MTS 102 LECTURE NOTE FUNCTIONS, LIMITS AND CONTINUOUS FUNCTION BY A. D AKWU

Functions of a real variable

(1) Function: Let x and y be real number, if there exist a relation between x and y such that x is given, then y is determined, we say that y is a function of x and x is called independent variable and y is the dependent variable, that is y = f(x). For example: I f $f(x) = x^2 + 2$, then if x = 0, 1, 5, y = 2, 3, 27

For example: 1 f $f(x) = x^2 + 2$, then if x = 0, 1, 5, y = 2, 3, 27 respectively.

(2) Periodic function:

A function which repeats itself at a regular interval of x is called periodic.

(3) Integral of Definition:

The range of values of x for y is defined is called integral of definition. For example: If $y = \frac{2}{\sqrt{9-x^2}}$, the function is undefined if x = 3 or x > 3. Then the integral of definition for this function is -3 < x < 3. The function is define for x = -2, -1, 0, 1, 2.

(4) Monotonic function:

 $f(x_1)$ is monotonic increasing if $f(x_1) < f(x_2)$ whenever $x_1 < x_2$. $f(x_1)$ is monotonic decreasing if $f(x-1) > f(x_2)$ whenever $x_1 > x_2$.

(5) Even and Odd function:

A function f(x) is said to be even if f(x) = f(-x). For example: $f(x) = x^2 + 1$, $f(-x) = (-x)^2 + 1 = x^2 + 1$ A function is said to be odd if f(-x) = -f(x). For example: $f(x) = x^3$, $f(-x) = (-x)^3 = -f(x)$

(6) Function:

Given two non-empty sets A and B, if there is a rule, which assigns an element $x \in A$ a unique element $y \in B$, such a rule is called a mapping. A function is a rule for transforming a member of one set A to a unique member of another set B. A function from a set A to as set B is a rule which associates with each member of A a unique member of B. Then $f : A \to B$. A is called the domain of the function and B the codomain. A subset of the co-domain, which ia s collection of all the images of the elements of the domain is called the Range.

Example 1: What is the domain and range of the function $f(x) = x^2$.

Date: April 19, 2012.

Solution: For any real number, its square is uniquely defined. Therefore the domain of f is the set \mathbb{R} . The square of any number is never negative and the square root of any positive real number exists. Therefore the range is the set of non-negative real numbers. Example 2: Find the range and domain of $f(x) = \sqrt{(1-x^2)}$ Solution: The domain is the set $B = \{x \in \mathbb{R} : 1-x^2 \ge 0\}$. Therefore

 $B = \{x \in \mathbb{R} : -1 \le x \le 1\}$

The range is the set of real numbers between 0 and 1, that is $C = \{x \in \mathbb{R} : 0 \le x \le 1\}$

Graphs of functions

The graph of a function is pictorial representation of the function by use of co-ordinate system. The graph of a function f is the collection of all pairs of numbers (x, f(x)) where x is the domain of f. The function f(x) = x+3 has a straight line graph (It will be shown in the class). Consider the function $f(x) = x^2$, the graph is the collection of points whose co-ordinate satisfy this equation. The points are $(0,0), (1,1), (2,4), (3,9), (-1,1), (2,4), (-3,9), ...(x,x^2)$. The graph will be shown in the class. The graph of $f(x) = 4, f(x) = x, f(x) = \sqrt{x}, f(x) = x^3, f(x) = \sin x, f(x) = \cos x, f(x) = \tan x$ will be shown during the lecture.

One-to-one functions

Functions for which different inputs always give different output are called one-to-one function (Injective). Thus $f: A \to B$ is one-to- one, if f(a) = f(b) implies that a = b or $a \neq b$ implies that $f(a) \neq f(b)$.

Note: If one input gives two different outputs, then the mapping is not a function.

For example: If f(x) = 2x + 1 and $x = \{3, 4, 5, 6\}$ $f(a) = f(b) \Rightarrow a = b, f(3) = 7, f(4) = 9, f(5) = 11, f(6) = 13$

Onto function

These are functions whose range is equal to the codomain (surjective) while the mapping f is bijective if it is both injective and surjective.

