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MCE 306: Fluid Mechanics III (2 Units) 

Course Synopsis 

Kinematics of fluid: Eularian and Lagrangian descriptions. The stream function. Sources, sinks 

and doublets. Streamline bodies including aerofoils and hydrofoils. Circulation, vorticity and 

vortices. Irrotational flow and velocity potential. Laminar internal flows, flow through straight 

channels and covette flow. Very slow motion and lubrication. Turbulent internal flow. Non-

circular pipe flow. Piping design. Elements of compressible flow. 
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CHAPTER 1: KINEMATICS OF FLUIDS 
 
1.0 MECHANICS 

Mechanics is a branch of physical sciences concerned with the state of rest or motion of bodies 

that are subjected to the action of force. It is subdivided into three branches: rigid-body or 

classical mechanics, deformable-body mechanics, and fluid mechanics. 

Rigid-body mechanics is generally divided into two areas: statics and dynamics. Statics deals 

with the equilibrium of bodies, that is, those which are either at rest or move with a constant 

velocity. 

Dynamics is concerned with the accelerated motion of bodies. The subject of dynamics is usually 

divided into two parts: (1) kinematics is concerned with the geometrical aspects of motion, and 

(2) kinetics is concerned with the analysis of the forces causing the motion. 

 
1.1 KINEMATICS (HYDRODYNAMICS) 

Kinematics or Hydrodynamics 

Kinematics is the branch of mechanics that deals with quantities involving space and time only. 

It treats variables such as displacement, velocity, acceleration, deformation, and rotation of fluid 

elements without referring to the forces responsible for such a motion. 

In fluid mechanics, the study of the velocity of various particles on the flow and the 

instantaneous flow pattern of the flow field is called flow kinematics or hydrodynamics. A 

thorough study of the kinematics of fluids is a necessary preliminary to the study of the dynamics 

of fluids. Kinematics investigations carry us very far into the general theory of fluid motion. The 

kinematics of fluids presents problems of much greater complexity than does the kinematics of 

rigid bodies and requires quite different theoretical methods for its treatments. In this class we 

shall study the followings: 

• Description of a Fluid Field 

• Substantive or Material Derivative 

• Streamlines, Trajectories and Streaklines 
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It should be noted that the fluid is taken as a continuum. This means that there is no gap in the 

fluid, i.e. we are now replacing the fluid with continuous molecules. There are cases, however, 

where this does not apply, i.e. at extremely low pressure.  

Continuum assumes the fluid to be a continuous material even though we know that matter 

consists of myriads of molecules in constant motion and collision. 

1.1 Description of a Fluid Field – Coordinate Systems 

There are basically two methods to describe flow trajectory: the Eulerian and the Lagrangian 

method. 

Lagrangian Method 

In the Lagrangian approach, one essentially follows the history of individual fluid particles. The 

two independent variables are taken as time and a label for fluid particles. The label can be 

conveniently taken as the position vector xo of the particle at some reference time t = 0. Any flow 

variable F is expressed as F(xo, t), i.e.  

( )t,xxx o=  

( )
dt
dxt,xuu o ==

 

( )
2

2

dt
xd

dt
dut,xaa o ===  (1.1) 

x(xo, t), u(xo, t) and a(xo, t) represents the location, velocity and acceleration at time t of a particle 
whose position was xo at t = 0. 

In 3-dimensional flow, the position vector is defined as: 

( )t,z,y,xxx ooo= , ( )t,z,y,xyy ooo= , ( )t,z,y,xzz ooo=  

The velocity as: 

( ) ( )
dt

t,z,y,xdx
t,z,y,xu ooo

ooo =  

( ) ( )
dt

t,z,y,xdy
t,z,y,xv ooo

ooo =  

( ) ( )
dt

t,z,y,xdy
t,z,y,xw ooo

ooo =  (1.2) 

And the acceleration as: 
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( ) ( ) ( )
2

2

dt

t,z,y,xxd
dt

t,z,y,xdu
t,z,y,xa oooooo

ooox ==  

( ) ( ) ( )
2

2

dt
t,z,y,xyd

dt
t,z,y,xdvt,z,y,xa oooooo

oooy ==  

( ) ( ) ( )
2

2

dt

t,z,y,xzd
dt

t,z,y,xdw
t,z,y,xa oooooo

oooz ==  (1.3) 

