As the processor executes a program it reads an instruction from memory and decodes it. In

decoding the instruction it may need to fetch or store the contents of a location in memory. The

processor then executes the instruction and moves onto the next instruction in the program. In

this way the processor is always accessing memory either to fetch instructions or to fetch and

store data.

In a virtual memory system all of these addresses are virtual addresses and not physical

addresses. These virtual addresses are converted into physical addresses by the processor based

on information held in a set of tables maintained by the operating system.

To make this translation easier, virtual and physical memory are divided into handy sized chunks

called pages. These pages are all the same size, they need not be but if they were not, the system

http://www.unaab.edu.ng

24
OPERATING SYSTEM II

would be very hard to administer. Linux on Alpha AXP systems uses 8 Kbyte pages and on Intel

x86 systems it uses 4 Kbyte pages. Each of these pages is given a unique number; the page frame

number (PFN).

In this paged model, a virtual address is composed of two parts; an offset and a virtual page

frame number. If the page size is 4 Kbytes, bits 11:0 of the virtual address contain the offset and

bits 12 and above are the virtual page frame number. Each time the processor encounters a

virtual address it must extract the offset and the virtual page frame number. The processor must

translate the virtual page frame number into a physical one and then access the location at the

correct offset into that physical page. To do this the processor uses page tables.

Interrupts And Exceptions

An interrupt is usually defined as an event that alters the sequence of instructions executed by a

processor. Such events correspond to electrical signals generated by hardware circuits both

inside and outside of the CPU chip.

Interrupts are often divided into synchronous and asynchronous interrupts:

• Synchronous interrupts are produced by the CPU control unit while executing

instructions and are called synchronous because the control unit issues them only after

terminating the execution of an instruction.

• Asynchronous interrupts are generated by other hardware devices at arbitrary times with respect

to the CPU clock signals. Intel 80x86 microprocessor manuals designate synchronous and

asynchronous interrupts as exceptions and interrupts, respectively. We'll adopt this classification,

although we'll

occasionally use the term "interrupt signal" to designate both types together (synchronous as well

as asynchronous). Interrupts are issued by interval timers and I/O devices; for instance, the

arrival of a keystroke from a user sets off an interrupt. Exceptions, on the other hand, are caused

either by programming errors or by anomalous conditions that must be handled by the kernel. In

http://www.unaab.edu.ng

25
OPERATING SYSTEM II

the first case, the kernel handles the exception by delivering to the current process one of the

signals familiar to every Unix programmer. In the second case, the kernel performs all the

steps needed to recover from the anomalous condition, such as a page fault or a request (via an

int instruction) for a kernel service.

The Role of Interrupt Signals

As the name suggests, interrupt signals provide a way to divert the processor to code outside the

normal flow of control. When an interrupt signal arrives, the CPU must stop what it's currently

doing and switch to a new activity; it does this by saving the current value of the program

counter (i.e., the content of the eip and cs registers) in the Kernel Mode stack and by placing an

address related to the interrupt type into the program counter. There is a key difference between

interrupt handling and process switching: the code executed by an interrupt or by an exception

handler is not a process. Rather, it is a kernel control path that runs on behalf of the same process

that was running when the interrupt occurred. As a kernel control path, the interrupt handler is

lighter than a process (it has less context and requires less time to set up or tear down).

 Interrupt handling is one of the most sensitive tasks performed by the kernel, since it must

satisfy the following constraints:

• Interrupts can come at any time, when the kernel may want to finish something else it was

trying to do. The kernel's goal is therefore to get the interrupt out of the way as soon as possible

and defer as much processing as it can. For instance, suppose a block of data has arrived on a

network line. When the hardware interrupts the kernel, it could simply mark the presence of data,

give the processor back to whatever was running before, and do the rest of the processing later

(like moving the data into a buffer where its recipient process can find it and restarting the

process). The activities that the kernel needs to perform in response to an interrupt are thus

divided into two parts: a top half that the kernel executes right away and a bottom half that is left

for later. The kernel keeps a queue pointing to all the functions that represent bottom halves

waiting to be executed and pulls them off the queue to execute them at particular points in

processing.

http://www.unaab.edu.ng

26
OPERATING SYSTEM II

• Since interrupts can come at any time, the kernel might be handling one of them while another

one (of a different type) occurs. This should be allowed as much as possible since it keeps the

I/O devices busy. As a result, the interrupt handlers must be coded so that the corresponding

kernel control paths can be executed in a nested manner. When the last kernel control path

terminates, the kernel must be able to resume execution of the interrupted process or switch to

another process if the interrupt signal has caused a rescheduling activity.

• Although the kernel may accept a new interrupt signal while handling a previous one, some

critical regions exist inside the kernel code where interrupts must be disabled. Such critical

regions must be limited as much as possible since, according to the previous requirement, the

kernel, and in particular the interrupt handlers, should run most of the time with the interrupts

enabled.

 Interrupts and Exceptions

The Intel documentation classifies interrupts and exceptions as follows:

• Interrupts:

Maskable interrupts

Sent to the INTR pin of the microprocessor. They can be disabled by clearing the IF flag of the

eflags register. All IRQs issued by I/O devices give rise to maskable

interrupts.

Nonmaskable interrupts

Sent to the NMI (Nonmaskable Interrupts) pin of the microprocessor. They are not

disabled by clearing the IF flag. Only a few critical events, such as hardware failures,

give rise to nonmaskable interrupts.

http://www.unaab.edu.ng

27
OPERATING SYSTEM II

• Exceptions:

Processor-detected exceptions

Generated when the CPU detects an anomalous condition while executing an instruction. These

are further divided into three groups, depending on the value of the eip register that is saved on

the Kernel Mode stack when the CPU control unit raises the exception:

Faults

The saved value of eip is the address of the instruction that caused the fault, and hence that

instruction can be resumed when the exception handler terminates. Resuming the same

instruction is necessary whenever the handler is able to correct the anomalous condition that

caused the exception.

Traps

The saved value of eip is the address of the instruction that should be executed after the one that

caused the trap. A trap is triggered only when there is no need to re-execute the instruction that

was terminated. The main use of traps is for debugging purposes: the role of the interrupt signal

in this case is to notify the debugger that a specific instruction has been executed (for instance, a

breakpoint has been reached within a program). Once the user has examined the data provided by

the debugger, she may ask that execution of the debugged program resume starting from the next

instruction.

Aborts

A serious error occurred; the control unit is in trouble, and it may be unable to store a meaningful

value in the eip register. Aborts are caused by hardware failures or by invalid values in system

tables. The interrupt signal sent by the control unit is an emergency signal used to switch control

to the corresponding abort exception handler. This handler has no choice but to force the affected

process to terminate.

http://www.unaab.edu.ng

28
OPERATING SYSTEM II

Programmed exceptions

Occur at the request of the programmer. They are triggered by int or int3 instructions; the ‘into’

(check for overflow) and ’bound’ (check on address bound) instructions also give rise to a

programmed exception when the condition they are checking is not true. Programmed exceptions

are handled by the control unit as traps; they are often called software interrupts. Such

exceptions have two common uses: to implement system calls, and to notify a debugger of a

specific event.

Linux uses two types of descriptors:

Interrupt gates & trap gates.

Trap gate: Trap gates are used for activating exception handlers.

Interrupt gate: Cannot be accessed by user mode progs

The Linux Booting Process

In most cases, the Linux kernel is loaded from a hard disk, and a two-stage boot loader is

required. The most commonly used Linux boot loader on Intel systems is named LILO (Linux

Loader); corresponding programs exist for other architectures. LILO may be installed either on

the MBR, replacing the small program that loads the boot sector of the active partition, or in the

boot sector of a (usually active) disk partition. In both cases, the final result is the same: when

the loader is executed at boot time, the user may choose which operating system to load. The

LILO boot loader is broken into two parts, since otherwise it would be too large to fit into

the MBR. The MBR or the partition boot sector includes a small boot loader, which is loaded

into RAM starting from address 0x00007c00 by the BIOS. This small program moves itself to

the address 0x0009a000, sets up the Real Mode stack (ranging from 0x0009b000 to

0x0009a200), and loads the second part of the LILO boot loader into RAM starting from address

0x0009b000. In turn, this latter program reads a map of available operating systems from disk

http://www.unaab.edu.ng

29
OPERATING SYSTEM II

and offers the user a prompt so she can choose one of them. Finally, after the user has chosen the

kernel to be loaded (or let a time-out elapse so that LILO chooses a default), the boot loader may

either copy the boot sector of the corresponding partition into RAM and execute it or directly

copy the kernel image into RAM. Assuming that a Linux kernel image must be booted, the LILO

boot loader, which relies on BIOS routines, performs essentially the same operations as the boot

loader integrated into the kernel image described in the previous section about floppy disks. The

loader displays the "Loading Linux" message; then it copies the integrated boot loader of the

kernel image to address 0x00090000, the setup() code to address 0x00090200, and the rest of

the kernel image to address 0x00010000 or 0x00100000. Then it jumps to the setup() code.

The setup() functions

1. Invokes a BIOS procedure to find out the amount of RAM available in the system.

2. Sets the keyboard repeat delay and rate. (When the user keeps a key pressed past a certain

amount of time, the keyboard device sends the corresponding keycode over and over to the

CPU.)

3. Initializes the video adapter card.

4. Reinitializes the disk controller and determines the hard disk parameters.

5. Checks for an IBM Micro Channel bus (MCA).

6. Checks for a PS/2 pointing device (bus mouse).

7. Checks for Advanced Power Management (APM) BIOS support.

8. If the kernel image was loaded low in RAM (at physical address 0x00010000), moves it to

physical address 0x00001000. Conversely, if the kernel image was loaded high in RAM, does

not move it. This step is necessary because, in order to be able to store the kernel image on a

floppy disk and to save time while booting, the kernel image stored on disk is compressed, and

http://www.unaab.edu.ng

30
OPERATING SYSTEM II

the decompression routine needs some free space to use as a temporary buffer following the

kernel image in RAM.

9. Sets up a provisional Interrupt Descriptor Table (IDT) and a provisional Global

Descriptor Table (GDT).

10. Resets the floating point unit (FPU), if any.

11. Reprograms the Programmable Interrupt Controller (PIC) and maps the 16 hardware

interrupts (IRQ lines) to the range of vectors from 32 to 47. The kernel must perform this step

because the BIOS erroneously maps the hardware interrupts in the range from to 15, which is

already used for CPU exceptions (see Section 4.2.3 in Chapter 4).

12. Switches the CPU from Real Mode to Protected Mode by setting the PE bit in the cr0 status

register. The provisional kernel page tables contained in swapper_pg_dir and pg0 identically

map the linear addresses to the same physical addresses. Therefore, the transition from Real

Mode to Protected Mode goes smoothly.

13. Jumps to the startup_32() assembly language function.

The startup_32() Functions

There are two different startup_32() functions; the one we refer to here is coded in the

arch/i386/boot/compressed/head.S file. After setup() terminates, the function has been moved

either to physical address 0x00100000 or to physical address 0x00001000, depending on whether

the kernel image was loaded high or low in RAM.

This function performs the following operations:

1. Initializes the segmentation registers and a provisional stack.

http://www.unaab.edu.ng

31
OPERATING SYSTEM II

2. Fills the area of uninitialized data of the kernel identified by the _edata and _end

symbols with zeros.

3. Invokes the decompress_kernel() function to decompress the kernel image. The

"Uncompressing Linux . . . " message is displayed first. After the kernel image has

been decompressed, the "O K, booting the kernel." message is shown. If the kernel

image was loaded low, the decompressed kernel is placed at physical address

0x00100000. Otherwise, if the kernel image was loaded high, the decompressed kernel is placed

in a temporary buffer located after the compressed image. The decompressed image is then

moved into its final position, which starts at physical address 0x00100000.

4. Jumps to physical address 0x00100000. The decompressed kernel image begins with another

startup_32() function included in the arch/i386/kernel/head.S file. Using the same name for both

the functions does not create any problems (besides confusing our readers), since both functions

are executed by jumping to their initial physical addresses.

The second startup_32() function essentially sets up the execution environment for the first

Linux process (process 0). The function performs the following operations:

1. Initializes the segmentation registers with their final values.

2. Sets up the Kernel Mode stack for process.

3. Invokes setup_idt() to fill the IDT with null interrupt handlers.

4. Puts the system parameters obtained from the BIOS and the parameters passed to the operating

system into the first page frame.

5. Identifies the model of the processor.

6. Loads the gdtr and idtr registers with the addresses of the GDT and IDT tables.

http://www.unaab.edu.ng

32
OPERATING SYSTEM II

7. Jumps to the start_kernel() function.

A.5 Modern Age: The start_kernel() Function

The start_kernel() function completes the initialization of the Linux kernel. Nearly every kernel

component is initialized by this function; we mention just a few of them:

• The page tables are initialized by invoking the paging_init() function.

• The page descriptors are initialized by the mem_init() function

• The final initialization of the IDT is performed by invoking trap_init() and init_IRQ().

• The slab allocator is initialized by the kmem_cache_init() and

kmem_cache_sizes_init() functions.

• The system date and time are initialized by the time_init() function (see

• The kernel thread for process 1 is created by invoking the kernel_thread() function. In turn,

this kernel thread creates the other kernel threads and executes the /sbin/init program.

 Device Management(Managing I/O Devices)

The aim of this section is to illustrate the overall organization of device drivers in Linux.

I/O ARCHITECTURE

In order to make a computer work properly, data paths must be provided that let information

flow between CPU(s), RAM, and the score of I/O devices that can be connected nowadays to a

personal computer. These data paths, which are denoted collectively as the bus, act as the

primary communication channel inside the computer. Several types of buses, such as the ISA,

EISA, PCI, and MCA, are currently in use. In this section we'll discuss the functional

characteristics common to all PC architectures, without giving details about a specific bus type.

http://www.unaab.edu.ng

33
OPERATING SYSTEM II

In fact, what is commonly denoted as bus consists of three specialized buses:

Data bus

A group of lines that transfers data in parallel. The Pentium has a 64-bit-wide data bus.

Address bus

A group of lines that transmits an address in parallel. The Pentium has a 32-bit-wide address bus.

Control bus

A group of lines that transmits control information to the connected circuits. The

Pentium makes use of control lines to specify, for instance, whether the bus is used to allow data

transfers between a processor and the RAM or alternatively between a processor and an I/O

device. Control lines also determine whether a read or a write transfer must be performed. When

the bus connects the CPU to an I/O device, it is called an I/O bus. In this case, Intel 80x86

microprocessors use 16 out of the 32 address lines to address I/O devices and 8, 16, or 32 out of

the 64 data lines to transfer data. The I/O bus, in turn, is connected to each I/O Understanding the

Linux Kernel 344 device by means of a hierarchy of hardware components including up to three

elements: I/O ports, interfaces, and device controllers. architecture.

I/O Ports

Each device connected to the I/O bus has its own set of I/O addresses, which are usually called

I/O ports. In the IBM PC architecture, the I/O address space provides up to 65,536 8-bit

I/O ports. Two consecutive 8-bit ports may be regarded as a single 16-bit port, which must start

on an even address. Similarly, two consecutive 16-bit ports may be regarded as a single 32-bit

port, which must start on an address that is a multiple of 4. Four special assembly language

instructions called in, ins, out, and outs allow the CPU to read from and write into an I/O port.

http://www.unaab.edu.ng

34
OPERATING SYSTEM II

While executing one of these instructions, the CPU makes use of the address bus to select the

required I/O port and of the data bus to transfer data between a CPU register and the port. I/O

ports may also be mapped into addresses of the physical address space: the processor is

then able to communicate with an I/O device by issuing assembly language instructions that

operate directly on memory (for instance, mov, and, or, and so on). Modern hardware devices

tend to prefer mapped I/O, since it is faster and can be combined with DMA.

An important objective for system designers is to offer a unified approach to I/O

programming without sacrificing performance. Toward that end, the I/O ports of each device are

structured into a set of specialized registers. The CPU writes into

the control register the commands to be sent to the device and reads from the status register a

value that represents the internal state of the device. The CPU also fetches data from the device

by reading bytes from the input register and pushes data to the device by writing bytes into the

output register.

Associating Files with I/O Devices

UNIX-like operating systems are based on the notion of a file, which is just an information

container structured as a sequence of bytes. According to this approach, I/O devices are treated

as files; thus, the same system calls used to interact with regular files on disk can be used to

directly interact with I/O devices. As an example, the same write() system call may be used to

write data into a regular file, or to send it to a printer by writing to the /dev/lp0 device file. Let's

now examine in more detail how this schema is carried out.

 Device Files

Device files are used to represent most of the I/O devices supported by Linux. Besides its name,

each device file has three main attributes:

Type

http://www.unaab.edu.ng

35
OPERATING SYSTEM II

Either block or character.

Major number

A number ranging from 1 to 255 that identifies the device type. Usually, all device

files having the same major number and the same type share the same set of file

operations, since they are handled by the same device driver.

Minor number

A number that identifies a specific device among a group of devices that share the

same major number. The mknod() system call is used to create device files. It receives the name

of the device file, its type, and the major and minor numbers as parameters. The last two

parameters are merged in a 16-bit dev_t number: the eight most significant bits identify the

major number, while the remaining ones identify the minor number. The MAJOR and MINOR

macros extract the two values from the 16-bit number, while the MKDEV macro merges a major

and minor number into a 16-bit number. Actually, dev_t is the data type specifically used by

application programs; the kernel uses the kdev_t data type. In Linux 2.2 both types reduce to an

unsigned short integer, but kdev_t will become a complete device file descriptor in some future

Linux version.

Device files are usually included in the /dev directory. The following illustrates the attributes of

some device files. Notice how the same major number may be used to identify both a character

and a block device.

Name Type Major Minor Description

/dev/fd0 block 2 0 Floppy disk

/dev/hda block 3 0 First IDE disk

/dev/hda2 block 3 2 Second primary partition of first IDE disk

/dev/hdb block 3 64 Second IDE disk

http://www.unaab.edu.ng

36
OPERATING SYSTEM II

/dev/hdb3 block 3 67 Third primary partition of second IDE disk

/dev/ttyp0 char 3 0 Terminal

/dev/console char 5 1 Console

/dev/lp1 char 6 1 Parallel printer

/dev/ttyS0 char 4 64 First serial port

/dev/rtc char 10 135 Real time clock

/dev/null char 1 3 Null device (black hole)

Usually, a device file is associated with a hardware device, like a hard disk (for instance,

/dev/hda), or with some physical or logical portion of a hardware device, like a disk partition

(for instance, /dev/hda2). In some cases, however, a device file is not associated to any real

hardware device, but represents a fictitious logical device. For instance, /dev/null is a device

file corresponding to a "black hole": all data written into it are simply discarded, and the file

appears always empty. As far as the kernel is concerned, the name of the device file is irrelevant.

If you created a device file named /tmp/disk of type "block" with major number 3 and minor

number 0, it would be equivalent to the /dev/hda device file shown in the table. On the other

hand, device filenames may be significant for some application programs. As an example, a

communication program might assume that the first serial port is associated with the /dev/ttyS0

device file. But usually most application programs can be configured to interact

with arbitrarily named device files.

File System Management

The Second Extended File system (Ext2) is native to Linux and is used on virtually every Linux

system, Furthermore, Ext2 illustrates a lot of good practices in its support for modern file system

features with fast performance.

General Characteristics Each Unix-like operating system makes use of its own file system.

Although all such file systems comply with the POSIX interface, each of them is implemented in

a different way.

http://www.unaab.edu.ng

37
OPERATING SYSTEM II

The first versions of Linux were based on the Minix filesystem. As Linux matured, the Extended

Filesystem (Ext FS) was introduced; it included several significant extensions but offered

unsatisfactory performance. The Second Extended Filesystem (Ext2) was introduced in 1994:

besides including several new features, it is quite efficient and robust and has become the most

widely used Linux filesystem.

The following features contribute to the efficiency of Ext2:

• When creating an Ext2 filesystem, the system administrator may choose the optimal block size

(from 1024 to 4096 bytes), depending on the expected average file length.

For instance, a 1024 block size is preferable when the average file length is smaller

than a few thousand bytes because this leads to less internal fragmentation—that is,

less of a mismatch between the file length and the portion of the disk that stores it. On the other

hand, larger block sizes are usually preferable for files greater than a few thousand bytes because

this leads to fewer disk transfers, thus reducing

system overhead.

• When creating an Ext2 filesystem, the system administrator may choose how many inodes to

allow for a partition of a given size, depending on the expected number of files to be stored on it.

This maximizes the effectively usable disk space.

• The file system partitions disk blocks into groups. Each group includes data blocks and inodes

stored in adjacent tracks. Thanks to this structure, files stored in a single block group can be

accessed with a lower average disk seek time.