Composite Functions

Suppose $f : A \to B$ and $g :\to C$ are two functions. Then $g \circ f = A \to C$ where $g \circ f = g(f(x))$ is the composite function. For example: If $f : x \to x^2 + 2$ and $g : y \to \sqrt{y + 5}$. Find f(2), f(g(20)), f(g(4)), g(f(4)). Solution: f(2) = 6g(20) = 5 and f(g(20)) = 27g(4) = 3 and f(g(4)) = 11f(4) = 18 and $g(f(4)) = \sqrt{22}$ The inverse of a function

Let $f : A \to B$. The inverse of f, if it exists is the function $y : B \to A$ such that for all $a \in A$ and all $b \in B$, if f(a) = b, then g(b) = a (invertible

function).

Example: If $f : x \to \frac{x+1}{x+2}, g : y \to 3y + 2$. Determine the function $f^{-1}, g^{-1}, f^{-1}(g(1)), f^{-1}(g^{-1}(2)), g^{-1}(f^{-1}(2))$. Solution: $f : x \to \frac{x+1}{x+2}$ Let $p = \frac{x+1}{x+2}$ p(x+2) = x + 1px - x = 1 - 2px(p-1) = 1 - 2p $x = \frac{1-2p}{p-1}$ Therefore $f^{-1} : x \to \frac{1-2x}{x-1}$ For g^{-1} : $g :\to 3y + 2$ Let q = 3y + 2 $y = \frac{q-2}{3}$ $g^{-1} : y \to \frac{y-2}{3}$

$$g^{-1}: y \to \frac{y-2}{3}$$

$$g(1) = 5, \quad f^{-1}(g(1)) = \frac{-9}{4}$$

$$f^{-1}(g^{-1}(2)) = -1 \quad since \quad g^{-1}(2) = 0$$

$$g^{-1}(f^{-1}(2)) = \frac{-5}{3}$$

Limits

Denote by $\lim_{x\to x_0^+} f(x)$ the right hand limit of f(x), that is the value which the function f(x) approaches as x approaches x_0 from the right. Also $\lim_{x\to x_0^-} f(x)$ denotes the left hand limit of f(x) as x approaches x_0 from the left. Then $\lim_{x\to x_0} f(x)$ is the limit of f(x) as x approaches x_0 from both left and the right.

Definition of Limits

 $\lim_{x\to x_0} f(x) = L$ exists if the following conditions are satisfied.

- (1) f(x) is defined in an open interval containing x_0 but not necessarily at x_0 .
- (2) $\lim_{x\to x_0^+} f(x)$ and $\lim_{x\to x_0^-} f(x)$ exists, and
- (3) $\lim_{x \to x_0^+} f(x) = \lim_{x \to x_0^-} f(x) = L$

Some limits theorem

If $\lim_{x\to x_0} f(x)$ and $\lim_{x\to x_0} g(x)$ exist, then

- (1) $\lim_{x\to x_0} c f(x) = c \lim_{x\to x_0} f(x)$, for any $c \in \mathbb{R}$.
- (2) $\lim_{x \to x_0} [f(x) \pm g(x)] = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$
- (3) $\lim_{x \to x_0} [f(x).g(x)] = [\lim_{x \to x_0} f(x)].[\lim_{x \to x_0} g(x)]$