Eulerian Description 

In this approach, one concentrates on what happens at a spatial point, x, so that the independent 

variables are taken as x and t. That is a flow variable is written as F(x, t), i.e. the velocity u, v and 

w in x-, y- and z-direction, and acceleration a 

 ( )t,z,y,xuu =  

 ( )t,z,y,xvv =  

 ( )t,z,y,xww =  

 ( )t,z,y,xaa =  (1.4) 

It will soon be clear that in Eulerian method the partial or total derivative gives only local rate of 

change at a point x and is not the total rate of change seen by a fluid particle. 

The relationship between the Lagrangian and the Eulerian description follows from the fact that 

the velocity at position x and time t must be equal to the velocity of the fluid particle which is at 

this position and at this particular time, i.e.  

( ) ( )t,xu
dt

t,xdx o =  (1.5) 

From a practical point of view the Eulerian description is the easier one to use. The Lagrangian 

description, however, has advantages mainly from a theoretical point of view over the Eulerian 

method, e.g. in the formulation of fluid motion governing equation, in the study of dispersion of 

contaminants, etc. 

1.2 Material Substantive or Total Derivative 

As early mentioned the Eulerian description is most commonly used in practice when we want to 

describe a fluid motion. However, we need to express Lagrangian properties of the flow, i.e. 

properties of individual fluid elements, in an Eulerian frame of reference. For instance we may 
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ask ourselves what is the acceleration experienced by a fluid element expressed in a Eulerian 

system. 

Let us first consider a function G(x, y, z, t) which is a continuously differentiable function of the 

coordinates (x, y, z, t). This means that all partial derivatives of G exist. Let us interpret G as the 

property of a fluid element, which is at the position P(x, y, z, t). Examples of relevant properties 

are for instance: density, temperature or pressure. We now want to express the change of this 

property as a function of time when the fluid element moves along its trajectory. This is called 

the material derivative of G and it is expressed by the following notation: DG/Dt. This is 

expressed as: 

td
zd

z
G

td
yd

y
G

td
xd

x
G

t
G

Dt
DG

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=  (1.6) 

The vector (dx/dt, dy/dt, dz/dt) describes an arbitrary path through three-dimensional space as a 

function of time. Thus DG/Dt can be expressed as: 

z
Gw

y
Gv

x
Gu

t
G

Dt
DG

∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

=  (1.7) 

It then follows that the material derivative in vector and Cartesian tensor notation can be written 

as 

( )Ggradu
t
G

Dt
DG

•+
∂
∂

=  (1.8) 

i
i x

Gu
t
G

Dt
DG

∂
∂

+
∂
∂

=  (1.9) 

In equations (1.7), (1.8) and (1.9) ∂G/∂t is usually denoted as the local derivative or local part of 

the total derivative because it describes the change of G as a function of time at a fixed position 

in space (note the partial derivative). All the other terms on the right-hand side of equations (1.6) 

and (1.7) is usually denoted as the advective derivative or advection or sometime also convective 

derivative or convection. This advective derivative or rather the advective part of the total 

derivative gives the change of G as a function of time resulting from the fact that the fluid 

element moves in a non-homogeneous scalar field G(x, y, z).  

For a property G of a fluid element which does not change along its trajectory, we find thus 

immediately the equation 
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0=
Dt
DG   (1.10) 

Any property, which satisfies equation (1.10) is called a material property. An example is the 

interface between two immiscible fluids, which moves with the flow at the position of the 

interface and is thus a material property. 

Above we have expressed the material derivative for a scalar property G. However, the material 

derivative can be also extended to a vector property. Let us take as an example the flow velocity 

G ≡ G(u). The material derivative of the velocity at position and time (x, y, z, t) can be 

interpreted as the acceleration of the fluid element, which is at time t on the position x where the 

material derivative is taken. When the acceleration ax in x-direction is calculated in a Cartesian 

frame of reference then there is no problem and we can basically extend equation (1.6) to the 

velocity leading to 

z
uw

y
uv

x
uu

t
u

Dt
Duax ∂

∂
+

∂
∂

+
∂
∂

+
∂
∂

==  (1.11) 

In Cartesian tensor notation, equation (1.11) can be written as 

j

i
jx x

u
u

t
u

Dt
Dua

∂
∂

+
∂
∂

==  (1.12) 

Note that repeated indices have to be summed over all coordinates, which is called the Einstein 

summation convention. 