• The filesystem preallocates disk data blocks to regular files before they are actually used. Thus,

when the file increases in size, several blocks are already reserved at physically adjacent

positions, reducing file fragmentation.

http://www.unaab.edu.ng

38
OPERATING SYSTEM II

• Fast symbolic links are supported. If the pathname of the symbolic link has 60 bytes or less, it

is stored in the inode and can thus be translated without reading a data block.

Disk Data Structures

Figure 2 Layouts of an Ext2 partition and of an Ext2 block group

The first block in any Ext2 partition is never managed by the Ext2 filesystem, since it is reserved

for the partition boot sector. The rest of the Ext2 partition is split

into block groups , each of which has the layout shown in Figure 2. As you will notice from the

figure, some data structures must fit in exactly one block while others may require more than one

block. All the block groups in the filesystem have the same size and are stored sequentially, so

the kernel can derive the location of a block group in a disk simply from its integer index. Block

groups reduce file fragmentation, since the kernel tries to keep the data blocks belonging to a file

in the same block group if possible. Each block in a block group contains one of the following

pieces of information:

• A copy of the filesystem's superblock

• A copy of the group of block group descriptors

• A data block bitmap

• A group of inodes

• An inode bitmap

http://www.unaab.edu.ng

39
OPERATING SYSTEM II

• A chunk of data belonging to a file; that is, a data block

If a block does not contain any meaningful information, it is said to be free.

Superblock

An Ext2 disk superblock is stored in an ext2_super_block structure. The __u8, __u16, and __u32

data types denote unsigned numbers of length 8,

16, and 32 bits respectively, while the __s8, __s16, __s32 data types denote signed numbers of

length 8, 16, and 32 bits. The s_inodes_count field stores the number of inodes, while the

s_blocks_count field stores the number of blocks in the Ext2 filesystem. The s_log_block_size

field expresses the block size as a power of 2, using 1024 bytes as the unit. Thus, denotes 1024-

byte blocks, 1 denotes 2048-byte blocks, and so on. These_log_frag_size field is currently equal

to s_log_block_size, since block fragmentation is not yet implemented. The s_blocks_per_group,

s_frags_per_group, and s_inodes_per_group fields store the

number of blocks, fragments, and inodes in each block group, respectively. Some disk blocks are

reserved to the superuser (or to some other user or group of users

selected by the s_def_resuid and s_def_resgid fields). These blocks allow the system

administrator to continue to use the filesystem even when no more free blocks are available for

normal users. The s_mnt_count, s_max_mnt_count, s_lastcheck, and s_checkinterval fields set

up the Ext2 filesystem to be checked automatically at boot time. These fields cause /sbin/e2fsck

to run after a predefined number of mount operations has been performed, or when a predefined

amount of time has elapsed since the last consistency check. (Both kinds of checks can be

used together.) The consistency check is also enforced at boot time if the filesystem has not been

cleanly unmounted (for instance, after a system crash) or when the kernel discovers some errors

in it. The s_state field stores the value if the filesystem is mounted or was not cleanly

unmounted, 1 if it was cleanly unmounted, and 2 if it contains errors.

Group Descriptor And Bitmap

Each block group has its own group descriptor, an ext2_group_desc structure

http://www.unaab.edu.ng

40
OPERATING SYSTEM II

The bg_free_blocks_count, bg_free_inodes_count, and bg_used_dirs_count fields are used when

allocating new inodes and data blocks. These fields determine the most suitable block in which

to allocate each data structure. The bitmaps are sequences of bits, where the value specifies that

the corresponding inode or data block is free and the value 1 specifies that it is used. Since each

bitmap must be stored inside a single block and since the block size can be 1024, 2048, or 4096

bytes, a single bitmap describes the state of 8192, 16,384, or 32,768 blocks.

http://www.unaab.edu.ng

41
OPERATING SYSTEM II

CHAPTER THREE – SOLARIS OPERATING SYSTEM

 HISTORY

The history of Solaris, a Unix-based operating system developed by Sun Microsystems, displays

that company's ability to be innovative and flexible. Solaris was introduced in the year 1987 out

of an alliance between AT&T and Sun Microsystems to combine the leading Unix versions

(BSD, XENIX, and System V) into one operating system.In 1991, Sun replaced it's existing Unix

operating system (SunOS 4) with one based on SVR4. This new OS, Solaris 2, contained many

new advances, including use of the Open Windows graphical user interface, NIS+, Open

Network Computing (ONC) functionality, and was specially tuned for symmetric

multiprocessing.

This kicked off Solaris' history of constant innovation, with new versions of Solaris being

released almost annually over the next fifteen years. Sun was constantly striving to stay ahead of

the curve, while at the same time adapting Solaris to the existing, constantly evolving wider

computing world. The catalogue of innovations in the Solaris OS are too numerous to list here,

but a few milestones are worth mentioning.

• Solar 2.5.1 in 1996 added CDE, the NFSv3 file system and NFS/TCP, expanded user and

group IDs to 32 bits, and included support for the Macintosh PowerPC platform.

• Solaris 2.6 in 1997 introduced WebNFS file system, Kerberos 5 security encryption, and

large file support to increase Solaris' internet performance.

• Solaris 2.7 in 1998 (renamed just Solaris 7) included many new advances, such as native

support for file system meta-data logging (UFS logging). It was also the first 64-bit

release, which dramatically increased its performance, capacity, and scalability.

• Solaris 8 in 2000 took it a step further was the first OS to combine datacenter and dot-

com requirements, offering support for IPv6 and IPSEC, Multipath I/O, and IPMP.

• Solaris 9 in 2002 saw the writing on the wall of the server market, dropped

OpenWindows in favour of Linux compatibility, and added a Resource Manager, the

Solaris Volume Manager, extended file attributes, and the iPlanet Directory Server.

http://www.unaab.edu.ng

42
OPERATING SYSTEM II

• Solaris 10, the current version, was released to the public in 2005 free of charge and with

a host of new developments. The latest advances in the computing world are constantly

being incorporated in new versions of Solaris 10 released every few months.

To mention just a few, Solaris features more and more compatibility with Linux and IBM

systems, has introduced the Java Desktop System based on GNOME, added Dynamic Tracing

(Dtrace), NFSv4, and later the ZFS file system in 2006.

Also in 2006, Sun set up the OpenSolaris Project. Within the first year, the OpenSolaris

community had grown to 14,000 members with 29 user groups globally, working on 31 active

projects. Although displaying a deep commitment to open-source ideals, it also provides Sun

with thousands of developers essentially working for free.

 SOLARIS PROCESSES

The process is one of the fundamental abstractions of Unix. Every object in Unix is represented

as either a file or a process(with the introduction of the /proc structure, there has been an effort

to represent even processes as files). Processes are usually created with forkor a less resource

alternative such as fork1 or vfork.forkduplicates the entire process context, while fork1 only

duplicates the context of the calling thread. This can be useful for example, when execwill be

called shortly.

Solaris like other UNIX systems, provide two modes of operation: user mode and kernel (or

system mode). Kernel mode is a more privileged mode of operation. Processes can be executed

in either mode, but user processes usually operate in user mode.

 SOLARIS PROCESS SCHEDULING

In Solaris, highest priorities are scheduled first. Kernel thread scheduling information can be

revealed with ps –elcL. A process can exist in one of the following states:

• Running

• Sleeping

• Ready

http://www.unaab.edu.ng

43
OPERATING SYSTEM II

 KERNEL THREADS MODEL

The kernel threads model consist of the following objects:

• Kernel threads – this is what is scheduled/executed on a processor

• User threads – the user-level thread state within a process

• Process - the object that tracks the execution environment of a program

• Lightweight process (lwp) – Execution context for a user tread. It associates a user

thread with a kernel thread.

In Solaris 10 kernel, kernel services and tasks are executed as kernel threads. When a user thread

is created, the associated lwp and kernel threads are also created and linked to the user thread.

KERNEL THREADS MODEL

An application's parallelism is the degree of parallel execution achieved.This is limited by the

number of processors available in the hardware configuration. Concurrency is the maximum

achievable parallelism in a theoretical machine that has an unlimited number of processors.

Threads are frequently used to increase an application's concurrency. A thread represents a

relatively independent set of instructions within a program. A thread is a control point within a

process. It shares global resources within the context of the process (address space, open files,

user credentials, quotas, etc). Threads also have private resources (program counter, stack,

register context, etc).

The main benefit of threads (as compared to multiple processes) is that the context switches are

much cheaper than those required to change current processes. Even within a single-processor

environment, multiple threads are advantageous because one thread may be able to progress even

though another thread is blocked while waiting for a resource. Inter-process communication also

takes considerably less time for threads than for processes, since global data can be shared

instantly.

The kernel threads model consist of the following objects:

• Kernel threads – this is what is scheduled/executed on a processor

http://www.unaab.edu.ng

44
OPERATING SYSTEM II

• User threads – the user-level thread state within a process

• Process - the object that tracks the execution environment of a program

• Lightweight process (lwp) – Execution context for a user tread. It associates a user

thread with a kernel thread.

In Solaris 10 kernel, kernel services and tasks are executed as kernel threads. When a user thread

is created, the associated lwp and kernel threads are also created and linked to the user thread.

Kernel Threads

A kernel thread is the entity that is scheduled by the kernel. If no lightweight process is attached,

it is also known as a system thread. It uses kernel text and global data, but has its own kernel

stack, as well as a data structure to hold scheduling and synchronization information.

Kernel threads can be independently scheduled on CPUs. Context switching between kernel

threads is very fast because memory mappings do not have to be flushed.

Lightweight Processes

A lightweight process can be considered as the swappable portion of a kernel thread.Another

way to look at a lightweight process is to think of them as "virtual CPUs" which perform the

processing for applications. Application threads are attached to available lightweight processes,

which are attached to a kernel thread, which is scheduled on the system's CPU dispatch queue.

LWPs can make system calls and can block while waiting for resources. All LWPs in a process

share a common address space. IPC (inter-process communication) facilities exist for

coordinating access to shared resources.

By default, one LWP is assigned to each process; additional LWPs are created if all the process's

LWPs are sleeping and there are additional user threads that libthread can schedule. The

programmer can specify that threads are bound to LWPs.

http://www.unaab.edu.ng

45
OPERATING SYSTEM II

User Threads

User threads are scheduled on their LWPs via a scheduler in libthread. This scheduler does

implement priorities, but does not implement time slicing. If time slicing is desired, it must be

programmed in. Locking issues must also be carefully considered by the programmer in order to

prevent several threads from blocking on a single resource.

Each thread has the following characteristics:

• Has its own stack.

• Shares the process address space.

• Executes independently (and perhaps concurrently with other threads).

• Completely invisible from outside the process.

• Cannot be controlled from the command line.

• No system protection between threads in a process; the programmer is responsible for

interactions.

• Can share information between threads without IPC overhead.

 PRIORITY MODEL

The Solaris kernel is fully preemptible. This means that all threads, including the threads that

support the kernel’s own activities can be deferred to allow a higher-priority thread to run.

Solaris recognizes 170 different priorities, 0-169. Within these priorities fall a number of

different scheduling classes:

• TS (Timeshare): This is the default class for processes and their associated kernel

threads. Priorities falling within this class range 0-59 and are dynamically adjusted in an

attempt to allocate processor resources evenly.

• IA (Interactive): This is an enhanced version of the TS class that applies to the in-focus

window in the GUI. Its intent is to give extra resources to processes associated with that

specific window. Like TS, IA’s range is 0-59.

http://www.unaab.edu.ng

46
OPERATING SYSTEM II

• FSS (Fair-share scheduler): This class is share-based rather than priority-based.

Threads managed by FSS are scheduled based on their associated shares and the

processor’s utilization. FSS also has a range 0-59.

• FX (Fixed-priority): The priorities for threads associated with this class are fixed (in

other words, they do not vary dynamically over the lifetime of the thread). FX also has a

range 0-59.

• SYS (system): The SYS class is used to schedule kernel threads. Threads in this class are

“bound” threads, which mean that they run until they block or complete. Priorities for

SYS threads are in the 60-99 range.

• RT (Real-time): Threads in the RT class are fixed-priority, with a fixed time quantum.

Their priorities range 100-159, so an RT thread will preempt a system thread. Of these,

FSS and FX were implemented in Solaris 9.

Fair Share Scheduler

The default Timesharing (TS) scheduling class in Solaris attempts to allow each process on the

system to have relatively equal CPU access. The nice command allows some management of

process priority, but the new Fair Share Scheduler (FSS) allows more flexible process priority

management that integrates with the project framework. Each project is allocated a certain

number of CPU shares via the project. CPU-shares resource control and each project is allocated

CPU time based on its CPU-shares value divided by the sum of the CPU-shares values for all

active projects. Anything with a zero CPU-shares value will not be granted CPU time until all

projects with non-zero CPU-shares are done with the CPU. The maximum number of shares that

can be assigned to any one project is 65535.

FSS can be assigned to processor sets, resulting in more sensitive control of priorities on a server

than raw processor sets.

The Fair Share Scheduler should not be combined with the TS, FX (fixed-priority) or IA

(interactive) scheduling classes on the same CPU or processor set. All of these scheduling

classes use priorities in the same range, so unexpected behavior can result from combining FSS

http://www.unaab.edu.ng

47
OPERATING SYSTEM II

with any of these. (There is no problem, however, with running TS and IA on the same processor

set.)

Time Slicing for FSS

In FSS, the time quantum is the length of time that a thread is allowed to run before it has to

release the processor. The QUANTUM is reported in ms. (The output of the above command

displays the resolution in the RES parameter. The default is 1000 slices per second.

Fixed Priority Scheduling

FX scheduler sets policy scheduling for processes used by applications and users. These

processes are fixed. For example, priocnt1 and dispadminare two utilities that control the Fixed-

Priority Scheduling. The FX class is the same priority as the FSS, IA, and TS classes.

 THE SOLARIS BOOTUP AND SHUTDOWN

The Solaris Boot process is made up of four phases and is illustrated in the figure below:

FIG. 1 SOLARIS BOOTUP PHASES

Boot PROM Phase: The hardware tests and initializes itself

Boot Programs Phase: The initial boot programs are loaded into the memory.

Kernel Phase: The kernel loads itself and its modules into memory and then unloads the boot

programs from memory.

Init Phase: The init process is started by the kernel. The initprocess then executes the run

control scripts.

Phase 1: The Boot PROM Phase

During this phase of the boot up, the system first powers up and checks itself. On the PROM

chip is a program known as the monitor program. This program is used for initial system tests

Boot PROM Phase

Boot Programs Phase

Kernel Phase

Init Phase

http://www.unaab.edu.ng

48
OPERATING SYSTEM II

and diagnostics. It tests the system’s memory, CPU and mother board. It does not test all devices

attached to the server, only the server’s main components.

If a third-party device is attached to anSBus controller, the device driver is then loaded from a

firmware chip on the device (some manufacturers don’t include device drivers on the hardware

itself). If the open boot variable diag-level is set to max and the variable diag-switchis set to

truethe system will perform extensive diagnostics during the power on self test. The banner

information looks like the figure below:

Sun blade 100 (UltraSPARC-IIe) Keyboard present

OpenBoot 4.0, 128MB memory installed, Serial #50632835.

Ethernet Address 0:3:ba:2:c2:3d, Host ID: 8323c12b.

FIG. 2 Output from the banner command.

After the power on self test is complete, the boot process stops at the O.K prompt or continues to

boot the Solaris operating system. This depends on the value of the OpenBootauto-boot?

variable:

• If the auto-boot variable is set to true, the system boots the device specified in the boot-

device variable. The default boot device OpenBoot value on most system is the disk or

disk:a. A second boot device (net) can be also be specified. If for some reason the first

boot device does not work, the second boot device is tried.

• If the auto-boot?variable is set to false the system stops at the OK prompt.

Phase 2: Boot Program Phase

This phase starts when the system has checked itself and starts to load the bootblk program from

the boot device. The bootblkprogram is a smallsection of code on the first sector of the first

track of the first drive of the hard drive or tape device. When bootblk runs, it shows a message

like

Fcode UFS Reader 1.12 00/07/17 15:48:16

Bootblkhas only one function. It loads theufsboot program into the memory and then dies.

When the Fcode UFS Reader …bootblkhas done its work. The following message should now

appear:

Loading: /platform/SUNW,Sun-Blade-100/ufsboot

Loading :/platform/sun4u/ufsboot

http://www.unaab.edu.ng

49
OPERATING SYSTEM II

The ufsboot program loads the kernel into memory. After the program is loaded into memory,

the ufsboot program dies.

It is important that a system administrator understand what is happening with the

ufsbootprogram and the bootblk program. If the system messages shown above do not appear,

the server may be dead or something may be wrong with these two programs, which will then

need to be reloaded or repaired.

Phase 3: Kernel Phase

This phase starts when the initial boot programs bootblk and ufsboot have been loaded and the

kernel is now starting to load. The kernel can be thought as the core program that defines the

Solaris operating. The kernel uses the ufsbootprogram to read kernel modules into memory. A

kernel module can be thought of as a dynamic piece of software code. Only the modules that are

needed are loaded into the kernel. This makes the kernel faster and more efficient than if it

always had to load all its modules into memory. After enough modules are loaded into memory,

the ufsboot program dies.

When the front slash symbol (/) starts to swirl, the kernel is starting to load. The SunOS Release

is now also shown. This indicates that the boot device is booting and working. If there are any

further problems with the boot process, they will most likely be caused by an error in a run

control script.

Phase 4: The Init Phase

The init phase starts after the kernel has loaded itself and its modules into memory. The

schedprocess is the first process to be loaded. It has a PID (Process Identification Number) of

zero (0), as shown with the ps–efcommand. Thesched process is responsible for the scheduling

policy and priority of processes. After sched starts up, the process called init is started, with a

PID of one (1). The innit process reads a text file /etc/innittab. Among other things, this file

defines the default run level and controls how the init process calls up and executes run control

scripts.

 MEMORY MANAGEMENT

• The process Memory Usage

The /usr/proc/bin/pmap command is available in Solaris 2.6 and above. It can help pin

down which process is memory hog. /usr/proc/bin/pmap –x PID prints out details of

http://www.unaab.edu.ng

50
OPERATING SYSTEM II

memory use by a process. Summary statistics regarding process size can be found in the

RSS column of ps – ly or top. dbx, the debugging utility in the SunPro package, has

extensive memory leak detection built in. The source code will need to be compiled with

the –g flag by the appropriate SunPro compiler. Ipcs –mb shows memory statistics for

shared memory. This may be useful when attempting to size memory to fit expected

traffic.

• Swap Space

The Solaris virtual memory system combines physical memory with available swap space

via swapfs. If insufficient total virtual memory space is provided, new processes will be

unable to open.

• Paging

Solaris uses both common types of paging in its virtual memory system. These types are:

o Swapping(swaps out all memory associated with a user process) and

o Download paging (swaps out the not recently used pages)

Which method is used is determined by comparing the amount of available memory with

several key parameters

• Solaris 8 Paging

Solaris 8 uses a different algorithm for removing from memory. This new architecture is

known as the cyclical page cache. The cyclical page cache uses a file system free list to

cache file system data only. Other memory objects are managed on a separate free list

 SECURITY

File Integrity and Secure Execution

System administrators can detect possible attacks on their systems by monitoring for changes to

file information. In the Solaris 10 OS, binaries are digitally signed, so administrators can track

changes easily, and all patches or enhancements are embedded with digital signatures,

http://www.unaab.edu.ng

51
OPERATING SYSTEM II

eliminating the false positives associated with upgrading or patching file integrity-checking

software.

User and Process Rights Management

In traditional UNIX platform-based operating systems, applications and users often need

administrative access to perform their jobs. However, most implementations offer just one level

of higher privilege: root or superuser. This means that any user or application given root access

has the ability to make major changes to the operating system—and is typically the target of

hacking attempts. The Solaris 10 OS offers unique User Rights Management (also known as

role-based access control, or RBAC) and Process Rights Management (also known as privileges)

Network Service Protection

The Solaris 10 OS ships with Solaris IP Filter firewall software preinstalled. This integrated

firewall can reduce the number of network services that are exposed to attack and provides

protection against maliciously crafted networking packets. Starting in Solaris 10 8/07, the IP

Filter firewall can also filter traffic flowing between Solaris Containers when it is configured in

the Global Zone. In addition, TCP Wrappers are integrated into the Solaris 10 OS, limiting

access to service-based allowed domains.

Cryptographic Services and Encrypted Communication

For high-performance, system-wide cryptographic routines, the Solaris Cryptographic

Framework adds a standards-based, common API that provides a single point of administration

and uniform access to both software and hardware-accelerated, cryptographic functions. The

pluggable Solaris Cryptographic Framework can balance loads across accelerators, increasing

encrypted network traffic throughput, and it is available to applications written to use Public Key

Cryptography Standards (PKCS) #11, Sun Java Enterprise System, NSS, OpenSSL, and Java

Cryptographic Extension software.