MTS 102 LECTURE NOTE

(4)
$$\lim_{x \to x_0} [f(x)]^n = [\lim_{x \to x_0} f(x)]^n$$

- (5) $\lim_{x \to x_0} \sqrt{f(x)} = \sqrt{\lim_{x \to x_0} f(x)}$, if $\lim_{x \to x_0} f(x) > 0$ (6) $\lim_{x \to x_0} \frac{f(x)}{g(x)} = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)}$, If $\lim_{x \to x_0} g(x) \neq 0$
- (7) Limits of polynomial and Rational Function: If $f(x) = p(x) = a_0 + a_1x + \dots + a_nx^n, x \in R$ is a polynomial, then $\lim_{x\to x_0} p(x) = p(x_0)$ for any $x_0 \in \mathbb{R}$.
- (8) If f(x) = p(x) and g(x) = q(x) are polynomials and q(x₀) ≠ 0, then lim_{x→x₀} p(x)/q(x) = p(x₀)/q(x₀).
 (9) Infinite Limits:
- $\lim_{x\to x_0} \frac{1}{x^{2r}} = +\infty$ for any positive integer r. (10) Limits at Infinity:
 - $\lim_{x\to+\infty} \frac{1}{x^r} = 0$, for any $r \in \mathbb{R}, r > 0$ $\lim_{x\to-\infty} \frac{1}{x^r} = 0$, for any $r \in \mathbb{R}, r > 0$
- (11) If p(x) and q(x) are polynomials, such that $deg \ p(x) < deg \ q(x)$, then $\lim_{x \to +\infty} \frac{p(x)}{q(x)} = 0$. (12) If p(x) and q(x) are polynomials, such that $\deg p(x) = \deg q(x)$,
- then $\lim_{x\to+\infty} \frac{p(x)}{q(x)} = L$, a finite number.
- (13) If p(x) and q(x) are polynomials, such that ded p(x) > deg q(x), then $\lim_{x \to +\infty} \frac{p(x)}{q(x)} = \pm \infty$

Example 1: Find the limits if it exists

(a)
$$\lim_{x\to 1} \frac{x^2-1}{x-1}$$

(b) $\lim_{x\to 0} |x|$
Solution:
(a) If $f(x) = \frac{x^2-1}{x-1}$, then $f(1)$ does not exist. However $f(x) = \frac{x^2-1}{x-1} = x+1$
if $x \neq 1$
Hence $\lim_{x\to 1} \frac{x^2-1}{x-1} = \lim_{x\to 1} (x+1) = 2$
(b) $|x| = \begin{cases} x, & \text{if } x \geq 0 \\ -x, & \text{if } x < 0 \end{cases}$
 $\lim_{x\to 0^+} |x| = 0 = \lim_{x\to 0^-} |x|$
 $\Rightarrow \lim_{x\to 0} |x| = 0$
Example 2: Determine the limit
(a) $\lim_{x\to 1} (x^3 - 2x + 6)$
(b) $\lim_{x\to -1} (x^2 - 3)^{10}$
(c0 $\lim_{x\to 2} (\frac{x^3 - 3x + 6}{-x^2 + 15})$
Solution:
(a) $\lim_{x\to -1} (x^2 - 3)^{10} = 1024$
(c) $\lim_{x\to -2} (\frac{x^3 - 3x + 6}{-x^2 + 15}) = \frac{8}{11}$
Example 3: Obtain the limit
(a) $\lim_{x\to +\infty} \frac{x^3 + 3x + 6}{x^5 + 2x^2 + 9}$
(b) $\lim_{x\to +\infty} \frac{2x^2 - 2x + 3}{x^2 + 4x + 4}$

Solution:

4

(a)
$$\lim_{x \to +\infty} \frac{x^3 + 3x + 6}{x^5 + 2x^2 + 9}$$

Divide through by the highest power of x
 $= \lim_{x \to +\infty} \frac{\frac{1}{x^2} + \frac{3}{x^4} + \frac{6}{x^5}}{1 + \frac{2}{x^3} + \frac{9}{x^5}} = 0$
(b) $\lim_{x \to +\infty} \frac{2x^2 - 2x + 3}{x^2 + 4x + 4} = 2$

Example 4: Find the limit of the function $\frac{x^2-4}{x-2}$ as $x\to 2$ by Le'hospital's rule.