1.3 Conservation Laws of Physics 
The governing equations of fluid flow represent mathematical statements of conservation of 

physics, i.e. 

• The mass of a fluid is conserved 

• The rate of change of momentum equals the sum of the forces on a fluid particle 

(Newton’s second law) 

• The rate of change of energy in equal to the sum of the rate of heat addition to and the 

rate of work done on a fluid particle (first law or thermodynamics) 

Basic Scientific Laws Used in the Analysis of Fluid Flow 
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• Law of conservation of mass 

• Newton’s laws of motion 

• Law of conservation of energy 

• Thermodynamic law 

• Equation of state 

The fluid may be regarded as continuum. We describe the behaviour of the fluid in terms of 

macroscopic properties such as velocity, density, pressure and temperature, and their space and 

time derivatives. 

Mass Conservation in Three Dimensions 
The first step in the derivation of mass conservation equation is to write down a mass balance for 

the fluid element. 

 

 

 

Consider mass flow rate in and out of fluid element shown in Fig. 1.1. 

 

 

 

 

 

 

 

Figure 1.1: Mass flow in and out fluid element. 

 

Using the differential expression approach, the rate of increase of mass in the fluid element is 

( ) ( )zyx
t

zyx
t

δδδρδδδρ
∂
∂

=
∂
∂  (1.14) 

Mass flow rate across a face of the element: 

Rate of increase of mass in fluid element = Net rate of flow of mass into fluid element (1.13) 
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x-direction: ( ) ( ) zyx
x
uzyx

x
uuu δδδρδδδρρρ

∂
∂

−=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+−  (1.15) 

y-direction: ( ) ( ) zyx
y
vzxy

y
vvv δδδρδδδρρρ

∂
∂

−=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+−  (1.16) 

y-direction: ( ) ( ) zyx
z
wyxz

z
www δδδρδδδρρρ

∂
∂

−=⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+−  (1.17) 

Net rate of flow of mass into the fluid element is: 

( ) ( ) ( ) zyx
z
wzyx

y
vzyx

x
u δδδρδδδρδδδρ

∂
∂

−
∂

∂
−

∂
∂

−=  (1.18) 

Substituting equations (1.14) and (1.18) in equation (1.13) gives: 

( ) ( ) ( ) ( ) zyx
z
wzyx

y
vzyx

x
uzyx

t
δδδρδδδρδδδρδδδρ

∂
∂

−
∂

∂
−

∂
∂

−=
∂
∂  

which simplifies into 

( ) ( ) ( ) 0=
∂

∂
+

∂
∂

+
∂

∂
+

∂
∂

z
w

y
v

x
u

t
ρρρρ  (1.19) 

In vector form: 

( ) 0=⋅∇+ v
dt
d ρρ  (1.20) 

Equation (1.19) or (1.20) is referred to as the continuity equation. It is a general expression for 

the conservation of mass in differential form.  

In equation (1.20),  

zkyjxi ∂∂+∂∂+∂∂=∇
rrr

  (1.21) 

and the velocity vector,  

kwjviuv
rrrr

++=  (1.22) 

If the flow field has a sink or a source of strength m ′′′& , equation (1.19) or (1.20) will become: 

( ) ( ) ( ) m
z
w

y
v

x
u

t
′′′=

∂
∂

+
∂

∂
+

∂
∂

+
∂
∂

&
ρρρρ

 (1.23) 

and in vector form, 
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( ) mv
dt
d ′′′=⋅∇+ &ρρ  (1.24) 

Continuity Equation – Control Volume Approach 
Continuity equation can be also derived using the integral approach as follows: 

 

 

 

 

 

 

Figure 1.2: Illustration of the geometry of control volume V. 

 

Consider the control volume shown above in which fluid flows in and out. 

The mass of the fluid inside our control volume is ∫∫∫V Vdρ . 