Flexible Enterprise Authentication

The Solaris 10 OS delivers a number of flexible authentication features. At the foundation of

Solaris is support for Pluggable Authentication Mechanism (PAM), which make it possible to

http://www.unaab.edu.ng

52
OPERATING SYSTEM II

add authentication services to Solaris dynamically. Sun and third-party vendors provide many

PAM modules and customers can create their own to meet specific security needs.

Repeatable Security Hardening and Monitoring

New features in the Solaris 10 OS make it easier than ever to minimize and harden a system. The

Reduced Networking Metacluster install option creates a minimized Solaris OS image, ready for

administrators to add functionality and services in direct support of their system's purpose.

Mandatory Access Control and Labeling

If your system requirements include privacy, increased accountability, and reduced risk of

security violations, then Solaris Trusted Extensions is for you. A standard part of Solaris, true

multi-level security is available for the first time in a commercial-grade operating system that

runs all your existing applications and is supported on over 1,200 x64/x86 and SPARC

platforms.

 WEAKNESS AND STRENGHT

A security weakness in Solaris Trusted Extensions Policy configuration may allow a remote

unprivileged user who has authorized or unauthorized access to the X server, to leverage an

additional vulnerability which could lead to arbitrary code execution as a local privileged or

unprivileged user.

Sun has acknowledged a weakness in Pidgin on Solaris, which can be exploited by malicious

people to cause a DoS (Denial of Service).

 CONCLUSION

The development of the Solaris OS demonstrates Sun Microsystems' ability to be on the cutting

edge of the computing world without losing touch with the current computing environment. Sun

regularly releases new versions of Solaris incorporating the latest development in computer

technology, yet also included more cross-platform compatibility and incorporating the advances

of other systems. The OpenSolaris project is the ultimate display of these twin strengths-Sun has

tapped into the creative energy of developers across the world and receives instant feedback

http://www.unaab.edu.ng

53
OPERATING SYSTEM II

about what their audience wants and needs. If all software companies took a lesson from Sun,

imagine how exciting and responsive the industry could be.

http://www.unaab.edu.ng

54
OPERATING SYSTEM II

CHAPTER 4 : MS-DOS

1.0 INTRODUCTION

MS DOS is an acronym that stands for MicroSoft Disk Operating System. It is often referred to

as DOS. It is an old operating system for x86-based personal computers, purchased by Microsoft

that manages everything on your computer: hardware, memory, files. It is an operating system

that existed prior to Windows.

MS-DOS was the most commonly used member of the DOS family of operating

systems, and was the main operating system for personal computers during the 1980s up to mid

1990s. It was preceded by M-DOS (also called MIDAS), designed and copyrighted by Microsoft

in 1979. MSDOS was written for the Intel 8086 family of microprocessors, particularly the IBM

PC and compatibles. It was gradually replaced on consumer desktop computers by operating

systems offering a graphical user interface (GUI), in particular by various generations of the

Microsoft Windows operating system. MS-DOS developed out of QDOS (Quick and Dirty

Operating System), also known as 86-DOS. DOS, as with any operating system, controls

computer activity. It manages operations such as data flow, display, data entry amongst other

various elements that make up a system.

The role of DOS is to interpret commands that the user enters via the keyboard.

These commands allow the following tasks to be executed:

� file and folder management

� disk upgrades

� hardware configuration

� memory optimization

� program execution

These commands are typed after the prompt, in the case of MS-DOS (Microsoft DOS, the most

well known): the drive letter followed by a backslash, for example: A:\ or C:\. And after them,

the enter key. The files that make up DOS involves:

IO.SYS : This is a program to handle input/output to your peripheral devices. It stays in memory

when you run applications programs

http://www.unaab.edu.ng

55
OPERATING SYSTEM II

MSDOS.SYS: This is a program for application programs to use. It contains special subprograms

to make many commonly needed operations easy for programmers. COMMAND.COM : This

program accepts the commands you enter and runs the right program. CONFIG.SYS: Configures

the hardware environment Mouse , Printer, Keyboard , Country codes (time, date,

currency),other devices and system commands AUTOEXEC.BAT: Programs/commands to be

run at system start Batch file (automatically executing set of programs/commands) IO.SYS and

MSDOS are loaded into the PC memory by a special program called a boot record each time you

start up DOS . The command used to initialize new disks with DOS,FORMAT/S puts this on the

disk along with IO.SYS and MSDOS.SYS

2.0 HISTORY

MS-DOS (Microsoft Disk Operating System) is a single-user, single-tasking computer operating

system that uses a command line interface. In spite of its very small size and relative simplicity,

it is one of the most successful operating systems that have been developed to date.

A Quick and Dirty History

When IBM launched its revolutionary personal computer, the IBM PC, in August 1981, it came

complete with a 16-bit operating system from Microsoft, MS-DOS 1.0. This was Microsoft's first

operating system, and it also became the first widely used operating system for the IBM PC and

its clones. MS-DOS 1.0 was actually a renamed version of QDOS (Quick and Dirty Operating

System), which Microsoft bought from a Seattle company, appropriately named Seattle

Computer Products, in July 1981. QDOS had been developed as a clone of the CP/M eight-bit

operating system in order to provide compatibility with the popular business applications of the

day such as WordStar and dBase. CP/M (Control Program for Microcomputers) was written by

Gary Kildall of Digital Research several years earlier and had become the first operating system

for microcomputers in general use.

http://www.unaab.edu.ng

56
OPERATING SYSTEM II

QDOS was written by Tim Paterson, a Seattle Computer Products employee, for the new Intel

16-bit 8086 CPU (central processing unit), and the first version was shipped in August, 1980.

Although it was completed in a mere six weeks, QDOS was sufficiently different from CP/M to

be considered legal. Paterson was later hired by Microsoft. Microsoft initially kept the IBM deal

a secret from Seattle Computer Products. And in what was to become another extremely

fortuitous move, Bill Gates, the not uncontroversial cofounder of Microsoft, persuaded IBM to

let his company retain marketing rights for the operating system separately from the IBM PC

project. Microsoft renamed it PC-DOS (the IBM version) and MS-DOS (the Microsoft version).

The two versions were initially nearly identical, but they eventually diverged.

The acronym DOS was not new even then. It had originally been used by IBM in the 1960sin the

name of an operating system (i.e., DOS/360) for its System/360 computer. At that time the use of

disks for storing the operating system and data was considered cutting edge technology. Until its

acquisition of QDOS, Microsoft had been mainly a vendor of computer programming languages.

Gates and co-founder Paul Allen had written Microsoft BASIC and were selling it on disks and

tape mostly to PC hobbyists.

MS-DOS soared in popularity with the surge in the PC market. Revenue from its sales fuelled

Microsoft's phenomenal growth, and MS-DOS was the key to company's rapid emergence as the

dominant firm in the software industry. This product continued to be the largest single

contributor to Microsoft's income well after it had become more famous for Windows.

Subsequent versions of MS-DOS featured improved performance and additional functions, not a

few of which were copied from other operating systems. For example, version 1.25, released in

1982, added support for double-sided disks, thereby eliminating the need to manually turn the

disks over to access the reverse side.

Version 2.0, released the next year, added support for directories, for IBM's then huge 10MB

hard disk drive (HDD) and for 360KB, 5.25-inch floppy disks. This was followed by version

2.11 later in the same year, which added support for foreign and extended characters. Version 3.0

launched in 1984, added support for 1.2MB floppy disks and 32MB HDDs. This was soon

followed by version 3.1, which added support for networks. Additions and improvements in

http://www.unaab.edu.ng

57
OPERATING SYSTEM II

subsequent versions included support for multiple HDD partitions, for disk compression and for

larger partitions as well as an improved diskchecking utility, enhanced memory management, a

disk defragmenter and an improved text editor.

The final major version was 7.0, which was released in 1995 as part of Microsoft Windows 95. It

featured close integration with that operating system, including support for long filenames and

the removal of numerous utilities, some of which were on the Windows 95 CDROM. It was

revised in 1997 with version 7.1, which added support for the FAT32 file system on HDDs.

3.0 OPERATING SYSTEM FUNCTIONS

3.1 SCHEDULING

Scheduling is a key concept in computer multitasking, multiprocessing operating system and

real-time operating system designs. Scheduling refers to the way processes are assigned to run

on the available CPUs, since there are typically many more processes running than there are

available CPUs. This assignment is carried out by software’s known as a scheduler and

dispatcher.

Objectives of a scheduler

� CPU utilization - to keep the CPU as busy as possible.

� Throughput - number of processes that complete their execution per time unit.

� Turnaround - total time between submission of a process and its completion.

� Waiting time - amount of time a process has been waiting in the ready queue.

� Response time - amount of time it takes from when a request was submitted ntil the first

response is produced.

� Fairness - Equal CPU time to each thread.

But MS-DOS is non-multitasking, and as such did not feature a scheduler. MS-DOS was not

designed to be a multi-user or multitasking operating system, but many attempts were made to

retrofit these capabilities. Since it does not perform scheduling functions, when you run a sub

http://www.unaab.edu.ng

58
OPERATING SYSTEM II

process synchronously on MS-DOS, make sure the program terminates and does not try to read

keyboard input. If the

program does not terminate on its own, you will be unable to terminate it, because MS-DOS

provides no general way to terminate a process. Pressing “ctrl C” or `C-<BREAK>' might

sometimes help in these cases.

Group C Page 6

3.2 MEMORY MANAGEMENT

MS-DOS Memory Management Functions

� Provide students with a brief overview of memory management in the MS-DOS

operating system. Mention that to run a second job, the user must close or pause the first file

before opening the second.

� Point out that the Memory Manager uses a first-fit memory allocation scheme in early DOS

versions because it is the most efficient strategy in a single-user environment.

� Discuss briefly the two forms of main memory, ROM and RAM. MS-DOS provides three

memory management functions- allocate, deallocate, and resize (modify). For most programs,

these three memory allocation calls are not used.When DOS executes a program, it gives all of

the available memory, from the start of that program to the end of RAM, to the executing

process. Any attempt to allocate memory without first giving unused memory back to the system

will produce an “insufficient memory” error.

ALLOCATE MEMORY

Function (ah): 48h

Entry parameters: bx- Requested block size (in paragraphs)

Exit parameters: If no error (carry clear):

ax:0 points at allocated memory block

http://www.unaab.edu.ng

59
OPERATING SYSTEM II

If an error (carry set):

bx- maximum possible allocation size

ax- error code (7 or 8)

This call is used to allocate a block of memory. On entry into DOS, bx contains the size of the

requested block in paragraphs (groups of 16 bytes). On exit, assuming no error, the ax register

contains the segment address of the start of the allocated block. If an error occurs, the block is

not allocated and the ax register is returned containing the error code.

If the allocation request failed due to insufficient memory, the bx register is returned containing

the maximum number of paragraphs actually available.

Group C Page 7

DEALLOCATE MEMORY

Function (ah): 49h

Entry parameters: es:0- Segment address of block to be deallocated

Exit parameters: If the carry is set, ax contains the error code (7,9)

This call is used to deallocate memory allocated via function 48h above. The es register cannot

contain an arbitrary memory address. It must contain a value returned by the allocate memory

function. You cannot use this call to deallocate a portion of an allocated block. The modify

allocation function is used for that operation.

MODIFY MEMORY ALLOCATION

Function (ah): 4Ah

Entry parameters: es:0- address of block to modify allocation size

bx- size of new block

Exit parameters: If the carry is set, then

ax contains the error code 7, 8, or 9

bx contains the maximum size possible (if error 8)

This call is used to change the size of an allocated block. On entry, es must contain the segment

address of the allocated block returned by the memory allocation function. Bx must contain the

http://www.unaab.edu.ng

60
OPERATING SYSTEM II

new size of this block in paragraphs. While you can almost always reduce the size of a block,

you cannot normally increase the size of a block if other blocks have been allocated after the

block being modified. Keep this in mind when using this function.

Group C Page 8

3.3 FILE SYSTEM

Before we go any further, it would be a good idea to look at the DOS file system. The file

system lets us store information in named files. You can call a file anything you like which

might help you remember what it contains as long as you follow certain basic rules:

1. File names can be up to 8 characters long. You can use letters and digits but only a few

punctuation marks (! $ % # ~ @ - () _ { }). You can't exceed 8 characters or use spaces or

characters like * or ? or +. Names are case-insensitive, i.e. it doesn't matter whether you use

capitals or lowercase letters; "A" and "a" are treated as the same thing.

2. File names can also have an extension of up to three characters which describes the type of

file. There are some standard extensions, but you don't have to use them.

Examples include COM and EXE for executable programs, TXT for text files, BAK

for backup copies of files, or CPP for C++ program files. The extension is separated by a dot

from the rest of the filename.

For example, a file called FILENAME.EXT has an 8-character name (FILENAME) followed by

a three-character extension (.EXT). You could also refer to it as filename.txt since case doesn't

matter, but I'm going to use names in capitals for emphasis throughout this document. Files are

stored in directories; a directory is actually just a special type of file which holds a list of the

files within it. Since a directory is a file, you can have directories within directories. Directory

names also follow the same naming rules as other files, but although they can have

an extension they aren't normally given one (just an 8-character name). The system keeps track

of your current directory, and if you just refer to a file using a name

like FILENAME.EXT it's assumed you mean a file of that name in the current directory. You

can specify a pathname to identify a file which includes the directory name as well; the

directory is separated from the rest of the name by a backslash ("\"). For example, a file called

http://www.unaab.edu.ng

61
OPERATING SYSTEM II

LETTER1.TXT in a directory called LETTERS can be referred to as LETTERS\LETTER1.TXT

(assuming that the current directory contains the LETTERS directory as a subdirectory). If

LETTERS contains a subdirectory called PERSONAL, which in turn contains a file called

DEARJOHN.TXT, you would refer to this file as Group C Page 9

LETTERS\PERSONAL\DEARJOHN.TXT (i.e. look in the LETTERS directory for

PERSONAL\DEARJOHN.TXT, which in turn involves looking in the PERSONAL subdirectory

for the file DEARJOHN.TXT).

Every disk has a root directory which is the main directory that everything else is part of. The

root directory is called "\", so you can use absolute pathnames which don't depend on what

your current directory is. A name like \LETTERS\LETTER1.TXT always refers to the same file

regardless of which directory you happen to be working in at the time; the "\" at the beginning

means "start looking in the root directory", so \LETTERS\LETTER1.TXT means "look in the

root directory of the disk for a subdirectory called LETTERS, then look in this

subdirectory for a file called LETTER1.TXT". Leaving out the "\" at the beginning makes this a

relative pathname whose meaning is relative to the current directory at the time. If you want to

refer to a file on another disk, you can put a letter identifying the disk at the beginning of the

name separated from the rest of the name by a colon (":"). For example,

A:\LETTER1.TXT refers to a file called LETTER1.TXT in the root directory of drive A. DOS

keeps track of the current directory on each disk separately, so a relative pathname like

A:LETTER1.TXT refers to a file called LETTER1.TXT in the currently-selected directory on

drive A. For convenience, all directories (except root directories) contain two special names: "."

refers to the directory itself, and ".." refers to the parent directory (i.e. the directory that contains

this one). For example, if the current directory is \LETTERS\PERSONAL, the name ".." refers to

the directory \LETTERS, "..\BUSINESS" refers to \LETTERS\BUSINESS, and "..\.." refers to

the root directory "\".

Group C Page 10

3.4 PROCESS MANAGEMENT

http://www.unaab.edu.ng

62
OPERATING SYSTEM II

MS-DOS boot process

1. The BIOS, having completed its test and setup functions, loads the boot code found in the

master boot record and then transfers control of the system to it. At that point, the master boot

record code is executed. If the boot device is a floppy disk, the process skips to step 7 below.

2. The next step in the process is the master boot code examining the master partition table. It

first must determine if there is an extended DOS partition, then it must determine if there is a

bootable partition specified in the partition table.

3. If the master boot code locates an extended partition on the disk, it loads the

extended partition table that describes the first logical volume in the extended

partition. This extended partition table is examined to see if it points to another

extended partition table. If it does, this second table is examined for information about the

second logical volume in the extended partition. Logical volumes in the extended partition have

their extended partition table chained together one to the next. This process continues until all of

the extended partitions have been loaded and recognized by the system.

4. Once the extended partition information (if any) has been loaded, the boot code

attempts to start the primary partition that is marked active, referred to as the boot

partition. If no boot partitions are marked active, then the boot process will terminate with an

error. The error message is often the same as that which occurs if the BIOS could not locate a

boot device, generally shown on screen as "No boot device", but also can show up as "NO ROM

BASIC - SYSTEM HALTED". If there is a primary partition marked active and there is an

installed operating system, the boot code will boot it. The rest of the steps presume this example

is of an MS- DOS primary partition.

Group C Page 11

5. At this stage, the master or volume boot sector is loaded into memory and tested,

and the boot code that it contains is given control of the remainder of the boot

http://www.unaab.edu.ng

63
OPERATING SYSTEM II

process. 6. The boot code examines the disk structures to ensure that everything is correct. If not,

the boot process will end in an error here.

7. During the next step, the boot code searches the root directory of the device being booted for

the operating system files that contain the operating system. For MS-DOS, these are the files

"IO.SYS", "MSDOS.SYS" and "COMMAND.COM".

8. If no operating system files are found, the boot program will display an error

message similar to "Non-system disk or disk error - Replace and press any key when ready".

Keep in mind that this message does not means that the system was never booted. It means that

the BIOS examined the floppy disk for example and just rejected it because it couldn't boot an

operating system. The volume boot code was indeed loaded and executed, as that is what posts

the message when it can't find the operating system files.

9. In the final stages of the boot process, presuming that the operating system files are found, the

boot program will load those operating system files into memory and transfer control to them. In

MS-DOS, the first is IO.SYS and its code is executed.

10. SYS will then execute MSDOS.SYS. Then the more complete operating system code loads

and initializes the rest of the operating system structures beginning with the command interpreter

COMMAND.COM and then the execution of the CONFIG.SYS and AUTOEXEC.BAT files. At

this point the operating system code itself has control of the computer.

MS-DOS Process Management

This relates to the Operating System’s activity of managing the processor in the system, i.e.

allocating and de-allocating of the processor to the process. The Operating System decides.

Group C Page 12

the same based on the priority of the process depending if there exists any and certain predefined

algorithms. Although MS-DOS is a single tasking operating system, this does not mean there can

only be one program at a time in memory. However we can still load several programs into

http://www.unaab.edu.ng

64
OPERATING SYSTEM II

memory at one time under DOS. The only catch is that DOS only provides the ability for them to

run one at a time in a very specific fashion. Unless the processes are cooperating, their execution

profile follows a very strict pattern. That’s why Dos exhibit Serial Multi tasking.

Users often wish to perform more than one activity at a time (load a remote file while editing a

program) and uni programming does not allow this. So DOS put in things like memory resident

programs that invoked asynchronously, but still have separation problems. One key problem with

DOS is that there is no memory protection - one program may write the memory of another

program, causing weird bugs.

Child Processes in DOS

In Dos we have one process and one thread.

When a DOS application is running, it can load and executing some other programs using the

DOS EXEC function. Under normal circumstances, when an application (the parent) runs a

second program (the child), the child process executes to completion and then returns to the

parent. This is very much like a procedure call, except it is a little more difficult to pass

parameters between the two. Group C Page 13

3.5 INPUTS/OUTPUT IN MSDOS

The core of MS-DOS is a device-independent input/output (I/O) handler, represented on a

system disk by the hidden file MSDOS.SYS. It accepts requests from application programs to do

high-level I/O, such as sequential or random access of named disk files, or communication with

character devices such as the console. The handler processes these requests and converts them to

a very low level form that can be handled by the I/O system. Because MSDOS.SYS is hardware

independent, it is nearly identical in all MS-DOS versions provided by

manufacturers with their equipment. The I/O system is totally device dependent and is

represented on the disk by the hidden file IO.SYS. It is normally written by hardware

manufacturers (who know their equipment best, anyway) with the notable exception of IBM,

http://www.unaab.edu.ng

65
OPERATING SYSTEM II

whose I/O system was written to IBM's specifications by Microsoft. The tasks required of the

I/O system, such as outputting a single

byte to a character device or reading a contiguous group of physical disk sectors into memory,

are as simple as possible.

Departing From the Windows for MS-DOS I/O Model

The I/O system used in Windows for MS-DOS is based on, and limited by, capabilities of the

underlying MS-DOS operating system. The device drivers at the core of this I/O system are

commonly:

� Written in assembly language--they're not portable: they can only run on Intel 80x86 family

processors.

� Monolithic in design, not layered--similar code for common tasks is repeated in each device

driver for a given class of devices. Monolithic design also makes mixing and matching different

file systems and device drivers impossible.

� Not designed for pre-emptive multitasking use--Windows has to perform many nasty tricks to

allow even non-pre-emptive multitasking with non-multitasking MS-DOS and its non-

multitasking device drivers.

