MTS 102 LECTURE NOTE FUNCTIONS, LIMITS AND CONTINUOUS FUNCTION BY

A. D AKWU

Functions of a real variable
(1) Function: Let x and y be real number, if there exist a relation between x and y such that x is given, then y is determined, we say that y is a function of x and x is called independent variable and y is the dependent variable, that is $y=f(x)$.
For example: I f $f(x)=x^{2}+2$, then if $x=0,1,5, y=2,3,27$ respectively.
(2) Periodic function:

A function which repeats itself at a regular interval of x is called periodic.
(3) Integral of Definition:

The range of values of x for y is defined is called integral of definition. For example: If $y=\frac{2}{\sqrt{9-x^{2}}}$, the function is undefined if $x=3$ or $x>3$. Then the integral of definition for this function is $-3<x<3$. The function is define for $x=-2,-1,0,1,2$.
(4) Monotonic function:
$f\left(x_{1}\right)$ is monotonic increasing if $f\left(x_{1}\right)<f\left(x_{2}\right)$ whenever $x_{1}<x_{2}$. $f\left(x_{1}\right)$ is monotonic decreasing if $f(x-1)>f\left(x_{2}\right)$ whenever $x_{1}>x_{2}$.
(5) Even and Odd function:

A function $f(x)$ is said to be even if $f(x)=f(-x)$.
For example: $f(x)=x^{2}+1, f(-x)=(-x)^{2}+1=x^{2}+1$
A function is said to be odd if $f(-x)=-f(x)$.
For example: $f(x)=x^{3}, f(-x)=(-x)^{3}=-f(x)$
(6) Function:

Given two non-empty sets A and B, if there is a rule, which assigns an element $x \in A$ a unique element $y \in B$, such a rule is called a mapping. A function is a rule for transforming a member of one set A to a unique member of another set B. A function from a set A to as set B is a rule which associates with each member of A a unique member of B. Then $f: A \rightarrow B . A$ is called the domain of the function and B the codomain. A subset of the co-domain, which ia s collection of all the images of the elements of the domain is called the Range.
Example 1: What is the domain and range of the function $f(x)=x^{2}$.

[^0]Solution: For any real number, its square is uniquely defined. Therefore the domain of f is the set \mathbb{R}. The square of any number is never negative and the square root of any positive real number exists. Therefore the range is the set of non-negative real numbers.
Example 2: Find the range and domain of $f(x)=\sqrt{\left(1-x^{2}\right)}$
Solution: The domain is the set $B=\left\{x \in \mathbb{R}: 1-x^{2} \geq 0\right\}$. Therefore $B=\{x \in \mathbb{R}:-1 \leq x \leq 1\}$
The range is the set of real numbers between 0 and 1 , that is $C=\{x \in \mathbb{R}: 0 \leq x \leq 1\}$

Graphs of functions
The graph of a function is pictorial representation of the function by use of co-ordinate system. The graph of a function f is the collection of all pairs of numbers $(x, f(x))$ where x is the domain of f. The function $f(x)=x+3$ has a straight line graph (It will be shown in the class). Consider the function $f(x)=x^{2}$, the graph is the collection of points whose co-ordinate satisfy this equation. The points are $(0,0),(1,1),(2,4),(3,9),(-1,1),(2,4),(-3,9), \ldots\left(x, x^{2}\right)$. The graph will be shown in the class. The graph of $f(x)=4, f(x)=$ $x, f(x)=\sqrt{x}, f(x)=x^{3}, f(x)=\sin x, f(x)=\cos x, f(x)=\tan x$ will be shown during the lecture.

One-to-one functions

Functions for which different inputs always give different output are called one-to-one function (Injective). Thus $f: A \rightarrow B$ is one-to- one, if $f(a)=$ $f(b)$ implies that $a=b$ or $a \neq b$ implies that $f(a) \neq f(b)$.
Note: If one input gives two different outputs, then the mapping is not a function.
For example: If $f(x)=2 x+1$ and $x=\{3,4,5,6\}$
$f(a)=f(b) \Rightarrow a=b, f(3)=7, f(4)=9, f(5)=11, f(6)=13$

Onto function

These are functions whose range is equal to the codomain (surjective) while the mapping f is bijective if it is both injective and surjective.