For a control volume fixed is space, the rate of change of mass inside of our control volume is 

∫∫∫∫∫∫ =
VV

Vd
dt
dVd

td
d ρρ  (1.25) 

The rate at which mass enters the control volume through its surface is  

∫∫ ⋅
S

ndSvρ  (1.26) 

where ρv . ndS is the mass rate of flow out of the small area dS. The quantity v.n is the normal 

component of the velocity to the surface. 

The net rate of change of mass inside and entering the control volume is then found by adding 

together equations (1.25) and (1.26). 

0=⋅+ ∫∫∫∫∫ SV
ndSvVd

dt
d ρρ  (1.27) 

Transforming the surface integral to volume integral using Gauss divergence theorem (Green’s 

theorem): 

( )dVvndSv
VS ∫∫∫∫∫ ⋅∇=⋅ ρρ  (1.28) 

Equation (1.28) becomes: 

V

A

n
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( ) 0=⋅∇+ ∫∫∫∫∫∫ VV
VdvVd

dt
d ρρ  (1.29) 

( ) 0=⎥⎦
⎤

⎢⎣
⎡ ⋅∇+∫∫∫V Vdv

dt
d ρρ  

( ) 0=⋅∇+∴ v
dt
d ρρ  (1.30) 

Equation (1.30) is exactly the same as equations (1.19) or (1.20). 

Special Forms of the Continuity Equation 

(i) Steady flow with source or sink 

 ( ) mv ′′′=⋅∇ &ρ  

(ii) Steady flow without source or sink 

( ) 0=⋅∇ vρ  

(iii)  Unsteady flow without source/sink 

 ( ) 0=⋅∇+ vρρ
dt
d  

(iv) Incompressible flow with source/sink 

 
ρ

m ′′′
=⋅∇
&

u  

(v) Incompressible flow without source or sink 

 =⋅∇ u  

Momentum Equation in Three Dimensions 

Newton’s second law states that the rate of change of momentum of a fluid particle equals the 

sum of the forces on the particle. 

 

 

The rate of increase of x-, y- and z- momentum per unit volume of a fluid particle are given by 

Dt
Dwand,

Dt
Dv,

Dt
Du ρρρ  respectively. 

We distinguish two types of forces in fluid particles: surface forces and body forces. 

Surface forces - As the name indicates these forces act upon the surface of the fluid particle or 

upon the surface of the considered fluid domain, pressure forces, viscous forces 

i. e. Rate of Increase of Momentum =  Sum of Forces on Particles 
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Body forces – This type of forces acts upon the whole material volume at a distance, without 
contact with the body, e.g. gravity force, centrifugal force, coriolis force, electromagnetic force 

Line forces or surface tension – These are other type of forces that are considered in fluid flow. 

At interfaces between two substances, the inter-molecular forces at both sides differ, appearing 

to be an additional force. At the macroscopic level, the interfacial forces can be modeled by the 

length
forcetensionSurface =σ  (1.31) 

which causes a force tangent to the interface and orthogonal to any line through the interface, of 

modulus 

dldFl σ=  (1.32) 

The surface tension depends on the pair of substances that form the interface and on the 

temperature. When the surface tension is positive, the molecules of each phase tend to be 

repelled back to their own phase. This is the case, for instance, of two inmiscible liquids. When 

the surface tension is negative, the molecules of both phases tend to mix, like two miscible 

liquids. In the case of a liquid/gas interface, the surface tension tends to maintain the interface (or 

free surface) straight. An important situation appears when three substances meet forming three 

interfaces, for instance, at a wall/liquid/gas interface. In this case, the line, which is the 

intersection of the three interfaces, is called the contact line. The angle that two interfaces form 

at the contact line is called the contact angle and depends on the surface tension of all interfaces. 

Therefore, the contact angle depends solely on the three substances and the temperature.  

Finally, to derive the momentum equation, we equate the flow inertial force to the summation of 
all the forces in the flow, i.e. 

∑= iF
Dt
Duρ  (1.33) 

1.4 Flow Vusualization 

Pathlines, Streaklines, Timelines, Streamlines, Streamtubes and Stream Function 

Just like the topography of a region is visualized using the contour map, flow can be visualized 

using the velocity at all points at a given time or the velocity of a given particle at different time. 