� Incompatible with multiprocessor platforms--MS-DOS is inherently a singleprocessor OS, so

MS-DOS device drivers are utterly incapable of synchronizing access to shared resources in a

multiprocessor situation.

Group C Page 14

3.6 SECURITY

The security syntax set in MSDOS is masked on the command base and the password identifier

which cannot be altered by someone who is not authorized. Password can be set for some

programs starting from MSDOS like QBASIC.

http://www.unaab.edu.ng

66
OPERATING SYSTEM II

The command – line is not prone to virus. Also it MSDOS cannot be used by someone who does

not know the commands limiting the risk of harming the system. Group C Page 15

4.0 DESIGN ISSUES

MS-DOS Design Criteria

The primary design requirement of MS-DOS was CP/M-80 translation compatibility, meaning

that, if an 8080 or Z80 program for CP/M were translated for the 8086 according to Intel's

published rules, that program would execute properly under MS-DOS. Making CP/M-80

translation compatibility a requirement served to promote rapid development of 8086 software,

which, naturally, Seattle Computer was interested in. There was partial success: those software

developers who chose to translate their CP/M-80 programs found that they did indeed run under

MS-DOS, often on the first try. Unfortunately, many of the software developers Seattle

Computer talked to in the earlier days preferred to simply ignore MSDOS. Until the IBM

Personal Computer was announced, these developers felt that CP/M-86 would be the operating

system of 8086/8088 computers. Other concerns crucial to the design of MS-DOS were speed

and efficiency. Efficiency

primarily means making as much disk space as possible available for storing data by minimizing

waste and overhead. The problem of speed was attacked three ways: by minimizing the number

of disk transfers, making the needed disk transfers happen as quickly as possible, and reducing

the DOS's "compute time," considered overhead by an application program. The entire file

structure and disk interface were developed for the greatest speed and efficiency. The last design

requirement was that MS-DOS be written in assembly language. While this characteristic does

help meet the need for speed and efficiency, the reason for including it is much more basic. The

only 8086 software-development tools available to Seattle Computer at that time were an

assembler that ran on the Z80 under CP/M and a monitor/debugger that fit into a 2K-byte

EPROM (erasable programmable read-only memory). Both of these tools had been developed in

house. Group C Page 16

5.0 IMPLEMENTATION

http://www.unaab.edu.ng

67
OPERATING SYSTEM II

MSDOS is a single-user operating system. MS-DOS employs a command line interface and a

batch scripting facility via its command interpreter, command.com (all operations to be carried

out must be written through commands); without the knowledge of those commands, the user

cannot execute a job. Despite its command-line interface, it is easy to learn. The commands of

MSDOS are not case sensitive. MSDOS is supported and embedded in other operating system

like Microsoft windows, MacOs; it can be launched in windows by:

(i) Start -> All programs -> accessories -> command prompt or

(ii) Start -> run -> type cmd -> ok

The MSDOS contains five files (IO.SYS, MSDOS.SYS, COMMAND.COM, CONFIG.SYS and

AUTOEXEC.BAT). The commands in MSDOS can be categorized in two forms:

INTERNAL and EXTERNAL commands.

Group C Page 17

Internal commands are executed without loading a separate program file. Command.com is

responsible for the execution of internal commands and the special batch commands. Internal

commands are part of the command processor always available to be used. External command

exists as executable files handled by separate programs from the DOS diskette. Each program is

a member of the .COM or .EXE family. An external command can only be used when the disk

containing the program is in drive. They can be used for peripheral devices like printer. A file’s

full name is called FILESPEC. The FILESPEC for a disk file has four parts: drive name,

directory name, file name and extension. Characters like. “ / \ [] : | < > + = ; , cannot be used in

naming files because they mean other things in MSDOS. When you start up DOS, the current

directory is automatically the root directory. The CD will change the current directory. Other

folders in the root directory are called sub – directories. A file in any directory can be accessed

by typing:

cd ROOT DIRECTORY\SUB-DIRECTORY (Level 1)\ SUB-DIRECTORY

(level2)...\filename.ext. CLASSIFYING MS-DOS COMMANDS

http://www.unaab.edu.ng

68
OPERATING SYSTEM II

Either internal or external command will be specified for each command of MSDOS in this text.

MS-DOS commands fall roughly into three categories;

Group C Page 18

1. Environment Commands: These report on or affect the operating system environment.

Examples are CLS (clear screen), TIME, DATE, VER (display MS-DOS version number), and

HELP.

� BREAK (internal): Used from the DOS prompt or in a batch file or in the

CONFIG.SYS file to set (or display) whether or not DOS should check for a Ctrl +

Break key combination.

BREAK =on|off

� CLS (internal) – clears screen: Clears (erases) the screen. CLS

� DATE AND TIME (internal): Displays and/or sets the system date. DATE mm-dd-yy or

DATE

� GRAPHICS (external): Provides a way to print contents of a graphics screen display.

GRAPHICS [printer type][profile] [/B][/R][/LCD][/PB:(id)] [/C][/F][/P(port)]

� MODE (external): Sets mode of operation for devices or communications.

MODE n

MODE LPT#[:][n][,][m][,][P][retry]

MODE [n],m[,T]

MODE (displaytype,linetotal)

MODE COMn[:]baud[,][parity][,][databits][,][stopbits][,][retry]

MODE LPT#[:]=COMn [retry]

MODE CON[RATE=(number)][DELAY=(number)]

MODE (device) CODEPAGE PREPARE=(codepage) [d:][path]filename

http://www.unaab.edu.ng

69
OPERATING SYSTEM II

MODE (device) CODEPAGE PREPARE=(codepage list) [d:][path]filename

MODE (device) CODEPAGE SELECT=(codepage)

MODE (device) CODEPAGE [/STATUS]

MODE (device) CODEPAGE REFRESH

� VER (internal): Displays the DOS version number. VER

� SELECT (external): Formats a disk and installs country-specific information and keyboard

codes (starting with DOS Version 6, this command is no longer available).

SELECT [d:] [d:][path] [country code][keyboard code]

2. Directory and File Commands: These manipulate files. Examples are COPY, DEL (delete),

TYPE (display file to screen) and, DIR (directory - or list all files in current directory). It can be

further divided into three (3);

(a) Commands for disk maintenance

� BACKUP (external): Makes a backup copy of one or more files. (In DOS Version 6, this

program is stored on the DOS supplemental disk.)

Group C Page 19

BACKUP d:[path][filename] d:[/S][/M][/A][/F:(size)] [/P][/D:date] [/T:time]

[/L:[path]filename]

� RESTORE (external): Restores to standard disk storage format files previously stored using

the BACKUP command.

RESTORE d: [d:][path]filename [/P][/S][/B:mm-dd-yy] [/A:mm-ddyy][/

E:hh:mm:ss] [/L:hh:mm:ss] [/M][/N][/D]

http://www.unaab.edu.ng

70
OPERATING SYSTEM II

� RECOVER (external): Resolves sector problems on a file or a disk. (Beginning with DOS

Version 6, RECOVER is no longer available).

RECOVER [d:][path]filename or RECOVER d:

� VERIFY (internal): Turns on the verify mode; the program checks all copying

operations to assure that files are copied correctly.

VERIFY on|off

� FORMAT (external): Formats a disk to accept DOS files. FORMAT d:[/1][/4][/8][/F:(size)]

[/N:(sectors)] [/T:(tracks)][/B|/S][/C][/V:(label)]

[/Q][/U][/V]

� SYS (external): Transfers the operating system files to another disk.

SYS [source] d:

� CHKDSK (external): Checks a disk and provides a file and memory status report.

CHKDSK [d:][path][filename] [/F][/V]

� DISKCOPY (external): Makes an exact copy of a diskette.

DISKCOPY [d:] [d:][/1][/V][/M]

� DISKCOMP (external): Compares the contents of two diskettes.

DISKCOMP [d:] [d:][/1][/8]

� LABEL (external): Creates or changes or deletes a volume label for a disk.

LABEL [d:][volume label]

� VOL (internal): Displays a disk's volume label.

VOL [d:] (b) Commands for directory control

http://www.unaab.edu.ng

71
OPERATING SYSTEM II

� DIR (internal): Displays directory of files and directories stored on disk.

DIR [d:][path][filename] [/A:(attributes)] [/O:(order)]

[/B][/C][/CH][/L][/S][/P][/W]

� ASSIGN (external): Redirects disk drive requests to a different drive.

ASSIGN A:=B: [...] /sta

� MKDIR (internal): Creates a new subdirectory.

MKDIR (MD) [d:]path

Group C Page 20

� CHDIR (internal): Displays working (current) directory and/or changes to a different

directory.

CHDIR (CD) [d:]path or CHDIR (CD)[..]

� RMDIR (internal): Removes a subdirectory.

RMDIR (RD) [d:]path

� TREE (external): Displays directory paths and (optionally) files in each subdirectory.

TREE [d:][path] [/A][/F]

� PATH (external): Sets or displays directories that will be searched for programs not in the

current directory.

PATH; or PATH [d:]path[;][d:]path[...]

� JOIN (external): Allows access to the directory structure and files of a drive through a

directory on a different drive.

JOIN d: [d:path] or JOIN d: [/D]

� SUBST (external): Substitutes a virtual drive letter for a path designation.

SUBST d: d:path or SUBST d: /D

http://www.unaab.edu.ng

72
OPERATING SYSTEM II

(c) Commands for file control:

� COPY (internal): copies source file to target file and appends file.

COPY [d:][path]source [d:][path][target] [/V]

Or COPY [d:][path]filename+[d:][path]filename[...][d:][path][filename] [/V]

� COMP (external): Compares two groups of files to find information that does not match.

COMP [d:][path][filename] [d:][path][filename]

[/A][/C][/D][/L][/N:(number)]

� RNAME (internal): Changes the filename under which a file is stored.

RENAME (REN) [d:][path]filename [d:][path]filename

� ERASE/DELETE (internal): Deletes (erases) files from disk.

DEL (ERASE) [d:][path]filename [/P]

� TYPE (internal): Displays the contents of a file.

[d:][path]filename

� PRINT (external): Queues and prints data files.

PRINT [/B:(buffersize)] [/D:(device)] [/M:(maxtick)] [/Q:(value] [/S:(timeslice)]

[/U:(busytick)] [/C][/P][/T] [d:][path][filename] [...]

Group C Page 21

� ATTRIB (external) : Sets or displays the read-only, archive, system, and hidden

attributes of a file or directory.

ATTRIB [d:][path]filename [/S]

ATTRIB [+R|-R] [+A|-A] [+S|-S] [+H|-H] [d:][path]filename [/S]

3. Utilities: These perform some useful function. Examples are FORMAT (format a diskette)

and EDIT (invoke MS-DOS text editor).

http://www.unaab.edu.ng

73
OPERATING SYSTEM II

Group C Page 22

6.0 STRENGTH AND WEAKNESS

Strengths of Microsoft Disk Operating System

(a) It has a good User interface

MS-DOS employs a command line interface and a batch scripting facility via its

command interpreter, command.com. MS-DOS was designed so users could easily

substitute a different command line interpreter

(b) MS-DOS compatibility with other Microsoft operating systems users also desired a

graphical user interface. Many programs running under MS-DOS tried to fill the void by creating

their own graphical interface, such as Microsoft Word for DOS, XTree, and the Norton Shell.

However, this required duplication of effort and did not provide much consistency in interface

design (even between product lines). Non-Microsoft efforts to provide a consistent interface.

(c) It has command line interpreter which is the most efficient way to manage files and run

a computer program. It can be used to run program like JAVA and C++, MYSQL.

(d) Software Base

There is a huge software base for developing software in DOS, which is another major strength.

Weakness of MS-DOS

(a) MSDOS is a single user operating system.

(b) It does not support features like multi-tasking and multi-processing.

(c) DOS doesn't have built-in capability for scheduling or multithreading.

(d) You must also install interrupt handlers directly into the software application, and API calls

tend to be through software interrupts rather than some other more direct procedural method

instead.

http://www.unaab.edu.ng

74
OPERATING SYSTEM II

(e) Equipment vendors supporting DOS tend to follow an approach of either providing raw spec

sheets for their equipment or writing a pre-compiled binary object library that has to be linked

into your software using a specific compiler.

Group C Page 23

CONCLUSION

MSDOS is a powerful operating system. Though it is an old operating system yet not outdated

and versions of it are being released. There is a huge software base for developing software in

DOS, which is another major strength. DOS controls the computer's hardware and provides an

environment for programs to run. Everything you can do with a GUI can be done at the DOS

prompt. It can be used to execute specific programs directly from the command prompt like sql

queries, C++, C# and Java programs because it interface between with computer hardware and

software effectively.

http://www.unaab.edu.ng

75
OPERATING SYSTEM II

CHAPTER 5: MACINTOSH OPERATING SYSTEM

INTRODUCTION

Mac OS is a Graphical User Interface based operating system designed for Apple’s Macintosh

Computer Mac OS was named by the company Apple as "Mac System Software" in the

beginning, a specially designed operating system only for 68000 first Motorola processors. With

own Macintosh hardware, Mac OS takes up a special role in the world of desktop systems.

The first version was "System 1" and appeared bundled

with the Mac in 1984. The classic desktop is designed

as a single user operating system and almost completely

hides the full path to files and directories. The graphic

representation is reduced to the essence. Overall the

interface is very easy to use and does not need the right

mouse button for user interaction.

Starting with System 3.0, the used filesystem, Hierachical File System was used officially, which

does not different between uppercase and lowercase letters.

System 5.0 was the first release to run several programs with the integrated MultiFinder at the

same time. In 1988, system 6.0 came onto the market. It requires 1 MB RAM and can address

up to 8 MB. The file system can organize hard disks up to 2 GByte with 65,536 files. Optionally

applications run with the multi Finder in cooperative multitasking. For word processing are

programs such as WriteNow, MacWrite II, and Microsoft Word 4.0 available In May 1991,

system 7 came into existence. The new operating system needed 2 MB RAM, optionally it can

be switched to 32-bit depending from the used hardware. New is the direct support of networks

with file exchange, AppleScript as scripting language and display of colors. Balloons provide

help for the user to use the interface. The TrueType fonts are scalable to any size.

The System Software 7.5 appeared in 1994 and requires at least 4 MB RAM. It was running both

on 68000-Macs and Power Macintosh. In September 1996, the update System 7.5.5 includes all

available bug fixes, Open Transport 1.1.2, current Ethernet driver and support for storage drive

volumes up to 4 GB. With release 7.6 the company Apple changed the name from Mac Software

http://www.unaab.edu.ng

76
OPERATING SYSTEM II

System to Mac Operating System in 1997. Mac OS 8 by Apple appeared in July 1997. As

minimum requirements are specified a 68040 or PowerPC processor, 32 MB RAM and 120 MB

of free disk space. The CTRL key is used to display a specific context menu for different actions.

It makes it easier to copy files. Mac OS 8.1, Informations are stored more efficiently on the file

system. The file system can handle up to 2 billion files with a current file size of up to 2 GB.

Mac OS 8.5 further optimized the stability and speed of the operating system, AppleScript is

now up to 5 times faster than the previous version. The graphical display is accelerated by new

QuickDraw routines. Copying files has become faster and increase the disk throughput. A tool

for system maintaining detects and fixes errors on the file system automated. Following

applications are included in current version: Finder 8.5 QuickTime Pro 3, Open Transport 2,

Internet Explorer 4.01, Outlook Express 4.01, e.t.c.

The operating system Mac OS 9 has been developed under the name Sonata and released to the

23. October 1999. The installation requires 32 MB RAM with virtual memory. The free disk

storage should be 150 up to 400 MB depending on the installation type. 50 new features are

added in comparison to the previous version. This includes support for multiple users with

password and access management for files and settings. The login is available through

authentication by voice. MAC OS X

The operating system core Darwin is open source, Mac

OS X works with preemptive multi-tasking and includes

beside the new Graphical user interface (GUI) Aqua the

classic GUI from Mac OS 9.

Mac OS X 10.0 came out in March 2001. To install are

128 MB RAM (256 MB RAM starting from Mac OS X

10.3.9) and 1.5 GB hard disk space (3.0 GByte starting from Mac OS X 10.2) provided. Mac OS

X 10.5 requires at least 512 MB RAM and 9 GByte of free disk space.

http://www.unaab.edu.ng

77
OPERATING SYSTEM II

- 32-bit or 64-bit processing

Field of Application

- digital photography

- 2-D and 3-D animations

- video processing

- audio processing

Structure Information

- supports QuickTime

- graphical user interaction with the finder

- graphical representation by Quickdraw

Considerable performance and comfort improvements were carried out in version Mac OS X

10.1. The surface reacts quicker at user interaction, the system start was accelerated and the

OpenGL performance increased noticeable.

Mac OS X 10.3 has now a GUI in metallic scheme and the optimized Finder. The use and access

in heterogeneous networks was further simplified. 12 million MacOS X user were counted in

October 2004.

According to Apple Mac OS X 10.4 brings more than 200 new features. Features are the fast,

system-wide and index-based search function named Spotlight, the Dashboard for easy access to

small programms (Widgets), the Automator for the simplified composition of Applescripts for

the automation of tasks. The Web browser Safari in version 2.0 now contained. Further novelty

is the delivery at a DVD medium, an installation of CD-ROM is no longer possible.

First since the 10th January 2006 is MacOS X 10.4.4 next to the PowerPC version available for

Intel based Macs. On the 6. June 2005 Steve jobs announced the switch to Intel processors. As

further details became known that Apple had developed Mac OS X since 2000 internally also for

the Intel platform.

http://www.unaab.edu.ng

78
OPERATING SYSTEM II

Apple released the successor MacOS X 10.5, Leopard at the 26 october,2007. With more than

300 innovations MacOS offers the user an enhanced user interface with virtual desktops, a fast

file preview and Dock with 3D effect.ose snapshot. The security of the operating system and

applications is improved by 11 enhancements. The first update with bug fixes was released with

Mac OS X 10.5.1 by Apple on November 15th, 2007. It contains general bug fixes for the

operating system to improve stability, better compatibility and safety.

Mac OS X 10.5.2 cames with 125 bug fixes and smaller optimizations on January 24th, 2008.

Mac OS X 10.6 is a Mac computer with Intel Core 2 Duo processor with at least 1 GB memory

and 5 GB free space ahead. This operating system no longer exists as PowerPC execution. Apple

placed the focus development on performance and stability. It supports up to 16 TByte memory,

it is optimized for multi core processors, and is a pure 64-bit operating system. With the

technology OpenCL graphics processor can speed up in specific applications calculation

PROCESS MANAGEMENT

Mac OS implemented non-preemptive multitasking. Although the scheduling algorithm was

simple in the absence of preemption, it supported process priorities.

A process could only be created by another process, except the initial process, which was created

by the operating system as the “shell” process upon booting. The shell process ran the Desktop

Manager application by default. The system’s process management API included calls for

creating, terminating, suspending, and resuming.

Technical History of Apple’s Operating Systems processes.

Terminating a process also resulted in the termination of all its descendants. Examples of MAC

process-management system calls included the following.

• make_process

• kill_process

http://www.unaab.edu.ng

79
OPERATING SYSTEM II

• activate_process

• suspend_process

• info_process

• setpriority_process

• yield_process

• sched_class

System-level exceptions resulted in the termination of a process—a side effect of the execution

of default exception handlers. Processes could install custom exception handlers, which were

invoked with detailed exception context. Examples of Lisa exception-management system calls

included the following.

• enable_excep

• disable_excep

• declare_excep_hdl

• signal_excep

Interprocess Communication

By default, a process was not allowed to access the logical address space of another process.

Interprocess communication was possible through multiple mechanisms such as events, shared

files, and shared memory. Events were structured messages consisting of a system-attached

header and a sender-provided data block, transmitted between processes over named channels. A

process could listen on a channel, waiting for messages to arrive. Alternatively, a process could

register an exception handler and arrange for an exception to be generated upon message arrival.

Mac OS X Internals

Examples of mac event-channel management system calls included the following.

• make_event_chn

• kill_event_chn

http://www.unaab.edu.ng

80
OPERATING SYSTEM II

• open_event_chn

• close_event_chn

• wait_event_chn

http://www.unaab.edu.ng

81
OPERATING SYSTEM II

CHAPTER SIX: WINDOWS OPERATING SYSTEM

 INTRODUCTION

Microsoft Windows is a series of software operating systems and graphical user interfaces

produced by Microsoft. Microsoft first introduced an operating environment named Windows in

November 1985 as an add-on to MS-DOS in response to the growing interest in graphical user

interfaces (GUIs). Microsoft Windows came to dominate the world's personal computer market,

overtaking Mac OS, which had been introduced previously. At the 2004 IDC Directions

conference, it was stated that Windows had approximately 90% of the client operating system

market. The most recent client version of Windows is Windows Vista; the most recent server

version is Windows Server 2008. Vista's successor, Windows 7 (currently in public beta) is

slated to be released between July 1, 2009 and June 30, 2010.