Composite Functions

Suppose $f: A \rightarrow B$ and $g: \rightarrow C$ are two functions. Then $g \circ f=A \rightarrow C$ where $g \circ f=g(f(x))$ is the composite function.
For example: If $f: x \rightarrow x^{2}+2$ and $g: y \rightarrow \sqrt{y+5}$. Find $f(2), f(g(20)), f(g(4)), g(f(4))$.
Solution: $f(2)=6$
$g(20)=5$ and $f(g(20))=27$
$g(4)=3$ and $f(g(4))=11$
$f(4)=18$ and $g(f(4))=\sqrt{22}$
The inverse of a function
Let $f: A \rightarrow B$. The inverse of f, if it exists is the function $y: B \rightarrow A$ such that for all $a \in A$ and all $b \in B$, if $f(a)=b$, then $g(b)=a$ (invertible
function).
Example: If $f: x \rightarrow \frac{x+1}{x+2}, g: y \rightarrow 3 y+2$. Determine the function
$f^{-1}, g^{-1}, f^{-1}(g(1)), f^{-1}\left(g^{-1}(2)\right), g^{-1}\left(f^{-1}(2)\right)$.
Solution: $f: x \rightarrow \frac{x+1}{x+2}$
Let $p=\frac{x+1}{x+2}$

$$
\begin{gathered}
p(x+2)=x+1 \\
p x-x=1-2 p \\
x(p-1)=1-2 p \\
x=\frac{1-2 p}{p-1}
\end{gathered}
$$

Therefore

$$
f^{-1}: x \rightarrow \frac{1-2 x}{x-1}
$$

For g^{-1} :

$$
\begin{gathered}
g: \rightarrow 3 y+2 \\
\text { Let } q=3 y+2 \\
y=\frac{q-2}{3} \\
g^{-1}: y \rightarrow \frac{y-2}{3} \\
g(1)=5, \quad f^{-1}(g(1))=\frac{-9}{4} \\
f^{-1}\left(g^{-1}(2)\right)=-1 \text { since } g^{-1}(2)=0 \\
g^{-1}\left(f^{-1}(2)\right)=\frac{-5}{3}
\end{gathered}
$$

Limits

Denote by $\lim _{x \rightarrow x_{0}^{+}} f(x)$ the right hand limit of $f(x)$, that is the value which the function $f(x)$ approaches as x approaches x_{0} from the right. Also $\lim _{x \rightarrow x_{0}^{-}} f(x)$ denotes the left hand limit of $f(x)$ as x approaches x_{0} from the left. Then $\lim _{x \rightarrow x_{0}} f(x)$ is the limit of $f(x)$ as x approaches x_{0} from both left and the right.

Definition of Limits

$\lim _{x \rightarrow x_{0}} f(x)=L$ exists if the following conditions are satisfied.
(1) $f(x)$ is defined in an open interval containing x_{0} but not necessarily at x_{0}.
(2) $\lim _{x \rightarrow x_{0}^{+}} f(x)$ and $\lim _{x \rightarrow x_{0}^{-}} f(x)$ exists, and
(3) $\lim _{x \rightarrow x_{0}^{+}} f(x)=\lim _{x \rightarrow x_{0}^{-}} f(x)=L$

Some limits theorem
If $\lim _{x \rightarrow x_{0}} f(x)$ and $\lim _{x \rightarrow x_{0}} g(x)$ exist, then
(1) $\lim _{x \rightarrow x_{0}} c . f(x)=c . \lim _{x \rightarrow x_{0}} f(x)$, for any $c \in \mathbb{R}$.
(2) $\lim _{x \rightarrow x_{0}}[f(x) \pm g(x)]=\lim _{x \rightarrow x_{0}} f(x) \pm \lim _{x \rightarrow x_{0}} g(x)$
(3) $\lim _{x \rightarrow x_{0}}[f(x) \cdot g(x)]=\left[\lim _{x \rightarrow x_{0}} f(x)\right] \cdot\left[\lim _{x \rightarrow x_{0}} g(x)\right]$
(4) $\lim _{x \rightarrow x_{0}}[f(x)]^{n}=\left[\lim _{x \rightarrow x_{0}} f(x)\right]^{n}$
(5) $\lim _{x \rightarrow x_{0}} \sqrt{f(x)}=\sqrt{\lim _{x \rightarrow x_{0}} f(x)}$, if $\lim _{x \rightarrow x_{0}} f(x)>0$
(6) $\lim _{x \rightarrow x_{0}} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow x_{0}} f(x)}{\lim _{x \rightarrow x_{0}} g(x)}$, If $\lim _{x \rightarrow x_{0}} g(x) \neq 0$
(7) Limits of polynomial and Rational Function:

If $f(x)=p(x)=a_{0}+a_{1} x+\ldots+a_{n} x^{n}, x \in R$ is a polynomial, then $\lim _{x \rightarrow x_{0}} p(x)=p\left(x_{0}\right)$ for any $x_{0} \in \mathbb{R}$.
(8) If $f(x)=p(x)$ and $g(x)=q(x)$ are polynomials and $q\left(x_{0}\right) \neq 0$, then $\lim _{x \rightarrow x_{0}} \frac{p(x)}{q(x)}=\frac{p\left(x_{0}\right)}{q\left(x_{0}\right)}$.
(9) Infinite Limits:
$\lim _{x \rightarrow x_{0}} \frac{1}{x^{2 r}}=+\infty$ for any positive integer r.
(10) Limits at Infinity:
$\lim _{x \rightarrow+\infty} \frac{1}{x^{r}}=0$, for any $r \in \mathbb{R}, r>0 \lim _{x \rightarrow-\infty} \frac{1}{x^{r}}=0$, for any $r \in \mathbb{R}, r>0$
(11) If $p(x)$ and $q(x)$ are polynomials, such that $\operatorname{deg} p(x)<\operatorname{deg} q(x)$, then $\lim _{x \rightarrow+\infty} \frac{p(x)}{q(x)}=0$.
(12) If $p(x)$ and $q(x)$ are polynomials, such that $\operatorname{deg} p(x)=\operatorname{deg} q(x)$, then $\lim _{x \rightarrow+\infty} \frac{p(x)}{q(x)}=L$, a finite number.
(13) If $p(x)$ and $q(x)$ are polynomials, such that $d e d p(x)>\operatorname{deg} q(x)$, then $\lim _{x \rightarrow+\infty} \frac{p(x)}{q(x)}= \pm \infty$

Example 1: Find the limits if it exists
(a) $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}$
(b) $\lim x \rightarrow 0|x|$

Solution:
(a) If $f(x)=\frac{x^{2}-1}{x-1}$, then $f(1)$ does not exist. However $f(x)=\frac{x^{2}-1}{x-1}=x+1$ if $x \neq 1$
Hence $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=\lim _{x \rightarrow 1}(x+1)=2$
(b) $\quad|x|=\left\{\begin{array}{ll}x, & \text { if } \quad x \geq 0 \\ -x, & \text { if }\end{array}{ }_{x<0}\right.$
$\lim _{x \rightarrow 0^{+}}|x|=0=\lim _{x \rightarrow 0^{-}}|x|$
$\Rightarrow \lim _{x \rightarrow 0}|x|=0$
Example 2: Determine the limit
(a) $\lim _{x \rightarrow 3}\left(x^{3}-2 x+6\right)$
(b) $\quad \lim _{x \rightarrow-1}\left(x^{2}-3\right)^{10}$
(c0 $\quad \lim _{x \rightarrow 2}\left(\frac{x^{3}-3 x+6}{-x^{2}+15}\right)$
Solution:
(a) $\lim _{x \rightarrow 3}\left(x^{3}-2 x+6\right)=3^{3}-2(3)+6=27$
(b) $\quad \lim _{x \rightarrow-1}\left(x^{2}-3\right)^{10}=1024$
(c) $\quad \lim _{x \rightarrow 2}\left(\frac{x^{3}-3 x+6}{-x^{2}+15}\right)=\frac{8}{11}$

Example 3: Obtain the limit
(a) $\lim _{x \rightarrow+\infty} \frac{x^{3}+3 x+6}{x^{5}+2 x^{2}+9}$
(b) $\lim _{x \rightarrow+\infty} \frac{2 x^{2}-2 x+3}{x^{2}+4 x+4}$

Solution:
(a) $\lim _{x \rightarrow+\infty} \frac{x^{3}+3 x+6}{x^{5}+2 x^{2}+9}$

Divide through by the highest power of x
$=\lim _{x \rightarrow+\infty} \frac{\frac{1}{x^{2}}+\frac{3}{x^{4}}+\frac{6}{x^{5}}}{1+\frac{2}{x^{3}}+\frac{9}{x^{5}}}=0$
(b) $\quad \lim _{x \rightarrow+\infty} \frac{2 x^{2}-2 x+3}{x^{2}+4 x+4}=2$

Example4: Find the limit of the function $\frac{x^{2}-4}{x-2}$ as $x \rightarrow 2$ by Le'hospital's rule.
Solution:
Differentiate both the numerator and denominator with respect to x. Then we have $2 x$. $\lim _{x \rightarrow 2} 2 x=4$

Continuous function

A function $f(x)$ is said to be continuous at a point x_{0} if $\lim _{x \rightarrow x_{0}} f(x)=$ $f\left(x_{0}\right)$, that is: A function $y=f(x)$ is continuous at a point x_{0} if
(1) it is defined in a neighborhood of that point x_{0}
(2) the limit of the function as x tends to x_{0} exist.
(3) this limit is equal to the value of the function at the point $x=x_{0}$.