Solution:

Differentiate both the numerator and denominator with respect to x. Then we have 2x. $\lim_{x\to 2} 2x = 4$

Continuous function

A function f(x) is said to be continuous at a point x_0 if $\lim_{x\to x_0} f(x) = f(x_0)$, that is: A function y = f(x) is continuous at a point x_0 if

(1) it is defined in a neighborhood of that point x_0

(2) the limit of the function as x tends to x_0 exist.

(3) this limit is equal to the value of the function at the point $x = x_0$.

Example: Check if the following functions are continuous at the given points: (a) $f(x) = \frac{x}{2}$ at x = 1

(a)
$$f(x) = \frac{x^2 - 2}{1}$$
 at $x = 1$
(b) $f(x) = \frac{1}{x-1}$ at $x = 1$
Solution:
(a) $f(x) = \frac{x}{x^2 - 2}$ at $x = 1$
(1) $f(1) = \frac{1}{1-2} = -1$ hence $f(x)$ is defined at $x = 1$
(2) $\lim_{x \to 1} \frac{x}{x^2 - 2} = -1$; the limits exists.
(3) $\lim_{x \to 1} \frac{x}{x^2 - 2} = f(1)$

Therefore the conditions are satisfied, the function f(x) is continuous at x = 1.

- (b) $f(x) = \frac{1}{x-1}$ at x = 1
 - (1) $f(1) = \frac{1}{1-1} = \infty; f(x)$ is not defined at x = 1.
 - (2) $lim_{x\to 1}f(x)$ does not exist at the point x = 1.

Since one of the conditions have been violated then f(x) is not continuous at the point x = 1.

Limits and continuity of functions of several variables

The function f(x, y) said to tend to limit L as $x \to x_0$ and $y \to y_0$ written as

$$\lim_{x \to x_0, y \to y_0} f(x) = L$$

If the limit L is independent of the path followed by the point (x, y) as $x \to x_0$ and $y \to y_0$.

Example: If $f(x,y) = \frac{3x+1}{x^2+y+1}$, find $\lim_{x \to 1, y \to 2} f(x)$. Solution: $\lim_{x \to 1, y \to 2} f(x) = \frac{3(1)+1}{1^2+2+1} = 1$. Also, the function f(x, y) is said to be continuous at the point (x_0, y_0) if $\lim_{x \to x_0, y \to y_0} f(x) = L$ exists and $f(x_0, y_0) = L$.

Discontinuous functions

If a function f(x) is not continuous at a point x_0 then it is said to be discontinuous at the point x_0 and the point x_0 is called a point of discontinuity of the function.

There are basically two major types of discontinuities.

(1) Removable discontinuity: If $\lim_{x\to x_0} f(x)$ exists and is unequal to $f(x_0)$ then x_0 is said to be a point of removable discontinuity of f(x). If that happens, by redefining the function f(x) in a way such that $f(x_0) = \lim_{x\to x_0} f(x)$, then f(x) can be made to be continuous at $x = x_0$.

Example: Show that the function $f(x) = \frac{x^2-2}{x-2}$ has a removable discontinuity at the point x = 2.

Solution: Since f(x) is not defined at x = 2. Apply Le'Hospital rule to have $\lim_{x\to 2} f(x) = 4$

Redefine the function as $f(x) = \frac{(x-2)(x+2)}{x-2} = x+2$ then $f(2) = 4 \Rightarrow f(2) = \lim_{x \to 2} f(x) = 4$

Thus the function is now continuous at x = 2.

(2) Non-Removable Discontinuity: If the right and left hand limits exists but unequal, that is $\lim_{x\to x_0^+} f(x) \neq \lim_{x\to x_0^-} f(x)$ or either the $\lim_{x\to x_0^+} f(x)$ or $\lim_{x\to x_0^-} f(x)$ does not exist then such function f(x) is said to have non-removable discontinuity at $x = x_0$ Example: The function $f(x) = \sin \frac{1}{x}$ is continuous for $x \neq 0$. The

Example: The function $f(x) = \sin \frac{\pi}{x}$ is continuous for $x \neq 0$. The function has non-removable discontinuity at x = 0. Both right and left hand limits does not exist.

 $\mathbf{6}$