The term Windows collectively describes any or all of several generations of Microsoft

operating system products. These products are generally categorized as follows:

 History of Microsoft Windows

Microsoft has taken two parallel routes in its operating systems. One route has been for the home

user and the other has been for the professional IT user. The dual routes have generally led to

home versions having greater multimedia support and less functionality in networking and

security, and professional versions having inferior multimedia support and better networking and

security.

The first version of Microsoft Windows, version 1.0, released in November 1985, lacked a

degree of functionality and achieved little popularity, and was to compete with Apple’s own

operating system. Windows 1.0 is not a complete operating system; rather, it extends MS-DOS.

Microsoft Windows version 2.0 was released in November, 1987 and was slightly more popular

than its predecessor. Windows 2.03 (release date January 1988) had changed the OS from tiled

windows to overlapping windows. The result of this change led to Apple Computer filing a suit

against Microsoft alleging infringement on Apple's copyrights.

A Windows for Workgroups 3.11 desktop

http://www.unaab.edu.ng

82
OPERATING SYSTEM II

Microsoft Windows version 3.0, released in 1990, was the first Microsoft Windows version to

achieve broad commercial success, selling 2 million copies in the first six months. It featured

improvements to the user interface and to multitasking capabilities. It received a facelift in

Windows 3.1, made generally available on March 1, 1992. Windows 3.1 support ended on

December 31, 2001.

In July 1993, Microsoft released Windows NT based on a new kernel. NT was considered to be

the professional OS and was the first Windows version to utilize preemptive

multitasking.[citation needed]. Windows NT would later be retooled to also function as a home

operating system, with Windows XP.

On August 24, 1995, Microsoft released Windows 95, a new, and major, consumer version that

made further changes to the user interface, and also used preemptive multitasking. Windows 95

was designed to replace not only Windows 3.1, but also Windows for Workgroups, and MS-

DOS. It was also the first Windows operating system to use Plug and Play capabilities. The

changes Windows 95 brought to the desktop were revolutionary, as opposed to evolutionary,

such as those in Windows 98 and Windows Me. Mainstream support for Windows 95 ended on

December 31, 2000 and extended support for Windows 95 ended on December 31, 2001.

The next in the consumer line was Microsoft Windows 98 released on June 25, 1998. It was

substantially criticized for its slowness and for its unreliability compared with Windows 95, but

many of its basic problems were later rectified with the release of Windows 98 Second Edition in

1999. Mainstream support for Windows 98 ended on June 30, 2002 and extended support for

Windows 98 ended on July 11, 2006.

As part of its "professional" line, Microsoft released Windows 2000 in February 2000. The

consumer version following Windows 98 was Windows Me (Windows Millennium Edition).

Released in September 2000, Windows Me implemented a number of new technologies for

Microsoft: most notably publicized was "Universal Plug and Play."

In October 2001, Microsoft released Windows XP, a version built on the Windows NT kernel

that also retained the consumer-oriented usability of Windows 95 and its successors. This new

version was widely praised in computer magazines. It shipped in two distinct editions, "Home"

http://www.unaab.edu.ng

83
OPERATING SYSTEM II

and "Professional", the former lacking many of the superior security and networking features of

the Professional edition. Additionally, the first "Media Center" edition was released in 2002,[20]

with an emphasis on support for DVD and TV functionality including program recording and a

remote control. Mainstream support for Windows XP ended on April 14, 2009. Extended support

will continue until April 8, 2014.

In April 2003, Windows Server 2003 was introduced, replacing the Windows 2000 line of server

products with a number of new features and a strong focus on security; this was followed in

December 2005 by Windows Server 2003 R2.

On January 30, 2007 Microsoft released Windows Vista. It contains a number of new features,

from a redesigned shell and user interface to significant technical changes, with a particular

focus on security features. It is available in a number of different editions, and has been subject

to some criticism.

 Early versions

Windows 1.0, Windows 2.0, and Windows 2.1x

The history of Windows dates back to September 1981, when the project named "Interface

Manager" was started. It was announced in November 1983 (after the Apple Lisa, but before the

Macintosh) under the name "Windows", but Windows 1.0 was not released until November

1985. The shell of Windows 1.0 was a program known as the MS-DOS Executive. Other

supplied programs are Calculator, Calendar, Cardfile, Clipboard viewer, Clock, Control Panel,

Notepad, Paint, Reversi, Terminal, and Write. Windows 1.0 does not allow overlapping

windows, due to Apple Computer owning this feature. Instead all windows are tiled. Only dialog

boxes can appear over other windows.

Windows 2.0 was released in October 1987 and featured several improvements to the user

interface and memory management. Windows 2.0 allowed application windows to overlap each

http://www.unaab.edu.ng

84
OPERATING SYSTEM II

other and also introduced more sophisticated keyboard-shortcuts. It could also make use of

expanded memory.

Windows 2.1 was released in two different flavors: Windows/386 employed the 386 virtual 8086

mode to multitask several DOS programs, and the paged memory model to emulate expanded

memory using available extended memory. Windows/286 (which, despite its name, would run on

the 8086) still ran in real mode, but could make use of the high memory area.

The early versions of Windows were often thought of as simply graphical user interfaces, mostly

because they ran on top of MS-DOS and used it for file system services. However, even the

earliest 16-bit Windows versions already assumed many typical operating system functions;

notably, having their own executable file format and providing their own device drivers (timer,

graphics, printer, mouse, keyboard and sound) for applications. Unlike MS-DOS, Windows

allowed users to execute multiple graphical applications at the same time, through cooperative

multitasking.

Windows implemented an elaborate, segment-based, software virtual memory scheme, which

allowed it to run applications larger than available memory: code segments and resources were

swapped in and thrown away when memory became scarce, and data segments moved in

memory when a given application had relinquished processor control, typically waiting for user

input.

Windows 3.0 and Windows 3.1x

Windows 3.0 (1990) and Windows 3.1 (1992) improved the design, mostly because of virtual

memory and loadable virtual device drivers (VxDs) which allowed them to share arbitrary

devices between multitasked DOS windows. Also, Windows applications could now run in

protected mode (when Windows was running in Standard or 386 Enhanced Mode), which gave

them access to several megabytes of memory and removed the obligation to participate in the

software virtual memory scheme. They still ran inside the same address space, where the

segmented memory provided a degree of protection, and multi-tasked cooperatively. For

http://www.unaab.edu.ng

85
OPERATING SYSTEM II

Windows 3.0, Microsoft also rewrote critical operations from C into assembly, making this

release faster and less memory-hungry than its predecessors. With the introduction of the

Windows for Workgroups 3.11, Windows was able to bypass DOS for file management

operations using 32-bit file access.

 Windows 95, Windows 98, and Windows Me

Windows 95 featured a new user interface, supported long file names, could automatically detect

and configure installed hardware (plug and play), natively ran 32-bit applications, and featured

several technological improvements that increased its stability over Windows 3.1. Windows 95

uses pre-emptive multitasking and runs each 32-bit application in a separate address space. This

makes it harder for a single buggy application to crash the whole system. It was still not a secure

multi-user operating system like Windows NT as a strict separation between applications was not

enforced by the kernel. The API was a subset of the Win32 API supported by Windows NT,

notably lacking support for Unicode and functions related to security. Windows 95 was now

bundled together with MS-DOS 7.0, however its role was mostly delegated to that of a boot

loader.

There were several releases of Windows 95; the first in 1995, with Service Pack 1 following in

December which included Internet Explorer 2.0. Subsequent versions were only available with

the purchase of a new computer and were called OEM Service Releases. OSR1 was equivalent to

Windows 95 with SP1. OSR2 (also called Windows 95 B) included support for FAT32 and

UDMA and shipped with Internet Explorer 3.0. OSR 2.1 included basic support for USB and

OSR 2.5 (also called Windows 95 C) shipped with Internet Explorer 4.0.

Microsoft's next OS was Windows 98, which had two versions; the first in 1998 and the second,

named Windows 98 Second Edition, in 1999.

In 2000, Microsoft released Windows Me (Me standing for Millennium Edition), which used the

same core as Windows 98 but adopted some aspects of Windows 2000 and removed the "boot in

DOS mode" option. It also added a new feature called System Restore, allowing the user to set

the computer's settings back to an earlier date. Me is also the last DOS-based Windows release

which does not include Microsoft Product Activation.

http://www.unaab.edu.ng

86
OPERATING SYSTEM II

Windows NT family

The NT family of Windows systems was fashioned and marketed for higher reliability business

use, and was unencumbered by any Microsoft DOS patrimony. The first release was MS

Windows NT 3.1 (1993, numbered "3.1" to match the consumer Windows version, which was

followed by NT 3.5 (1994), NT 3.51 (1995), NT 4.0 (1996), and Windows 2000 (2000). 2000 is

the last NT-based Windows release which does not include Microsoft Product Activation. NT

4.0 was the first in this line to implement the "Windows 95" user interface (and the first to

include Windows 95’s built-in 32-bit runtimes). Microsoft then moved to combine their

consumer and business operating systems with Windows XP, coming in both home and

professional versions (and later niche market versions for tablet PCs and media centers); they

also diverged release schedules for server operating systems. Windows Server 2003, released a

year and a half after Windows XP, brought Windows Server up to date with MS Windows XP.

After a lengthy development process, Windows Vista was released toward the end of 2006, and

its server counterpart, Windows Server 2008 was released in early 2008. In 2009, Windows 7

and Windows Server 2008 R2 entered beta. Microsoft plans to release Windows 7 in late 2009 or

early 2010.

Windows CE, Microsoft’s offering in the mobile and embedded markets, is also a true 32-bit

operating system that offers various services for all sub-operating workstations.

Windows CE

Windows CE (officially known as Windows Embedded), is an edition of Windows that runs on

minimalistic computers, like satellite navigation systems, and uncommonly mobile phones.

Windows Embedded runs as CE, rather than NT, which is why it should not be mistaken for

Windows XP Embedded, which is NT. Windows CE was used in the Sega Dreamcast along with

Sega's own proprietary OS for the console.

Windows Lifecycle Policy

http://www.unaab.edu.ng

87
OPERATING SYSTEM II

Microsoft has stopped releasing updates and hotfixes for many old Windows operating systems,

including all versions of Windows 9x, and earlier versions of Windows NT. Windows versions

prior to XP are no longer supported, with the exception of Windows 2000, which is currently in

the Extended Support Period, that will end on July 13, 2010. No new updates are created for

unsupported versions of Windows.

 DESIGN ISSUES

WINDOWS RESOURCE MANAGEMENT

This has do with the management of all the resources in the component of the Operating System

e. g the Memory, the Central Processing Unit, I/O devices and other components.

 PROCESS MANAGEMENT

Processor

A circuit designed to automatically perform lists of logical and arithmetic operations.

Unlike microprocessors, processors may be designed from discrete components rather than be a

monolithic integrated circuit.

A process is running program containing one or more threads. A process encapsulates the

protected memory and environment for its threads.

Processes and Threads

In addition to being a preemptive multitasking operating system, Windows NT is also

multithreaded, meaning that more than one thread of execution (or thread) can execute in a

single task at once.

http://www.unaab.edu.ng

88
OPERATING SYSTEM II

A process comprises:

• A private memory address space in which the process's code and data are stored.

• An access token against which Windows NT makes security checks.

• System resources such as files and windows (represented as object handles).

• At least one thread to execute the code.

A thread comprises:

• A processor state including the current instruction pointer.

• A stack for use when running in user mode.

• A stack for use when running in kernel mode.

Since processes (not threads) own the access token, system resource handles, and address space,

threads do NOT have their own address spaces nor do they have their own access token or

system resource handles. Therefore, all of the threads in a process SHARE the same memory,

access token, and system resources (including quota limits) on a "per-process" rather than a "per-

thread" basis. In a multithreaded program, the programmer is responsible for making sure that

the different threads don't interfere with each other by using these shared resources in a way that

conflicts with another thread's use of the same resource. (As you might suspect, this can get a

little tricky.)

Why Use Multithreading?

Multithreading provides a way to have more than one thread executing in the same process while

allowing every thread access to the same memory address space. This allows very fast

http://www.unaab.edu.ng

89
OPERATING SYSTEM II

communication among threads. Threads are also easier to create than processes since they don't

require a separate address space.

Inside Windows NT, processes and threads are represented as objects that are created,

maintained, and destroyed by the Process Manager. These Process Manager process and thread

objects contain simpler kernel process and thread objects.

Some typical examples of the use of multiple threads are using a background thread to print a

document in a word processor and to recalculate a spreadsheet. When a new thread is created to

do these tasks, the main thread can continue responding to user input. A single-threaded

application can't respond to user input until it's done printing or recalculating or whatever.

On a uniprocessor platform, the use of multiple threads allows a user to continue using a

program even while another thread is doing some lengthy procedure. But only one thread

executes at a time.

On a multiprocessor platform, more than one processor may be running different threads in the

same process. This has the potential for very significantly speeding up the execution of your

program.

Sharing A Single Address Space--Synchronizing Access To Data

Running each process in its own address space had the advantage of reliability since no process

can modify another process's memory. However, all of a process's threads run in the same

address space and have unrestricted access to all of the same resources, including memory.

While this makes it easy to share data among threads, it also makes it easy for threads to step on

each other. As mentioned before, multithreaded programs must be specially programmed to

ensure that threads don't step on each other.

A section of code in Windows operating system that modifies data structures shared by multiple

threads is called a critical section. It is important than when a critical section is running in one

http://www.unaab.edu.ng

90
OPERATING SYSTEM II

thread that no other thread be able to access that data structure. Synchronization is necessary to

ensure that only one thread can execute in a critical section at a time. This synchronization is

accomplished through the use of some type of Windows synchronization object. Programs use

Windows synchronization objects rather than writing their own synchronization both to save

coding effort and for efficiency: when you wait on a Windows synchronization object, you do

NOT use any CPU time testing the object to see when it's ready.

Windows provides a variety of different types of synchronization objects that programs can use

to coordinate threads' access to shared data structures. Synchronization objects remember their

states and can be set and tested in one uninterruptable step. They also cause the thread to be

suspended while waiting on an object and to automatically restart when the other thread signals

that it's done.

During the initialization of a program, the program creates a synchronization object for each data

structure or object that will be shared among threads.

EVERY critical section will have the following structure:

1. Wait on the synchronization object before accessing the data structure. The Windows

waiting API insures that your thread is suspended until the synchronization object

becomes unlocked. As soon as the synchronization object becomes unlocked, Windows

sets the synchronization object to "locked" and restarts your thread.

2. Access the data structure. (This is the critical section.)

3. Unlock the synchronization object so that the data can be accessed by other threads.

The first step is critical because if it's omitted then any thread can access the data structure while

you're accessing. The last step is also critical--it it's omitted, then no thread will be able to access

the data even after you're done.

Using this technique on every critical section insures that only one thread can access the data at a

time.

http://www.unaab.edu.ng

91
OPERATING SYSTEM II

The Life Cycle Of A Thread

Each thread has a dispatcher state that changes throughout its lifetime.

The most important dispatcher states are:

• Running: only one thread per processor can be running at any time.

• Ready: threads that are in the Ready state may be scheduled for execution the next time

the kernel dispatches a thread. Which Ready thread executes is determined by their

priorities.

• Waiting: threads that are waiting for some event to occur before they become Ready are

said to be waiting. Examples of events include waiting for I/O, waiting for a message,

and waiting for a synchronization object to become unlocked.

 SCHEDULLING

The Kernel's Dispatcher

The kernel's dispatcher performs scheduling and context switching.

Thread scheduling is the act of determining which thread runs on each processor at a given time.

Context switching is the act of saving one thread's volatile state (CPU register contents) and

restoring another thread's state so it can continue running where it previously left off.

How Thread Priorities Affect Scheduling

The kernel's dispatcher schedules threads to run based a 32-level priority scheme. Windows

guarantees that the threads that are ready that have the highest priority will be running at any

given time. (That's one thread on a single-processor system.) Threads with a priority of 31 will

http://www.unaab.edu.ng

92
OPERATING SYSTEM II

be run before any others, while threads with a priority of 0 will run only if no other threads are

ready. The range of priorities is divided in half with the upper 16 reserved for real-time threads

and the lower 16 reserved for variable priority threads.

Real-time threads run at the same priority for their entire lifetime. They are commonly used to

monitor or control systems that require action to be taken at very precise intervals. These threads

run at higher priorities than all variable priority threads, which means that they must be used

sparingly.

Variable priority threads are assigned a base priority when they are created. (A thread's base

priority is determined by the process to which the thread belongs.) The priority of such threads

can be adjusted dynamically by the kernel's dispatcher. A thread's dynamic priority can vary up

to two priority levels above or below its base priority.

The dispatcher maintains a priority queue of ready tasks. When prompted to reschedule, it

changes the state of the highest priority task to Standby. When the conditions are right, a context

switch is performed to begin the thread's execution and the thread goes into the Ready state.

Lower priority threads will always be preempted when a higher priory thread enters the ready

state. This is true even if the lower priority thread has time remaining in its quantum, or if the

lower priority thread is running on a different processor.

Performance Tuning

In order to get the computer system to perform as users expect, Windows changes the priorities

of threads over time.

Each process has a base priority. Threads in a process can alter their base priority by up to two

levels up or down.

Depending on the type of work the thread is doing, Windows may also adjust the thread's

dynamic priority upwards from its base priority. For instance:

http://www.unaab.edu.ng

93
OPERATING SYSTEM II

• Threads that are waiting for input get a priority boost, as do threads in the foreground

process. This makes the system responsive to the user.

• Threads get a priority boost after completing a voluntary wait.

• All threads periodically get a priority boost to prevent lower priority threads from holding

locks on shared resources that are needed by higher priority threads.

• Compute-bound threads get their priorities lowered.

Scheduling On Multiprocessor Systems

A multiprocessing operating system is one that can run on computer systems that contain more

than one processor. Windows is a symmetric multiprocessing (SMP) system, meaning that it

assumes that all of the processors are equal and that they all have access to the same physical

memory. Therefore, Windows can run any thread on any available processor regardless of what

process, user or Executive, owns the thread.

There are also asymmetric multiprocessing (ASMP) systems in which processors are different

from each other--they may address different physical memory spaces, or they may have other

differences. These operating systems only run certain processes on certain processors--for

instance, the kernel might always execute on a particular processor.

The design of Windows supports processor affinity, whereby a process or thread can specify that

it is to run on a particular set of processors, but this facility isn't supported in the first release.

Windows uses the same rules for scheduling on a multiprocessor system as it does on a single

processor system, so at any given time the threads that are ready and have the highest priorities

are actually running.

Using Task Manager

The Task Manager utility shows the applications and processes that are currently running on

your computer, as well as CPU and memory usage information. To access Task Manager, press

http://www.unaab.edu.ng

94
OPERATING SYSTEM II

CtrlAlt Delete and click the Task Manager button. Alternatively, right-click an empty area in the

Taskbar and select Task Manager from the pop-up menu.

The Task Manager dialog box has four main tabs: Applications, Processes, Performance, and

Networking. These options are covered in the following subsections.

Managing Application Tasks

The Applications tab of the Task Manager dialog box, shown in Figure iii, lists all of the

applications that are currently running on the computer. For each task, you will see the name of

the task and the current status (running, not responding, or stopped).

To close an application, select it and click the End Task button at the bottom of the dialog box.

To make the application window active, select it and click the Switch To button. If you want to

start an application that isn’t running, click the New Task button and specify the location and

name of the program you wish to start.

• Processor Scheduling, which allows you to optimize the processor time for running

programs

or background services

• Memory Usage, which allows you to optimize memory for programs or system cache

• Virtual Memory, which is used to configure the paging file

Stopping Processes

Process Description

System Idle Process A process that runs when the processor is not executing any

other threads

smss.exe Session Manager subsystem

csrss.exe Client-server runtime server service

mmc.exe Microsoft Management Console program (used to track resources used by MMC

snap-ins such as System Monitor)

explorer.exe Windows Explorer interface

Ntvdm.exe MS-DOS and Windows 16-bit application support

Managing Process Priority

http://www.unaab.edu.ng

95
OPERATING SYSTEM II

You can manage process priority through the Task Manager utility or through the start

command-line utility. To change the priority of a process that is already running, use the

Processes tab of Task Manager. Right-click the process you want to manage and select Set

Priority from the pop-up menu. You can select from RealTime, High, AboveNormal, Normal,

BelowNormal, and Low priorities.

Options for the start Command-Line Utility

Option Description

• low Starts an application in the Idle priority class.

• normal Starts an application in the Normal priority class.

• high Starts an application in the High priority class.

• realtime Starts an application in the RealTime priority class.

• abovenormal Starts an application in the AboveNormal priority class.

• belownormal Starts an application in the BelowNormal priority class.

• min Starts the application in a minimized window.

• max Starts the application in a maximized window.

• separate Starts a Windows 16-bit application in a separate memory space. By default

Windows 16-bit applications run in a shared memory space, NTVDM, or NT Virtual

DOS Machine.