Pathline is the trace of the path of a single particle over a period of time. Pathline shows the 

direction of the velocity of a particle at successive instants of time. It is best described using the 

Lagrangian description. The equation of a path line is given by: 
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w
dz

v
dy

u
dxdt ===  (1.34) 

the integration being performed with xo, yo, zo held fixed. 

Streaklines provide an instantaneous picture of the particles, which have passed through a given 

fixed point. A streakline results when we release smoke or dye at a fixed point in the flow field. 

For a stationary flow the streakline, streamline and trajectory are identical. 

Timeline: If a number of adjacent fluid particles in a flow field are marked at a given instant, 

they form a line at that instant. This line is called timeline. 

Steamlines are series of curves drawn tangent to the mean velocity vectors of a number of 

particles in a flow. Since streamlines are tangent to the velocity vector at every point in the flow 

field, there can be no flow across a streamline. The requirement of tangency means that the 

streamlines are given by the equation 

w
dz

v
dy

u
dx

==  (1.35) 

In a steady flow, pathlines and streamlines will be identical, streaklines and will also coincide 

with stream lines. This implies that in a steady flow, streaklines, streamlines, pathlines, and 

trajectory are identical. 

A stream surface (or stream sheet) is a collection of adjacent streamlines, providing a surface 

through which there is no flow. 

A streamtube is a tube made up of adjoining stream lines. A bundle of neighbouring streamlines 

may be imagined to form a passage through which the fluid flow such a passage is called a 

stream tube. The consequence is that there is no transport through the side walls, because at 

every point the velocity is parallel to the local velocity vector, or in other words transport, e.g. of 

mass, through each cross section of the tube must be the same. 

Example 1: (Streamline). Calculate the streamlines for the unsteady, two-dimensional flow field 

given by, u = 2x(t + 1); v = 2y(t − 1) 

Particularize for the case in which the streamline passes through the point (x0, y0) at all times. 

Solution: 
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Applying equation (1.31) 

w
dz

v
dy

u
dx

==  

It follows that: ( ) ( )1212 −
=

+ ty
dy

tx
dx  

Integrating:  ( ) ( ) Clnxlntylnt +−=+ 11  

Thus   11 −+ = tt Cxy  

To determine the integration constant C, the conditions of the particular case are imposed for all 

t, 

11 −+ = tt
o oCxy  

And so  
1

1

−

+

= t

t

o

o

x

y
C  

Finally, substituting the value of C: 

1
1

+
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

t
t

oo x
x

y
y  

 

Example 2: (Trajectory). For the flow field of the above example, determine the trajectory of the 

fluid particle that passes through the point (x0, y0), at t = 0. 

Solution: Integrating the equation of motion: 

( )dttxdx 12 +=  

( )dttydy 12 −=  

Yields: 

( ) 1
21 Clntxln ++=  
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( ) 2
21 Clntyln +−=  

Thus   ( )21
1

+= teCx  

( )21
2

−= teCy  

To determine the constants of the integration C1, C2, the conditions of the problem are imposed: 

( )210
1

+= eCxo  

( )210
2

−= eCyo  

which implies exC o=1  

  eyC o=2  

Finally, the trajectory is given in parametric form through the combination of  

( ) 11 2 −+= t

o
e

x
x  

( ) 11 2 −−= t

o
e

y
y  

This is a valid curve in two dimensions. Sometimes it is possible to eliminate t and write the 

same curve in explicit form, that is, as y(x). Getting t from the first equation, 

11 −+=
ox
xlnt  

and substituting in the second one, 

121 −⎟
⎠
⎞⎜

⎝
⎛ −+

=
oxxln

e
y
y

o
 

which is the equation of the trajectory in explicit form. 
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1.5 Definition of Basic Types of Flow 

Flow of Ideal/Inviscid and Real Fluids 

Ideal fluid is non-viscous and incompressible. Shear force between the boundary surface and 

fluid or between the fluid layers is absent and only pressure forces and body forces are 

controlling. 

Real fluids have viscosity and surface shear forces are involved during flow. However the flow 

after a short distance from the surface is not affected by the viscous effects and approximates to 

ideal fluid flow. The results of ideal fluid flow analysis are found applicable in the study of flow 

of real fluids when viscosity values are small. 