Example: Check if the following functions are continuous at the given points:
(a) $f(x)=\frac{x}{x^{2}-2} \quad$ at $\quad x=1$
(b) $\quad f(x)=\frac{1}{x-1} \quad$ at $\quad x=1$

Solution:
(a) $\quad f(x)=\frac{x}{x^{2}-2} \quad$ at $\quad x=1$
(1) $f(1)=\frac{1}{1-2}=-1$ hence $f(x)$ is defined at $x=1$
(2) $\lim _{x \rightarrow 1} \frac{x}{x^{2}-2}=-1$; the limits exists.
(3) $\lim _{x \rightarrow 1} \frac{x}{x^{2}-2}=f(1)$

Therefore the conditions are satisfied, the function $f(x)$ is continuous at $x=1$.
(b) $\quad f(x)=\frac{1}{x-1} \quad$ at $\quad x=1$
(1) $f(1)=\frac{1}{1-1}=\infty ; f(x)$ is not defined at $x=1$.
(2) $\lim _{x \rightarrow 1} f(x)$ does not exist at the point $x=1$.

Since one of the conditions have been violated then $f(x)$ is not continuous at the point $x=1$.

Limits and continuity of functions of several variables

The function $f(x, y)$ said to tend to limit L as $x \rightarrow x_{0}$ and $y \rightarrow y_{0}$ written as

$$
\lim _{x \rightarrow x_{0}, y \rightarrow y_{0}} f(x)=L
$$

If the limit L is independent of the path followed by the point (x, y) as $x \rightarrow x_{0}$ and $y \rightarrow y_{0}$.
Example: If $f(x, y)=\frac{3 x+1}{x^{2}+y+1}$, find $\lim _{x \rightarrow 1, y \rightarrow 2} f(x)$.
Solution: $\lim _{x \rightarrow 1, y \rightarrow 2} f(x)=\frac{3(1)+1}{1^{2}+2+1}=1$.

Also, the function $f(x, y)$ is said to be continuous at the point $\left(x_{0}, y_{0}\right)$ if $\lim _{x \rightarrow x_{0}, y \rightarrow y_{0}} f(x)=L$ exists and $f\left(x_{0}, y_{0}\right)=L$.

Discontinuous functions
If a function $f(x)$ is not continuous at a point x_{0} then it is said to be discontinuous at the point x_{0} and the point x_{0} is called a point of discontinuity of the function.
There are basically two major types of discontinuities.
(1) Removable discontinuity: If $\lim _{x \rightarrow x_{0}} f(x)$ exists and is unequal to $f\left(x_{0}\right)$ then x_{0} is said to be a point of removable discontinuity of $f(x)$. If that happens, by redefining the function $f(x)$ in a way such that $f\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} f(x)$, then $f(x)$ can be made to be continuous at $x=x_{0}$.
Example: Show that the function $f(x)=\frac{x^{2}-2}{x-2}$ has a removable discontinuity at the point $x=2$.
Solution: Since $f(x)$ is not defined at $x=2$. Apply Le'Hospital rule to have $\lim _{x \rightarrow 2} f(x)=4$
Redefine the function as $f(x)=\frac{(x-2)(x+2)}{x-2}=x+2$
then $f(2)=4 \Rightarrow f(2)=\lim _{x \rightarrow 2} f(x)=4$
Thus the function is now continuous at $x=2$.
(2) Non-Removable Discontinuity: If the right and left hand limits exists but unequal, that is $\lim _{x \rightarrow x_{0}^{+}} f(x) \neq \lim _{x \rightarrow x_{0}^{-}} f(x)$ or either the $\lim _{x \rightarrow x_{0}^{+}} f(x)$ or $\lim _{x \rightarrow x_{0}^{-}} f(x)$ does not exist then such function $f(x)$ is said to have non-removable discontinuity at $x=x_{0}$
Example: The function $f(x)=\sin \frac{1}{x}$ is continuous for $x \neq 0$. The function has non-removable discontinuity at $x=0$. Both right and left hand limits does not exist.

[^0]: Date: April 19, 2012.