• shared Starts a DOS or Windows 16-bit application in a shared memory space.

Managing Performance Tasks

The Performance tab shows the following information:

o CPU Usage, in real time and in a history graph

o Page File Usage, in real time and in a history graph

o Totals for handles, threads, and processes

o Physical Memory statistics

o Commit Charge memory statistics

http://www.unaab.edu.ng

96
OPERATING SYSTEM II

o Kernel Memory statistics

Scheduling Tasks

Windows includes a Task Scheduler utility that allows you to schedule tasks to occur at specified

intervals. You can set any of your Windows programs to run automatically at a specific time and

at a set interval, such as daily, weekly, or monthly. For example, you might schedule your

Windows Backup program to run daily at 2:00 a.m.

Tuning and Upgrading the Processor

If you suspect that you have a processor bottleneck, you can try the following solutions:

• Use applications that are less processor-intensive.

• Upgrade your processor.

• If your computer supports multiple processors, add one. Windows can support up to two

processors, which will help if you use multithreaded applications. You can also use

processor affinity to help manage processor-intensive applications.

Monitoring and Optimizing the Processor

A task manager windows

http://www.unaab.edu.ng

97
OPERATING SYSTEM II

Processor bottlenecks can develop when the threads of a process require more processing cycles

than are currently available. In this case, the process will wait in a processor queue and system

responsiveness will be slower than if process requests could be immediately served.

The most common causes of processor bottlenecks are processor-intensive applications and other

subsystem components that generate excessive processor interrupts (for example, disk or

network subsystems).

In a workstation environment, processors are usually not the source of bottlenecks. You should

still monitor this subsystem to make sure that processor utilization is at an efficient level.

 MEMORY MANAGEMENT

The memory manager implements virtual memory, provides a core set of services such as

memory mapped files, copy-on-write memory, large memory support, and underlying support for

the cache manager.

Memory management in Microsoft Windows operating systems has evolved into a rich and

sophisticated architecture, capable of scaling from the tiny embedded platforms (where Windows

executes from ROM) all the way up to the multi-terabyte NUMA configurations, taking full

advantage of all capabilities of existing and future hardware designs.

With each release of Windows, memory management supports many new features and

capabilities. Advances in algorithms and techniques yield a rich and sophisticated code base,

which is maintained as a single code base for all platforms and SKUs.

Memory management improvements in Windows Vista focused on areas such as dynamic

system address space, enhanced NUMA and large system/page support, advanced video model

support, I/O and section access, and robustness and diagnosability.

Among other things, a multiprogramming operating system kernel must be responsible for

managing all system memory which is currently in use by programs. This ensures that a program

http://www.unaab.edu.ng

98
OPERATING SYSTEM II

does not interfere with memory already used by another program. Since programs time share,

each program must have independent access to memory.

Cooperative memory management, used by many early operating systems assumes that all

programs make voluntary use of the kernel's memory manager, and do not exceed their allocated

memory.

Memory protection enables the kernel to limit a process' access to the computer's memory.

Various methods of memory protection exist, including memory segmentation and paging. All

methods require some level of hardware support (such as the 80286 MMU) which doesn't exist

in all computers.

Virtual memory

The use of virtual memory addressing (such as paging or segmentation) means that the kernel

can choose what memory each program may use at any given time, allowing the operating

system to use the same memory locations for multiple tasks.

If a program tries to access memory that isn't in its current range of accessible memory, but

nonetheless has been allocated to it, the kernel will be interrupted in the same way as it would if

the program were to exceed its allocated memory. When the kernel detects a page fault it will

generally adjust the virtual memory range of the program which triggered it, granting it access to

the memory requested. This gives the kernel discretionary power over where a particular

application's memory is stored, or even whether or not it has actually been allocated yet.

In modern operating systems, application memory which is accessed less frequently can be

temporarily stored on disk or other media to make that space available for use by other programs.

This is called swapping, as an area of memory can be used by multiple programs, and what that

memory area contains can be swapped or exchanged on demand.

http://www.unaab.edu.ng

99
OPERATING SYSTEM II

 ERROR HANDLING

Existing operating systems include error handling tools that identify and log errors that occur

during the operation of the operating systems and provide a user with the ability to view the

logged errors. Although most applications running in the operating system's environment provide

error messages when errors occur, these error messages are often technical in nature and may not

be easily understood by the user. Therefore, the error handling tools not only identify and log

these errors but, in addition, they describe the errors to the user in an easily comprehensible

format. For example, the Windows NT® operating system by Microsoft Corporation includes an

event log that collects error messages from applications, device drivers and the operating system

itself to a common location that the user can access. The Windows NT® operating system also

includes an event viewer that permits the user to view the error messages in the order of their

occurrences.

For existing error handling tools, the client application must have advance knowledge of the

possible types of service failures. Otherwise, the client application would not be able to provide

meaningful information regarding the nature of the error. This poses problems in a client-server

environment because the client application and applications of the service providers are loosely

coupled and developed independently, and it is not practical to change an application as its

underlying service provider evolves. It is, therefore, difficult for a client application to obtain

meaningful information for an error message within a client/server environment.

The present invention resolves the above problems by providing a mechanism for a client

application that identifies the source of a service error and obtains detailed error information at

the time the error occurs. In particular, the mechanism accesses the error message information

specific to the service that encounters the error and, then, reports that information as part of its

error handling operation. The present invention also functions in a plurality of nested subsystems

in which a subsystem that detects a particular problem is identified among a group of subsystems

that are called in a nested manner. Accordingly, the present invention automatically handles the

operation of reporting events whose source subsystem is different from that of the reporting

subsystem without requiring the reporting subsystem to have advance knowledge of the possible

errors that could be encountered.

http://www.unaab.edu.ng

100
OPERATING SYSTEM II

Using Event Viewer

You can use the Event Viewer utility to track information about your computer’s hardware and

software, as well as to monitor security events. Every Windows XP computer will show three

types of log files (depending on your configuration you may also have other log files):

System log

Tracks events related to the Windows XP operating system. This log is useful in troubleshooting

Windows XP problems.

Security log

Tracks events related to Windows XP auditing. By default auditing is not enabled.

If you enable security auditing you can select what to track and whether you will track security

success and/or failure events.

Application log

Tracks events related to applications that are running on your computer. For example, you might

see that your e-mail program recorded an error. These errors are useful in troubleshooting

application problems or for developers to fix application problems.

 INTERRUPT

Interrupts are central to operating systems as they provide an efficient way for the operating

system to interact and react to its environment. The alternative is to have the operating system

"watch" the various sources of input for events (polling) that require action -- not a good use of

CPU resources. Interrupt-based programming is directly supported by most CPUs. Interrupts

provide a computer with a way of automatically running specific code in response to events.

Even very basic computers support hardware interrupts, and allow the programmer to specify

code which may be run when that event takes place.

When an interrupt is received the computer's hardware automatically suspends whatever program

is currently running, saves its status, and runs computer code previously associated with the

interrupt. This is analogous to placing a bookmark in a book when someone is interrupted by a

http://www.unaab.edu.ng

101
OPERATING SYSTEM II

phone call and then taking the call. In Windows operating systems interrupts are handled by the

operating system's kernel. Interrupts may come from either the computer's hardware or from the

running program.

kernel is the core process of a preemptive operating system, consisting of a multitasking

scheduler and the basic security services. Depending on the operating system, other services such

as virtual memory drivers may be built into the kernel. The kernel is responsible for managing

the scheduling of threads and processes.

When a hardware device triggers an interrupt the operating system's kernel decides how to deal

with this event, generally by running some processing code. How much code gets run depends

on the priority of the interrupt (for example: a person usually responds to a smoke detector alarm

before answering the phone). The processing of hardware interrupts is a task that is usually

delegated to software called device drivers, which may be either part of the operating system's

kernel, part of another program, or both. Device drivers may then relay information to a running

program by various means.

A program may also trigger an interrupt to the Windows operating system. If a program wishes

to access hardware for example, it may interrupt the operating system's kernel, which causes

control to be passed back to the kernel. The kernel will then process the request. If a program

wishes additional resources (or wishes to shed resources) such as memory, it will trigger an

interrupt to get the kernel's attention.

Interrupt Architecture

The first step in exploring the interrupt architecture of Microsoft® Windows® is defining an

overall model of the hardware, kernel, OAL and thread interactions during an interrupt. The

following diagram is an overall picture of these different levels of responsibility and the

transitions that cause changes of state.

http://www.unaab.edu.ng

102
OPERATING SYSTEM II

The diagram represents the major transitions during an interrupt with time increasing to the right

of the diagram. The bottom most layer of the diagram is the hardware and the state of the

interrupt controller. The next layer is the kernel interactions during interrupt servicing. The OAL

describes the board support package (BSP) responsibilities. The top most layer represents the

application or driver thread interactions needed to service an interrupt. The diagram represents

the interactions during a single interrupt; representing the new ability of Windows to have shared

interrupts. The activity starts with an interrupt represented by the line at the left most section of

the chart. An exception is generated causing the kernel ISR vector to be loaded onto the

processor. The kernel ISR interacts with the hardware disabling all equal and lower priority

interrupts on all processors except for the ARM and Strong ARM architectures. The kernel then

vectors to the OAL ISR that has been registered for that particular interrupt. The OAL ISR then

can either directly handle the interrupt or can use NKCallIntChain to walk a list of installed

ISRs. The main ISR or any of the installed ISRs then performs any work and returns the mapped

interrupt called SYSINTR for that device. If the ISR determines that its associated device is not

causing the interrupt the ISR returns SYSINTR_CHAIN, which causes NKCallIntChain() to

walk the ISR list to the next interrupt in the chain. The ISRs are called in the order that they were

installed creating a priority on the calling list.

Microsoft has advanced the Windows interrupt architecture. The ability of the OS to deal with

shared interrupts greatly extends the ability of Windows to support many interrupt architectures.

http://www.unaab.edu.ng

103
OPERATING SYSTEM II

Knowledge of this interrupt architecture greatly speeds up the investigation times into driver and

latency issues. A Windows model of the operating system interaction is the key to this

understanding. Shared interrupts have greatly increased the openness of Windows supporting the

platform provider and application developer scenarios that are pervasive from company to

company or within companies. Understanding latency sources will help in diagnosis of driver

and real-time issues. The interrupt structure in Windows is well defined and understandable.

 SECURITY

Security has been a hot topic with Windows for many years, and even Microsoft itself has been

the victim of security breaches.[citation needed] Consumer versions of Windows were originally

designed for ease-of-use on a single-user PC without a network connection, and did not have

security features built in from the outset.

Windows NT and its successors are designed for security (including on a network) and multi-

user PCs, but were not initially designed with Internet security in mind as much since, when it

was first developed in the early 1990s, Internet use was less prevalent.

These design issues combined with flawed code (such as buffer overflows) and the popularity of

Windows means that it is a frequent target of computer worm and virus writers.

Microsoft releases security patches through its Windows Update service approximately once a

month (usually the second Tuesday of the month), although critical updates are made available at

shorter intervals when necessary. In Windows 2000 (SP3 and later), Windows XP and Windows

Server 2003, updates can be automatically downloaded and installed if the user selects to do so.

Use these steps to develop a strong password:

• Think of a sentence that you can remember. This will be the basis of your strong

password or pass phrase. Use a memorable sentence, such as "My son Aiden is three

years old."

• Check if the computer or online system supports the pass phrase directly. If you can use a

pass phrase (with spaces between characters) on your computer or online system, do so.

http://www.unaab.edu.ng

104
OPERATING SYSTEM II

• If the computer or online system does not support pass phrases, convert it to a password.

Take the first letter of each word of the sentence that you've created to create a new,

nonsensical word. Using the example above, you'd get: "msaityo".

• Add complexity by mixing uppercase and lowercase letters and numbers. It is valuable to

use some letter swapping or misspellings as well. For instance, in the pass phrase above,

consider misspelling Aiden's name, or substituting the word "three" for the number 3.

There are many possible substitutions, and the longer the sentence, the more complex

your password can be. Your pass phrase might become "My SoN Ayd3N is 3 yeeRs old."

If the computer or online system will not support a pass phrase, use the same technique

on the shorter password. This might yield a password like "MsAy3yo".

• Finally, substitute some special characters. You can use symbols that look like letters,

combine words (remove spaces) and other ways to make the password more complex.

Using these tricks, we create a pass phrase of "MySoN 8N i$ 3 yeeR$ old" or a password

(using the first letter of each word) "M$8ni3y0".

• Test your new password with Password Checker Password Checker is a non-recording

feature on this Web site that helps determine your password's strength as you type.

 4 steps to protect your computer

Step 1. Keep your firewall turned on

What is a firewall?

A firewall helps protect your computer from hackers who might try to delete information, crash

your computer, or even steal your passwords or credit card numbers. Make sure your firewall is

always turned on.

Step 2. Keep your operating system up-to-date

What are operating system updates?

http://www.unaab.edu.ng

105
OPERATING SYSTEM II

High priority updates are critical to the security and reliability of your computer. They offer the

latest protection against malicious online activities. Microsoft provides new updates, as

necessary, on the second Tuesday of the month.

Step 3. Use updated antivirus software

What is antivirus software?

Viruses and spyware are two kinds of usually malicious software that you need to protect your

computer against. You need antivirus technology to help prevent viruses, and you need to keep it

regularly updated.

Step 4. Use updated antispyware technology

What is antispyware software?

Viruses and spyware are two kinds of usually malicious software that you need to protect your

computer against. You need antispyware technology to help prevent spyware, and you need to

keep it regularly updated.

Some threats to the security of Windows are;

I. Worms

II. Spyware

III. Viruses

 Security in Microsoft Windows

While the Windows 9x series offered the option of having profiles for multiple users, they had

no concept of access privileges, and did not allow concurrent access; and so were not true multi-

user operating systems. In addition, they implemented only partial memory protection. They

were accordingly widely criticised for lack of security.

http://www.unaab.edu.ng

106
OPERATING SYSTEM II

The Windows NT series of operating systems, by contrast, are true multi-user, and implement

absolute memory protection. However, a lot of the advantages of being a true multi-user

operating system were nullified by the fact that, prior to Windows Vista, the first user account

created during the setup process was an administrator account, which was also the default for

new accounts. Though Windows XP did have limited accounts, the majority of home users did

not change to an account type with fewer rights – partially due to the number of programs which

unnecessarily required administrator rights – and so most home users ran as administrator all the

time.

Windows Vista changes this by introducing a privilege elevation system called User Account

Control. When logging in as a standard user, a logon session is created and a token containing

only the most basic privileges is assigned. In this way, the new logon session is incapable of

making changes that would affect the entire system.

When logging in as a user in the Administrators group, two separate tokens are assigned. The

first token contains all privileges typically awarded to an administrator, and the second is a

restricted token similar to what a standard user would receive. User applications, including the

Windows Shell, are then started with the restricted token, resulting in a reduced privilege

environment even under an Administrator account. When an application requests higher

privileges or "Run as administrator" is clicked, UAC will prompt for confirmation and, if consent

is given (including administrator credentials if the account requesting the elevation is not a

member of the administrators group), start the process using the unrestricted token.

Windows Defender

On January 6, 2005, Microsoft released a beta version of Microsoft AntiSpyware, based upon the

previously released Giant AntiSpyware. On February 14, 2006, Microsoft AntiSpyware became

Windows Defender with the release of beta 2. Windows Defender is a freeware program

designed to protect against spyware and other unwanted software. Windows XP and Windows

Server 2003 users who have genuine copies of Microsoft Windows can freely download the

program from Microsoft's web site, and Windows Defender ships as part of Windows Vista.

File Permissions

http://www.unaab.edu.ng

107
OPERATING SYSTEM II

At windows version from window NT3 have been based on a file system permission system

referred to as AGLP (Account, Global, Local, and Permission). In essence, where file

permissions are applied to the file and folder in the form of a local group, which then has other

global group.

http://www.unaab.edu.ng

108
OPERATING SYSTEM II

CHAPTER NINE – OPERATING SYSTEM SECURITY

The fact that an operating system is computer software makes it prone to error just as any human

creation. Programmers make mistakes, and inefficient code is often implemented into programs

even after testing. Some developers perform more thorough testing and generally produce more

efficient software. Therefore, some operating systems are more error prone while others are more

secure.

1.1 Security in Computer

The branch of computer technology known as information security as applied to

computers and networks is the computer security. The objective of computer security

includes protection of information and property from theft, corruption, or natural disaster,

while allowing the information and property to remain accessible and productive to its

intended users. The term computer system security means the collective processes and

mechanisms by which sensitive and valuable information and services are protected from

publication, tampering or collapse by unauthorized activities or untrustworthy individuals

and unplanned events respectively.

The technologies of computer security are based on logic. As security is not necessarily

the primary goal of most computer applications, designing a program with security in

mind often imposes restrictions on that program's behavior.

Security in this regard could be referred to as the protection mechanism used to safeguard

information in the computer. Security has many facets and the three of the more

important ones are

1. The threats

2. The nature of intruders

3. Accidental data loss

http://www.unaab.edu.ng

109
OPERATING SYSTEM II

1. Threats: From security perspective, computer systems have three general goals, with

corresponding threats.

(i) Data Confidentiality: Concerned with having secret data remain secret meaning if the

owner of some data has decided that these data are available to certain people and no

others, the system should guarantee that release of the data to unauthorized people does

not occur.

(ii) Data Integrity: Means that unauthorized users should not be able to modify any data

without the owner’s permission. If a system cannot guarantee that data deposited in it

remain unchanged until the owner decides to change them, it is not worth much as an

information system.

(iii) System Availability: Means that nobody can disturb the system to make it usable. If a

computer is an internet server, sending a flood of requests to it may cripple it by eating up

all of its CPU time just examining and discarding incoming requests. Another aspect of

security problem in operating system is Privacy that is protecting individuals from misuse

of information about them.

(2) The nature of intruders: In the security literature, people who are nosing around places

where they have no business being are called intruders or sometimes called adversaries.

Intruders act in two different ways

 1 Passive Intruders: just want to read files they are not authorised to read.

 2 Active Intruders: are more malicious; they want to make unauthorised changes to data.

When designing a system to be secure against intruders, it is important to keep in mind the kind

of intruder one is trying to protect against. Some categories are

(a) Casual prying by nontechnical users.

(b) Snooping by insiders.

(c) Determined attempts to make money.

(d) Commercial or military espionage.

http://www.unaab.edu.ng

110
OPERATING SYSTEM II

Another category of security pest that has manifested itself in recent times is the Virus. The term

virus is a piece of code that replicates itself and usually does some damage.

(3) Accidental data loss: In addition to threats caused by malicious intruders, valuable data

can be lost by accident. Some of the accidental data losses are

 (1) Acts of God: fires, flood, earthquakes, wars, etc.

 (2) Hardware or software errors: CPU malfunction, unreadable disks or tapes,

telecommunication errors, program bugs.

 (3) Human errors: incorrect data entry, wrong tape or disk mounted, wrong program

run, lost disk or tape, or some other mistake.Most of these can be dealt with by maintaining

adequate backups, preferably far away from the original data.

1.2 Operating system design, security and complexity

An operating system is a software component that acts as the core of a computer system.

It performs various functions and is essentially the interface that connects your computer

and its supported components. Various operating systems are in use today to satisfy the

ever changing customer demands. Nevertheless the most widespread operating systems

are: Microsoft Windows, Linux/Unix and Macintosh. Windows are mostly used as

personal computers, Linux/Unix are mainly open source while Apple Macs are often

used for graphic designs or other specialist applications. Irrespective of their application

or use, all operating systems up to date have been subject to security compromises or

likewise failures. It is a fact that the majority of hacking tools, viruses, worms or Trojan

horses are written for Windows, but this is merely due to the fact that Windows occupy

almost 90% of the global market.

The security of the operating system is therefore a necessity for the overall system

security. Today most commercially developed operating systems provide security

through authentication of the users, maintenance of access control mechanisms,

separation of kernel and user spaces and providing trusted applications to modify or

http://www.unaab.edu.ng

111
OPERATING SYSTEM II

manage system resources. However the above security features are inadequate to protect

the operating system from attacks in today’s environment.

SECURITY ISSUES IN THE LINUX OPERATING SYSTEMS

While companies like Microsoft and Apple own the commercial software market, a

variety of non profit organizations or intellectual individuals contribute constantly to the

proliferation of the open source software. In terms of operating systems, Linux is the

example par excellence of all free open source systems, Introduced by Linux Torvalds,

at the time a student. Linux was the first fully functional operating system that was

offered for free under the open source agreement to the public. Following this event, with

the participation of thousand of admirers across the globe, a myriad of open source Linux

based operation systems flooded the cyber world.