Steady and Unsteady Flow 

In order to study the flow pattern it is necessary to classify the various types of flow. The 

classification will depend upon the constancy or variability of the velocity with time. In the next 

three sections, these are described. In steady flow the property values at a location in the flow are 

constant and the values do not vary with time. The velocity or pressure at a point remains 

constant with time. These can be expressed as V = V(x, y, z), P = P(x, y, z) etc.  

In steady flow a picture of the flow field recorded at different times will be identical. In the case 

of unsteady flow, the properties vary with time or V = V(x, y, z, t), P = P(x, y, z, t) where t is 

time. In unsteady flow the appearance of the flow field will vary with time and will be constantly 

changing. In turbulent flow the velocity at any point fluctuates around a mean value, but the 

mean value at a point over a period of time is constant. For practical purposes turbulent flow is 

considered as steady flow as long as the mean values of properties do not vary with time. 

Compressible and Incompressible Flow 

If the density of the flowing fluid is the same all over the flow field at all times, then such flow is 

called incompressible flow. Flow of liquids can be considered as incompressible even if the 

density varies a little due to temperature difference between locations. Low velocity flow of 

gases with small changes in pressure and temperature can also be considered as incompressible 

flow. Flows through fans and blowers are considered incompressible as long as the density 
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variation is below 5%. If the density varies with location, the flow is called compressible flow. In 

this chapter the study is mainly on incompressible flow. 

Laminar and Turbulent Flow 

If the flow is smooth and if the layers in the flow do not mix macroscopically then the flow is 

called laminar flow. For example a dye injected at a point in laminar flow will travel along a 

continuous smooth line without generally mixing with the main body of the fluid. Momentum, 

heat and mass transfer between layers will be at molecular level of pure diffusion. In laminar 

flow layers will glide over each other without mixing.  

In turbulent flow fluid layers mix macroscopically and the velocity/temperature/mass 

concentration at any point is found to vary with reference to a mean value over a time period. For 

example u = u + u′ where u is the velocity at an instant at a location and u is the average velocity 

over a period of time at that location and u′ is the fluctuating component. This causes higher rate 

of momentum/heat/mass transfer. A dye injected into such a flow will not flow along a smooth 

line but will mix with the main stream within a short distance. The difference between the flows 

can be distinguished by observing the smoke coming out of an incense stick. The smoke in still 

air will be found to rise along a vertical line without mixing. This is the laminar region. At a 

distance which will depend on flow conditions the smoke will be found to mix with the air as the 

flow becomes turbulent. Laminar flow will prevail when viscous forces are larger than inertia 

forces. Turbulence will begin where inertia forces begin to increase and become higher than 

viscous forces. 

Concepts of Uniform Flow, Reversible Flow and Three Dimensional Flow 

If the velocity value at all points in a flow field is the same, then the flow is defined as uniform 

flow. The velocity in the flow is independent of location. Certain flows may be approximated as 

uniform flow for the purpose of analysis, though ideally the flow may not be uniform. If there 

are no pressure or head losses in the fluid due to frictional forces to be overcome by loss of 

kinetic energy (being converted to heat), the flow becomes reversible. The fluid can be restored 

to its original condition without additional work input. For a flow to be reversible, no surface or 

fluid friction should exist. The flow in a venturi (at low velocities) can be considered as 

reversible and the pressures upstream and downstream of the venturi will be the same in such a 
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case. The flow becomes irreversible if there are pressure or head losses. If the components of the 

velocity in a flow field exist only in one direction it is called one dimensional flow and V = V (x). 

Denoting the velocity components in x, y and z directions as u, v and w, in one dimensional flow 

two of the components of velocity will be zero. In two dimensional flow one of the components 

will be zero or V = V(x, y). In three dimensional flow all the three components will exist and V = 

V(x, y, z). This describes the general steady flow situation. Depending on the relative values of u, 

v and w approximations can be made in the analysis. In unsteady flow V = V(x, y, z, t). 
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Problem set 1 

1 Write the continuity equation in cylindrical and spherical coordinate systems. 
2 A vertical cylindrical tank closed at the bottom is partially filled with an incompressible 

liquid. A cylindrical rod of diameter di (less than the tank diameter, do) is lowered into 
the liquid at a velocity V. Determine the average velocity of the fluid escaping between 
the rod and the tank walls 
(a) relative to the bottom of the tank 
(b) relative to the advancing rod.   