There are different reasons that motivate thousands of people around the globe to

participate in open source projects and release software to the public. Intellectual

gratification, pleasure of creativity or of solving complex and challenging tasks, are of

some the driving forces in this domain. Whatever the reasons, the benefits of using open

source are manifold. Open-source software powers many of the web sites on the Internet,

corporate computer, servers used for research and development, it can be found in digital

video recorders , telephones, personal digital assistants (PDAs) watches, networking

hardware, MP3 players and automobiles

Nevertheless, open source software does not come without issues or disadvantages. Even

though the codes are available to thousands of eyes for scrutiny, there is no guarantee for

security or optimal performance. Although that is ok for simple home applications it is

not the case for enterprise, commercial or critical applications. Also because of lack of

standardization and complex licensing issues, open source software is prone to misuse or

abuse. Standardization is hard to achieve, because open source creators are completely

free in their choice of design, implementation or adherence to existing standards. Usually

standardization is enforced by market forces and industry regulators; however in the case

http://www.unaab.edu.ng

112
OPERATING SYSTEM II

of open source software both these factors do not exercise enough pressure to drive the

process. Version proliferation is another major open source issue. As a matter of fact, this

matter does not concern only open source software but commercial software as well.

Nevertheless, the effect on the open source software is more evident. Developing many

versions of a program in a short period not only confuses users but also requires a steep

learning curve. This is true in particular in the case of constant changes of graphical user

interfaces and navigation concepts from one version to the next one. At the same time,

constant introductions of new versions of a software package do not affect in positive

way its reputation since the user might believe this is a sign of instability.

Another issue that affects ICT today is that of the implementation of open source

software. Because, open source is developed by the co-operation of different individuals,

it is hard to establish a proper working relationship with the person in charge (if there is

any). Furthermore, technical support, documentation issues, no access to advice, are some

of the problems that a company or individual that uses open source software might face.

Hardware and software compatibilities influence also the processes ever since most of

hardware manufacturers do not expose their trade secrets, therefore not allowing access

to their codes to open source developers. Open source developers have no other choice

but to design and release their own code (hardware drivers) therefore contributing to the

complexity and lack of standardization.

Future prognosis on the Linux operating system

The open source phenomenon is definitely influencing in a positive way ICT and probably the

trend will not change in the future. Open source projects are available to “millions of eyes” for

scrutiny, improvement or testing. Nevertheless, it is likely that in the future will continue to

experience the same issues mentioned above with some improvements in the area of

standardization. Some open source will definitely transform in commercial software provided

that they have matured enough and captured a significant market share. Red Hat Linux for

example, is a typical example of how open source software becomes commercial under the right

circumstances.

http://www.unaab.edu.ng

113
OPERATING SYSTEM II

SECURITY ISSUES IN THE WINDOWS OPERATING SYSTEM

Security is the main problem that Windows operating systems are facing since their

introduction. Lack of vision from its developers regarding security is probably the main

reason behind this issue. The first windows were designed to be simple and productive

but not very secure. Although new operating systems versions were introduced within the

last 5-10 years, the same issues with security persisted. In my opinion, because of market

pressure and product development circles, it was almost impossible for Microsoft to

totally change their operating system approach. Instead they continued to build on top of

each previous model. Unfortunately, their operating systems are still vulnerable affecting

significantly ICT applications worldwide.

To understand the impact of operating system vulnerabilities on ICT suffice to look at the

case of “SQL slammer’, a worm released on the web in 2003 (Forte, 2003). Slammer,

also known as “SQL hell”, is a worm that affected Microsoft Windows operating systems

in January 2003 affecting within ten minutes 75 thousands machines worldwide.

Slammer exploited vulnerability in SQL server and desktop engine slowing down

communications and affecting businesses financially worldwide. Following this incident

several modified slammer versions were released online. This is not an isolated episode

that demonstrates the lack of security vision and poor operating system design. Viruses

and worms like Melissa, code red, sasser, nimda, donut, spida or slapper have also

impacted information communication telecommunications globally. In 2007 Computer

Economics, a well known research company conducted a research on the impact of the

malware globally estimating a $ 13 billion in financial losses in 2006 only. It is quite

obvious how ICT and global communications are affected by malware which attributes

its success to operating system vulnerabilities.

Microsoft has been able to take care of malware attacks by releasing patches or services

packs. Although, it looks like this is the right approach to this problem it does eradicate

the problem and provide temporarily relief from threats. We need a holistic approach to

deal with the root of the problem not with it consequences. As a matter of fact operating

http://www.unaab.edu.ng

114
OPERATING SYSTEM II

system patches manage to avoid the threat temporarily, since what they usually do is a

mere change of names or locations of important operating system files used by malware.

In other occasions Microsoft has even discontinued shipping certain programs with its

operating systems as a security measure against malware, therefore not dealing with the

main problems: design and security.

In 2007, Microsoft released officially to the public Windows Vista and in October 2009

Windows seven. Although, the graphical user interfaces look impressive, both operating

systems are still vulnerable to malware or system hacking. A very simple example is the

‘the sticky key backdoor’, one of Vista’s vulnerabilities. Vinoo Thomas, a McAfee

researcher, in 2007 released a blog online informing the public about the Sticky Keys

vulnerability. Vista apparently does allow the modification of sethc.exe file (located at:

C:/windows/system32/sethc.exe) and no integrity checks are performed before execution.

Authentication can simply be bypassed by replacing this file with cmd.exe using a live

CD like Backtrack or direct logging and entering windows explorer (Vinoo, 2007).

Moreover, Vista activation mechanism has been broken almost one year after its official

release. The same security scenario applies to Windows seven. This operating system can

be bypassed in the same way as Windows Vista (using the installation disk and entering

recovery mode). Furthermore online news of a zero day attack is spreading around.

Certainly, this poor security performance of Microsoft Windows, the most used operating

system worldwide, does not sound promising for ICT and its future.

Future prognosis on the windows operating system

Operating system design is a factor that will influence ICT in the times to come. The

main reason is security. If we take in consideration the fact that digital globalization is

facilitating the distribution of malware and the number of internet users is rising

exponentially, we should expect more sophisticated attacks on the windows operating

http://www.unaab.edu.ng

115
OPERATING SYSTEM II

systems and ICT. Under these circumstances, we should review the windows operating

system design strategy, focusing on security and build reliable operating system.

SECURITY ISSUES IN THE UNIX OPERATING SYSTEMS

There are a number of elements that have lead to the popularity of the UNIX operating system in

the world today. The most notable factors are its portability among hardware platforms and the

interactive programming environment that it offers to users. In fact, these elements have had

much to do with the successful evolution of the UNIX system in the commercial market place.

As the UNIX system expands further into industry and government, the need to handle UNIX

system security will no doubt become imperative. For example, the US government is

committing several million dollars a year for the UNIX system and its supported hardware. The

security requirements for the government are tremendous, and one can only guess at the future

needs of security in industry.

In this paper, we will cover some of the more fundamental security risks in the UNIX system.

Discussed are common causes of UNIX system compromise in such areas as file protection,

password security, networking and hacker violations. In our conclusion, we will comment upon

ongoing effects in UNIX system security and their direct influence on the portability of the

UNIX operating system.

In the UNIX operating system environment, files and directories are organized in a tree structure

with specific access modes. The setting of these modes through permission bits (as octal digits),

is the basis of UNIX system security. Permission bits determine how users can access files and

the type of access they are allowed. There are three user access modes for all UNIX system files

and directories: the owner, the group, and others. Access to read, write and execute within each

of the user types is also controlled by permission bits. Flexibility in file security is convenient,

but it has been criticized as an area of System security compromise.

http://www.unaab.edu.ng

116
OPERATING SYSTEM II

 FILE AND DIRECTORY SECURITY

In the UNIX operating system environment, files and directories are organized in a tree structure

with specific access modes. The setting of these modes, through permission bits (as octal digits),

is the basis of UNIX system security. Permission bits determine how users can access files and

the type of access they are allowed. There are three user access modes for all UNIX system files

and directories: the owner, the group, and others. Access to read, write and execute within each

of the user types is also controlled by permission bits (Figure 1). Flexibility in file security is

convenient, but it has been criticized as an area of system security compromise.

 Permission modes

 OWNER GROUP OTHERS

 --

 rwx : rwx : rwx

 --

 r=read w=write x=execute

 -rw--w-r-x 1 bob csc532 70 Apr 23 20:10 file

 drwx------ 2 sam A1 2 May 01 12:01 directory

http://www.unaab.edu.ng

117
OPERATING SYSTEM II

FIGURE 1. File and directory modes: File shows Bob as the owner, with read and writes

permission. Group has write permission, while others has read and execute permission.

The directory gives a secure directory not readable, writeable, or executable by Group

and Others.

Since the file protection mechanism is so important in the UNIX operating system, it

stands to reason that the proper setting of permission bits is required for overall security.

Aside from user ignorance, the most common area of file compromise has to do with the

default setting of permission bits at file creation. In some systems the default is octal 644,

meaning that only the file owner can write and read to a file, while all others can only

read it. (3) In many "open" environments this may be acceptable. However, in cases

where sensitive data is present, the access for reading by others should be turned off. The

file utility umask does in fact satisfy this requirement. A suggested setting, umask 027,

would enable all permission for the file owner, disable write permission to the group, and

disable permissions for all others (octal 750). By inserting this umask command in a user

.profile or .login file, the default will be overwritten by the new settings at file creation.

The CHMOD utility can be used to modify permission settings on files and directories.

Issuing the following command,

 chmod u+rwd,g+rw,g-w,u-rwx file

will provide the file with the same protection as the umask above (octal 750). Permission

bits can be relaxed with chmod at a later time, but at least initially, the file structure can

be made secure using a restrictive umask. By responsible application of such utilities as

umask and chmod, users can enhance file system security. The Unix system, however,

restricts the security defined by the user to only owner, group and others. Thus, the owner

of the file cannot designate file access to specific users. As Kowack and Healy have

pointed out, "The granularity of control that (file security) mechanisms is often

insufficient in practice (...) it is not possible to grant one user write protection to a

directory while granting another read permission to the same directory. (4) A useful file

security file security extension to the Unix system might be Multics style access control

http://www.unaab.edu.ng

118
OPERATING SYSTEM II

lists. With access mode vulnerabilities in mind, users should pay close attention to files

and directories under their control, and correct permissions whenever possible. Even with

the design limitations in mode granularity, following a safe approach will ensure a more

secure Unix system file structure.

DIRECTORIES

Directory protection is commonly overlooked component of file security in the Unix

system. Many system administrators and users are unaware of the fact, that "publicly

writable directories provide the most opportunities for compromising the Unix system

security" (6). Administrators tend to make these "open" for users to move around and

access public files and utilities. This can be disastrous, since files and other subdirectories

within writable directories can be moved out and replaced with different versions, even if

contained files are unreadable or unwritable to others. When this happens, an

unscrupulous user or a "password breaker" may supplant a Trojan horse of a commonly

used system utility’ For example:

Imagine that the /bin directory is publicly writable. The perpetrator could first remove the

old version (with rm utility) and then include his own fake su to read the password of

users who execute this utility.

Although writable directories can destroy system integrity, readable ones can be just as

damaging. Sometimes files and directories are configured to permit read access by other.

This subtle convenience can lead to unauthorized disclosure of sensitive data: a serious

matter when valuable information is lost to a business competitor.

As a general rule, therefore, read and write access should be removed from all but system

administrative directories. Execute permission will allow access to needed files; however,

users might explicitly name the file they wish to use. This adds some protection to

unreadable and unwritable directories. So, programs like lp file.x in an unreadable

directory /ddr will print the contents of file.x, while ls/ddr would not list the contents of

that directory.

http://www.unaab.edu.ng

119
OPERATING SYSTEM II

 USER AUTHENTICATION

Another area is the user authentication. In the UNIX system, authentication is

accomplished by personal passwords. Though passwords offer an additional level of

security beyond physical constraints, they lend themselves to the greatest area of

computer system compromise. Lack of user awareness and responsibility contributes

largely to this form of computer insecurity. This is true

of many computer facilities where password identification, authentication and

authorization are required for the access of resources, and the Unix operating system is

no exception. Password information in many time-sharing systems are kept in restricted

files that are not ordinarily readable by users. The UNIX system differs in this respect,

since it allows all users to have read access to the /etc/passwd file where encrypted

passwords and other user information are stored.

DATA ENCRYPTION

Although the Unix system implements a one-way encryption method, and in most

systems a modified version of the data encryption standard (DES), password breaking

methods are known. Among these methods, brute-force attacks are generally the least

effective, yet techniques involving the use of heuristics (good guesses and knowledge

about passwords) tend to be successful. For example, the /etc/passwd file contains such

useful information as the login name and comments fields. Login names are especially

rewarding to the "password breaker" since many users will use login variants for

passwords (backward spelling, the appending of a single digit etc.). The comment field

often contains items such as surname, given name, address, telephone number, project

name and so on. To quote Morris and Grampp in their landmark paper on Unix system

security: The authors made a survey of several dozen local machines, using as trial

passwords a collection of the 20 most common female first names, each followed by a

single digit. The total number of passwords tried was therefore 200. At least one of these

200 passwords turned out to be a valid password on every machine surveyed. If an

intruder knows something about the people using a machine, a whole new set of

http://www.unaab.edu.ng

120
OPERATING SYSTEM II

candidates is available. Family and friend's names, auto registration numbers, hobbies,

and pets are particularly productive categories to try interactively in the unlikely event

that a purely mechanical scan of the password file turns out to be disappointing.

Thus, given a persistent system violator, there is strong evidence, that he will find some

information about users in the /etc/passwd file. With this in mind, it is obvious that a

password file should be unreadable to everyone except those in charge of system

administration.

SECURITY ISSUES IN THE MACINTOSH OPERATING

SYSTEM

It's been called one of the safest operating systems of all times, but the Mac's OS X Tiger may

not be as safe as it seems. Mac's OS X Tiger has become a favorite among Mac users for its bells

and whistles and its UNIX based architecture. From a power user to newbie, Tiger provides both

comfort and security for all OS X users. Some of the flaws found in its security is as follows:

 FAILING TO USE ITS SOFTWARE UPDATE

Regularly updating Tiger's software is one of the easiest ways to keep your computer

protected from the latest exploits and malicious Internet content. In January of this year, a

couple of computer guru's published "The Month of Apple Bugs"(MoAB) -- a website

dedicated to pointing out 31 of OS X's vulnerabilities and security flaws. After reviewing

the website, Apple acted promptly and has since released several updates addressing the

critical bugs. With software updates turned off, there's a good chance the computer could

fall victim to one of MoAB's exploits.

 MINDLESSLY SURFING WITH SAFARI

Although much safer than Microsoft's Internet Explorer, Tiger's default

web browser Safari is not immune to security flaws. To obtain the safest Internet

browsing experience, a few of Safari's features should be modified:

http://www.unaab.edu.ng

121
OPERATING SYSTEM II

Make sure all "AutoFill" options are disabled, and always use "Private

Browsing" on each of the computer's accounts. Although surfing without "Private

Browsing" enabled could save you some time, in the long run you're simply opening

yourself up to greater security risks.

To be ultra conservative with web browsing, one can disallow all cookies and remove all

existing cookies via the "Show Cookies" dialog. (Keeping in mind that some websites

require cookies for complete functionality). By not accepting cookies, one may be

limiting web browsing experience, so one is torn in between securing his/her system or

enjoying the web experience.

 INCORRECTLY CONFIGURING SECURITY PREFERENCES

Tiger's security panel features a handful of security preferences which permit users to

select varying levels of security based upon their particular usage requirements.

Obviously, however, when configuring your security preference it's important to

understand what each option does, and the benefits of a particular setting: One of the

most important and often overlooked preferences is whether to permit automatic login.

Requiring a password to wake the computer is imperative in preventing unauthorized

access to unattended computers. "Disabling automatic login is necessary for any level of

security. If you enable automatic login, an intruder can automatically log in without

having to authenticate. Even if you automatically log in with a very restricted user

account, this makes it much easier to perform malicious actions on the computer."

In addition to requiring a user to login after the computer has been asleep, it is also

important to require an additional login wherever an important system wide preference is

being changed. In order to prevent faulty administration, either from a malicious user or

just from an unwitting friend who accidentally makes a system change, it is important to

require an extra step of authentication when altering system preferences. After all, we can

all make mistakes when toggling options, but by requiring an extra authentication step

whenever a system preference is changed, you can make sure that many of these types of

errors never occur.

http://www.unaab.edu.ng

122
OPERATING SYSTEM II

 LEAVING UNUSED HARDWARE DEVICES ENABLED

Most of us are no longer worried by our Internet connections, but instead connect to the

Internet through multiple styles of broadband connections. For example, instead of being

tied down to Ethernet cables at home, users are taking advantage of wireless connections

using their laptops from anywhere, and connecting their Bluetooth devices to their

computer for extra support. While having different types of broadband connections is

great for the user, it's awful for the security of the computer. To protect your computer,

you should make sure to "disable any unused hardware devices listed in Network

preferences. Enabled, unused devices (such as AirPort and Bluetooth) are a security risk."

While we're not suggesting that you do away with these great feature altogether, we are

saying that when they're not in use, you should turn them off.

 TROJAN HORSE ALERT

Recently, a new variant of the Hell Raiser Trojan Horse, which was identified as

OSX/HellRTS.D, has been discovered. Experts have analyzed this new variant, and it is

detected in the latest MacScan spyware definitions update as HellRaiser Trojan Horse

4.2. MacScan has detected previous variants of this trojan horse since 2005. HellRaiser is

a trojan horse that allows complete control of a computer by a remote attacker, giving the

attacker the ability to transfer files to and from the infected computer, pop up chat

messages on the infected system, display pictures, speak messages, and even remotely

restart or shut down the infected machine. The attacker can search through the files on the

infected computer, choosing exactly what they want to steal, view the contents of the

clipboard, or even watch the user's actions on the infected computer.

In order to become infected, a user must run the server component of the Trojan horse,

which can be disguised as an innocent file. The attacker then uses the client component of

the Trojan horse to take control of the infected system.

SECURITY ISSUES IN SOLARIS OPERATING SYSTEM

http://www.unaab.edu.ng

123
OPERATING SYSTEM II

Solaris or Oracle Solaris as it is now known is a UNIX-based operating system introduced by

Sun Microsystems in 1992 as the successor to SunOS. The prominent flaw in Solaris operating

system is the multiple security vulnerabilities in PostgreSQL Shipped with Solaris 10 which

allows the Elevation of Privileges or Denial of Service (DoS)

Multiple Security vulnerabilities affecting the PostgreSQL software shipped with Solaris 10 may

allow a local or remote user who has access to the PostgreSQL server to cause a Denial of

Service (DoS) to the PostgreSQL instance or the server it runs on (due to excessive resource

consumption), or to gain elevated privileges on the server.

Regular Expression Denial-of-Service

(CVE-2007-4772, CVE-2007-6067, CVE-2007-4769):

Three separate issues in the regular expression libraries used by PostgreSQL allow malicious

user to initiate a denial-of-service by passing certain regular expressions in SQL queries.

First, users could create infinite loops using some specific regular expressions.

Second, certain complex regular expressions could consume some excessive amounts of

memory.

Third, out-of-range backref numbers could be used to crash the backend.

All of these issues have been patched.

DBLink privilege Escalation (CVE-2007-6601):

DBLink functions combined with local trust or ident authentication could be used by malicious

user to gain superuser privileges.

This issue has been fixed and does not affect users who have not installed DBLink (an optional

module), or who are using password authentication for local access. This same problem was

addressed in the previous release cycle.

These issues can occur in the following releases

SPARC (Scalable Processor Architecture) Platform

Solaris 10 PostgreSQL 8.1

Without patch 123590-08

Solaris 10 PostgreSQL 8.2

Without patch 136998-02

X86 Platform

http://www.unaab.edu.ng

124
OPERATING SYSTEM II

Solaris 10 PostgreSQL 8.1

Without patch 123591-08

Solaris 10 PostgreSQL 8.2

Without patch 136999-02

Solaris 8 and 9 do not ship with PostGreSQL and are not impacted by this issue.

A user exploiting this vulnerability must have an account on the PostgreSQL server.

This issue affects PostGreSQL versions 7.4x prior to 7.4.19, 8.0.x prior to 8.0.15, 8.1.x prior to

8.1.11 and 8.2.x prior to 8.2.6.

CONCLUSION

Information and Communication Technologies (ICT) will provide benefits to our society for

years to come. The proliferation of these technologies or their decline will be affected amongst

all by security issues on the area of operating system design and security, open source issues, and

design complexity. Therefore, designing better operating systems, improving on their security,

are some of the challenges for the future. If we take in consideration the fact that digital

globalization is facilitating the distribution of malware and the number of internet users is rising

exponentially, we should expect more sophisticated attacks on the windows operating systems

and ICT. Under these circumstances, we should review the windows operating system design

strategy, focusing on security and build reliable operating system.

The open source phenomenon is definitely influencing in a positive way ICT and probably the

trend will not change in the future. Open source projects are available to “millions of eyes” for

scrutiny, improvement or testing. Nevertheless, it is likely that in the future will continue to

experience the same issues mentioned above with some improvements in the area of

standardization.

Some open source will definitely transform in commercial software provided that

they have matured enough and captured a significant market share. Red Hat

Linux for example, is a typical example of how open source software becomes

commercial under the right circumstances.

http://www.unaab.edu.ng

125
OPERATING SYSTEM II

CHAPTER TEN:

DISTRIBUTED OPERATING SYSTEM

An operating system is a program that controls the resources of a computer and provides its user

with an interface or a virtual machine that’s more convenient to use than bear machine.

To begin with, we use the term distributed system to mean a distributed operating system as

opposed to a database system or some distributed application system such as a banking system,

another name for a distributed operating system is DIS-CENTRALIZED OPERATING

SYSTEM.

Example of a centralized (not distributed) operating system are; MS-DOS, UNIX, and CP/M.

A distributed operating system is the one that look to its user like an ordinary centralized

operating system but runs on multiple, independent, central processing unit (CPU). The key

concept in distributed operating system is the TRANPARENCY. What determine a distributed

operating system are the software and not the hardware.

In distributed system, the error can be made to tolerate both hardware and software error but it is

the software error and not the hardware that cleans the error when it occurs.

Network OS is used to manage Networked computer systems and create, maintain and transfer

files in that Network.

Distributed OS is also similar to Networked OS but in addition to it the platform on which it is

running should have high configuration such as more capacity RAM, High speed Processor. The

main difference between the DOS and the NOS is the transparent issue: Transparency:

- How aware are users of the fact that multiple computers are

being used?

http://www.unaab.edu.ng

126
OPERATING SYSTEM II

Types of Distributed Operating Systems

‐ Network Operating Systems

‐ Distributed Operating Systems

Network-Operating Systems

‐ Users are aware where resources are located

‐ Network OS is built on top of centralized OS.

‐ Handles interfacing and coordination between local OSs.

‐ Users are aware of multiplicity of machines.

Distributed-Operating Systems

• Designed to control and optimize operations and resources in

distributed system.

- Users are not aware of multiplicity of machines

- Access to remote resources similar to access to local resources

- Data Migration – transfer data by transferring entire file, or transferring only

those portions of the file necessary for the immediate task

 - Computation Migration – transfer the computation, rather than the data, across the

system

‐ Computation speedup – sub processes can run concurrently on different sites

- Process Migration – execute an entire process, or parts of it, at different sites

- Load balancing – distribute processes across network to even the workload

- Hardware preference – process execution may require specialized processor

- Software preference – required software may be available at only a particular site

- Data access – run process remotely, rather than transfer all data locally

EXAMPLES OF DISTRIBUTED OPERATING SYSTEM

http://www.unaab.edu.ng

127
OPERATING SYSTEM II

• The Cambridge Distributed Computing System

• Amoeba

• The V Kernel

• The Eden Project

There are so many types of distributed operating system but these are chosen based on three

criteria which are:

First, we only chose systems that were designed from scratch as-distributed systems (systems

that gradually evolved by connecting together existing centralized systems or are multiprocessor

versions of UNIX were excluded).

Second, we only chose systems that have actually been implemented; paper designs did not

count.

Third, we only chose systems about which a reasonable amount of information was available.

NOTE: if a user can tell which computer he/she is using, then he/she is not using a distributed

system. The user of a true distributed operating system should not know (or care) on which

machine (or machines) their programs are running, where their files are stored and so on.

http://www.unaab.edu.ng

128
OPERATING SYSTEM II

TRANSPARENCY

• Goal motivated by the desire to hide all irrelevant system-dependent details from the user,

whenever possible.

• It is more important in distributed systems due to higher implementation complexities.

• Shielding the system-dependent information from the users is a trade-off between simplicity

and effectiveness.

• Access transparency - Local and remote system entities must remain indistinguishable when

viewed through the user interface. The distributed operating system maintains this perception

http://www.unaab.edu.ng

129
OPERATING SYSTEM II

through the exposure of a single access mechanism for a system entity, regardless of that entity

being local or remote to the user. Transparency dictates that any differences in methods of

accessing any particular system entity—either local or remote—must be both invisible to, and

undetectable by the user.

• Location transparency - Location transparency comprises two distinct sub-aspects of

transparency, Naming transparency and User mobility. Naming transparency requires that

nothing in the physical or logical references to any system entity should expose any indication of

the entities location, or its local or remote relationship to the user. User mobility requires the

consistent referencing of system entities, regardless of the system location from which the

reference originates. Transparency dictates that the relative location of a system entity—either

local or remote—must be both invisible to, and undetectable by the user.

• Migration transparency - Logical resources and physical processes migrated by the system,

from one location to another in an attempt to maximize efficiency, reliability, availability,

security, or whatever reason, should do so automatically controlled solely by the system. There

are a myriad of possible reasons for migration; in any such event, the entire process of migration

before, during, and after should occur without user knowledge or interaction. Transparency

dictates that both the need for, and the execution of any system entity migration must be both

invisible to, and undetectable by the user.

• Concurrency transparency - The distributed operating system allows for simultaneous use of

system resources by multiple users and processes, which are kept completely unaware of the

concurrent usage. Transparency dictates that both the necessity for concurrency and the

multiplexed usage of system resources must be both invisible to, and undetectable by the user.

• Replication transparency - A system's elements or components may need to be copied to

strategic remote points in the system in an effort to possibly increase efficiencies through better

proximity, or provide for improved reliability through the duplication of a back-up. This

duplication of a system entity and its subsequent movement to a remote system location may

occur for any number of possible reasons; in any event, the entire process before, during, and

http://www.unaab.edu.ng

130
OPERATING SYSTEM II

after should occur without user knowledge or interaction. Transparency dictates that the

necessity and execution of replication, as well as the existence of replicated entities throughout

the system must be both invisible to, and undetectable by the user.

• Parallelism transparency - Arguably the most difficult aspect of transparency, and described

by Tanenbaum as the "Holy grail" for distributed system designers. A system's parallel execution

of a task among various processes throughout the system should occur without any required user

knowledge or interaction. Transparency dictates that both the need for, and the execution of

parallel processing must be both invisible to, and undetectable by the user.

• Failure transparency - In the event of a partial system failure, the system is responsible for

the automatic, rapid, and accurate detection and orchestration of a remedy. These measures

should exhibit minimal user imposition, and should initiate and execute without user knowledge

or interaction. Transparency dictates that users and processes be exposed to absolute minimal

imposition as a result of partial system failure; and any system-employed techniques of detection

and recovery must be both invisible to, and undetectable by the user.

• Performance transparency - In any event where parts of the system experience significant

delay or load imbalance, the system is responsible for the automatic, rapid, and accurate

detection and orchestration of a remedy. These measures should exhibit minimal user imposition,

and should initiate and execute without user knowledge or interaction. While reasonable and

predictable performances are important goals in these situations, there should be no expressed or

implied concepts of fairness or equality among affected users or processes. Transparency dictates

that users and processes be exposed to absolute minimal imposition as a result of performance

delay or load imbalance; and any system-employed techniques of detection and recovery must be

both invisible to, and undetectable by the user.

• Size transparency - A system's geographic reach, number of nodes, level of node capability, or

any changes therein should exists without any required user knowledge or interaction.

Transparency dictates that system and node composition, quality, or changes to either must be

both invisible to, and undetectable by the user.

http://www.unaab.edu.ng

131
OPERATING SYSTEM II

• Revision transparency - System occasionally have need for system-software version changes

and changes to internal implementation of system infrastructure. While a user may ultimately

become aware of, or discover the availability of new system functions or services, their

implementation should in no way be the prompt for this discovery. Transparency dictates that the

implementation of system-software version changes and changes to internal system infrastructure

must be both invisible to, and undetectable by the user; except as revealed by administrators of

the system.

SCHEDULLING TECHNIQUES

The hierarchical model provides a general model for resource control but does not provide any

specific guidance on how to do scheduling. If each process uses an entire processor (i.e., no

multiprogramming), and each process is independent of all the others, any process can be

assigned to any processor at random. However, if it is common that several processes are

working together and must communicate frequently with each other, as in UNIX pipelines or in

cascaded (nested) remote procedure calls, then it is desirable to make sure that the whole group

runs at once. Let us assume that each processor can handle up to N processes. If there are plenty

of machines and N is reasonably large, the problem is not finding a free machine (i.e., a free slot

in some process table), but something more subtle. The basic difficulty can be illustrated by an

example in which processes A and B run on one machine and processes C and D run on another.

Each machine is time shared in, say, 100-millisecond time slices, with A and C running in the

even slices, and B and D running in the odd ones. Suppose that A sends many messages or

makes many remote procedure calls to D. During time slice 0, A starts up and immediately calls

D, which unfortunately is not running because it is now C’s turn. After 100 milliseconds, process

switching takes place, and D gets A’s message, carries out the work, and quickly replies.

Because B is now running, it will be another 100 milliseconds before A gets the reply and can

proceed. The net result is one message exchange every 200 milliseconds. What is needed is a

way to ensure that processes that communicate frequently run simultaneously. Although it is

difficult to determine dynamically the inter-process communication patterns, in many cases a

group of related processes will be started off together.

http://www.unaab.edu.ng

132
OPERATING SYSTEM II

PROCESS MANAGEMENT

Process management provides policies and mechanisms for effective and efficient sharing of a

system's distributed processing resources between that system's distributed processes. These

policies and mechanisms support operations involving the allocation and de-allocation of

processes and ports to processors, as well as provisions to run, suspend, migrate, halt, or resume

execution of processes. While these distributed operating system resources and the operations on

them can be either local or remote with respect to each other, the distributed operating system

must still maintain complete state of and synchronization over all processes in the system; and do

so in a manner completely consistent from the user's unified system perspective.

As an example, load balancing is a common process management function. One consideration of

load balancing is which process should be moved. The kernel may have several mechanisms, one

of which might be priority-based choice. This mechanism in the kernel defines what can be

done; in this case, choose a process based on some priority. The system management

components would have policies implementing the decision making for this context. One of

these policies would define what priority means, and how it is to be used to choose a process in

this instance.

RESOURCES MANAGEMENT

Resource management in a distributed system differs from that in a centralized system in a

fundamental way. Centralized systems always have tables that give complete and up-to-date

status information about all the resources being managed; distributed systems do not. For

example, the process manager in a traditional centralized operating system normally uses a

“process table” with one entry per potential process. When a new process has to be started, it is

simple enough to scan the whole table to see whether a slot is free. A distributed operating

system, on the other hand, has a much harder job of finding out whether a processor is free,

especially if the system designers have rejected the idea of having any central tables at all, for

http://www.unaab.edu.ng

133
OPERATING SYSTEM II

reasons of reliability. Furthermore, even if there is a central table, recent events on outlying

processors may have made some table entries obsolete without the table manager knowing it.

The problem of managing resources without having accurate global state information is very

difficult.

PROCESSOR ALLOCATION

One of the key resources to be managed in a distributed system is the set of available processors.

One approach that has been proposed for keeping tabs on a collection of processors is to organize

them in a logical hierarchy independent of the physical structure of the network, as in MICROS.

This approach organizes the machines like people in corporate, military, academic, and other

real-world hierarchies. Some of the machines are workers and others are managers. For each

group of k workers, one manager machine (the “department head”) is assigned the task of

keeping track of who is busy and who is idle. If the system is large, there will be an unwieldy

number of department heads; so some machines will function as “deans,” riding herd on k

department heads. If there are many deans, they too can be organized hierarchically, with a “big

cheese” keeping tabs on k deans. This hierarchy can be extended ad infinitum, with the number

of levels needed growing logarithmically with the number of workers. Since each processor need

only maintain communication with one superior and k subordinates, the information stream is

manageable. An obvious question is, “What happens when a department head, or worse yet, a

big cheese, stops functioning (crashes)?” One answer is to promote one of the direct subordinates

of the faulty manager to fill in for the boss. The choice of which one can either be made by the

subordinates themselves, by the deceased’s peers, or in a more autocratic system, by the sick

manager’s boss. To avoid having a single (vulnerable) manager at the top of the tree, one can

truncate the tree at the top and have a committee as the ultimate authority. When a member of

the ruling committee malfunctions, the remaining members promote someone one level down as

a replacement. Although this scheme is not completely distributed, it is feasible and works well

in practice. In particular, the system is self repairing, and can survive occasional crashes of both

workers and managers without any long-term effects. In MICROS, the processors are

monoprogrammed, so if a job requiring S processes suddenly appears, the system must allocate S

processors for it. Jobs can be created at any level of the hierarchy. The strategy used is for each

http://www.unaab.edu.ng

134
OPERATING SYSTEM II

manager to keep track of approximately how many workers below it are available (possibly

several levels below it). If it thinks that a sufficient number are available, it reserves some

number R of them, where R 2 S, because the estimate of available workers may not be exact and

some machines may be down. If the manager receiving the request thinks that it has too few

processors available, it passes the request upward in the tree to its boss. If the boss cannot handle

it either, the request continues propagating upward until it reaches a level that has enough

available workers at its disposal. At that point, the manager splits the request into parts and

parcels them out among the managers below it, which then do the same thing until the wave of

scheduling requests hits bottom. At the bottom level, the processors are marked as “busy,” and

the actual number of processors allocated is reported back up the tree. To make this strategy

work well, R must be large enough so that the probability is high that enough workers will be

found to handle the whole job. Otherwise, the request will have to move up one level in the tree

and start all over, wasting considerable time and computing power. On the other hand, if R is too

large, too many processors will be allocated, wasting computing capacity until word gets back to

the top and they can be released. The whole situation is greatly complicated by the fact that

requests for processors can be generated randomly anywhere in the system, so at any instant,

multiple requests are likely to be in various stages of the allocation algorithm, potentially giving

rise to out-of-date estimates of available workers, race conditions, deadlocks, and more.

Failure Recovery

 Failure Detection

Detecting hardware failure is difficult. To detect a link failure, a handshaking protocol can be

used. Assume Site A and Site B has established a link. At fixed intervals, each site will exchange

an I-am-up message indicating that they are up and running. If Site A does not receive a message

within the fixed interval, it assumes either (a) the other site is not up or (b) the message was lost.

Then, Site A can now send an “Are-you-up?” message to Site B. If Site A does not receive a

reply, it can repeat the message or try an alternate route to Site B.

 If Site A does not ultimately receive a reply from Site B, it concludes some type of failure has

occurred in site B. Such failure could be that:

Types of failures:

http://www.unaab.edu.ng

135
OPERATING SYSTEM II

- Site B is down

- The direct link between A and B is down

- The alternate link from A to B is down

- The message has been lost.

 However, Site A cannot determine exactly why the failure has occurred

Reconfiguration

 When Site A determines a failure has occurred, it must reconfigure the system:

1. If the link from A to B has failed, this must be broadcast to every site in the system

2. If a site has failed, every other site must also be notified indicating that the services offered by

the failed site are no longer available.

 When the link or the site becomes available again, this information must again be broadcast to

all other sites.

Distributed Deadlock Detection

There are two kinds of potential deadlocks which are:

‐ resource deadlocks

‐ communication deadlocks

Resource deadlocks are traditional deadlocks, in which all of some set of processes are blocked

waiting for resources held by other blocked processes. For example, if A holds X and B holds Y,

and A wants Y and B wants X, a deadlock will result. In principle, this problem is the same in

Centralized and distributed systems, but it is harder to detect in the latter because there are no

centralized tables.

 The other kind of deadlock that can occur in a distributed system is a communication deadlock.

Suppose A is waiting for a message from B and B is waiting for C and C is waiting for A. Then

we have a deadlock. Chandy et al. [1983] present an algorithm for detecting (but not preventing)

communication deadlocks. Very crudely summarized, they assume that each process that is

blocked waiting for a message knows which process or processes might send the message. When

a process logically blocks, they assume that it does not really block but instead sends a query

http://www.unaab.edu.ng

136
OPERATING SYSTEM II

message to each of the processes that might send it a real (data) message. If one of these

processes is blocked, it sends query messages to the processes it is waiting for. If certain

messages eventually come back to the original process, it can conclude that a deadlock exists. In

effect, the algorithm is looking for a knot in a directed graph.

Redundancy Techniques

All the redundancy techniques that have emerged take advantage of the existence of multiple

processors by duplicating critical processes on two or more machines. A particularly simple, but

effective, technique is to provide every process with a backup process on a different processor.

All processes communicate by message passing.

Whenever anyone sends a message to a process, it also sends the same message to the backup

process. The system ensures that neither the primary nor the backup can continue running until it

has been verified that both have correctly received the message. Thus, if one process crashes

because of any hardware fault, the other one can continue. Furthermore, the remaining process

can then clone itself, making a new backup to maintain the fault tolerance in the future. One

disadvantage of duplicating every process is the extra processors required, but another, more

subtle problem is that, if processes exchange messages at a high rate, a considerable amount of

CPU time may go into keeping the processes synchronized at each message exchanged. If a

process crashes, recovery is done by sending the most recent checkpoint to an idle processor and

telling it to start running. The recorder process then spoon feeds it all the messages that the

original process received between the checkpoint and the crash. Messages sent by the newly

restarted process are discarded. Once the new process has worked its way up to the point of

crash, it begins sending and receiving messages normally, without help from the recording

process.

STRENGTH AND WEAKNESS OF DISTRIBUTED OPERATING SYSTEM

STRENGTH

• The main goal of distributed system is the enormous rate of technological change in

micro processor technology.

http://www.unaab.edu.ng

137
OPERATING SYSTEM II

• Micro processors have become powerful and cheap compared with mainframes and

minicomputer, so it has become attractive to think about designing large system that

composes of many processors.

• Relative simplicity of software: each software has a dedicated function.

• Incremental growth.

• Reliability and availability.

WEAKNESS

• Unless one is very careful, it is easy for the communication protocol overhead to become

a major source of in efficiency.

• With distributed systems, a high degree of fault tolerance is often, at least, an implicit

goal.

• A more fundamental problem in distributed system is the lack of global state information.

• It is hard to schedule the processor optimally if you are not sure how many are up at the

moment.

CONCLUSION

Distributed operating systems are still in an early phase of development, with many unanswered

questions and relatively little agreement among workers in the field about how things should be

done. Many experimental systems use the client-server model with some form of remote

procedure call as the communication base, but there are also systems built on the connection

model. Relatively little has been done on distributed naming, protection, and resource

management, other than building straightforward name servers and process servers.

Fault tolerance is an up-and-coming area, with work progressing in redundancy techniques and

atomic actions. Finally, a considerable amount of work has gone into the construction of file

servers, print servers, and various other servers, but here too there is much work to be done. The

only conclusion that we draw is that distributed operating systems will be an interesting and

fruitful area of research for a number of years to come.

http://www.unaab.edu.ng

138
OPERATING SYSTEM II

REFERNCES AND FURTHER READINGS

Stallings W. (2011).”Operating Systems: Internals and Design Principles”, 7th Edition, published

by Prentice Hall.

Deitel. H. M. (2008). “Operating Systems”, Fourth Edition, published Pearson Education, Inc.

Tanenbaum A. S. (2007). “Modern Operating Systems”, 3rd Edition, published by Prentice Hall.

EXERCISES

QUESTION 1
ai. Mention the two main goals of memory management.
 ii. How is memory management achieved in UNIX operating system?
b. Describe the symbols that are used to enforce access right on both files and directories in

UNIX.
c.i. What is page fault?
ii. How is it handled?

QUESTION 2
a. Mention five historical features of LINUX.
b.i. Mention the function that completes the initialization of the LINUX kernel.
ii. Mention 5 types of kernel components that are initialized by this function.
c. i. What is interrupt?
 ii. Explain the 2 types of interrupt
 iii. Describe how interrupt is handled in LINUX operating system.

QUESTION 3
a. Solaris kernel is fully pre-emptible. Explain the six different priorities that are recognised

in Solaris.
b. Describe the Solaris Run levels
c. Using appropriate diagram describe the Solaris booting phases.

QUESTION 4
a. Mention and explain the 9 main attributes that are used to evaluate operating systems.
b. Hence use the attributes to evaluate LINUX, WINDOWS AND SOLARIS.
c. Describe the intended future direction of WINDOWS operating system.

QUESTION 5

http://www.unaab.edu.ng

139
OPERATING SYSTEM II

a. Explain the following concepts as they relate to operating system. Also mention at least
one operating system that implements each of these concepts.

 i) Multi threading ii) SMP iii) Processor affinity iv) Task scheduler. v) Pipe
b.i. What is a critical section in WINDOWS operating system?
ii. Describe the structure of every critical section.
c.i. Which architectural component is responsible for hardware error handling in

WINDOWS?
ii. State four key functions of this architecture.

QUESTION 6
a. Explain the 3 main goals of computer security
b. Identify and discuss 4 types of attacks on operating systems.
c. Describe UNIX password security.