3 Determine if the following flows of an incompressible fluid satisfy the continuity 
equation 

 (a) 
( )

2
222

2

22

21
oo rV

yx
x

yx
u

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−

+
=  

  
( )

2
222

2
oo rV

yx

xyv
+

−=  

 Where Vo is a reference velocity and ro is a reference length. Both are constants. 

(b) 
( ) oorV

yx

xyzu 222

2

+
−=  

( )
( ) oo rV

yx

zyxv 222

22

+

−
−=  

oo rV
yx

yw 22 +
=  

4 For the flow of an incompressible fluid the velocity component in the x-direction  

byaxu += 2  

and the velocity component in the z-direction is zero. Find the velocity components v in 
the y-direction. In evaluating the arbitrary functions which might appear in the 
integration, assume that v= 0 at y = 0. 

5 Obtain Euler’s equation in plane, polar coordinates 

r
rr

r
r f

r
p

r
vv

r
v

r
v

v
t

v
+

∂
∂

−=−
∂
∂

+
∂
∂

+
∂
∂

ρθ
θθ 12

 

θ
θθθθθ

θρθ
f

r
p

r
vvv

r
v

r
v

v
t

v r
r +

∂
∂

−=+
∂
∂

+
∂
∂

+
∂
∂ 1  

By considering the forces on a small element bounded by the lines corresponding to r, r + 
dr, and θ, θ + dθ. 

6 Check whether the following incompressible flow fluid  
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(a) satisfies the continuity equation  

(b) is rotational or irrotational. 

kjyixv
rrrr 1622 +−=  

7 Given a velocity field  

( ) kyzjiyxv
rrrr 22 1016 +++=  

Evaluate the (i) angular velocity of rotation of a fluid element at the position (ii) the 
vorticity of the fluid kjir

rrrr 2316 ++=  

8 Given that the fluid flows from a large reservoir to form the flow field 
( )ktjyixv

rrrr 16322 2 ++−=  of an incompressible fluid of density ρ, what is the 
difference in static pressure in terms of ρ between points 1r

r  and 2rr  when 
kjir
rrrr 12631 ++=  and kjir

rrrr 12352 +−=  

9 Consider a two-dimensional flow with velocity components u = −αx + βt and v = αy+γt. 
Compute the stream-line pattern and the x- and y-component of the trajectories. 

10 Sketch the streamlines for the flow  

u = αx, v = −αx, w = 0  

where α is a positive constant. Let the concentration of some pollutant in the fluid be 

c (x, y, t) = βx2ye−αt,  

for y > 0, where β is a constant. Does the pollutant concentration for any particular fluid 
element change with time? 

11 What is the acceleration of a particle at (3, 0, 2) m at time t = 1 s? if the flow field is 
given as:  

(a) ( ) ( ) ( )s/mkjtxyitxyv
rrrr 251026 22 ++−++= . [ a = - 58i – 10j m/s2] 

(b) ( )s/mktjyixv
rrrr 266 −+=  

12 Determine (i) the equation of the streamlines at t = 0 up to an arbitrary constant and (ii) 
the slope of the streamlines at t = 0 s of a flow field with the velocity field 

( )s/mktjyixv
rrrr 266 −+= . Also sketch the streamlines at t = 0.  

13 A flow field is given as ( )s/mktjyixv
rrrr 266 −+= . What is the velocity at position x 

= 10 m and y = 6 m when t = 10 s? What is the slope of the streamlines for this flow at t = 
0 s? What is the equation of the streamlines at t = 0 s up to an arbitrary constant? Finally, 
sketch streamlines at t = 0 s. 

14 Consider the instationary flow u = u0, v= kt, w = 0, where u0 and k are positive constants. 
Show that the streamlines are straight lines, and sketch them at two different times. Also 
show that any fluid particle follows a parabolic path as time proceeds. 
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15 Water flows through a pipe AB of diameter d1 = 50 mm, which is in series with a pipe 
BC of diameter d2 = 75 mm in which the mean velocity v2 = 2 m/s. At C the pipe forks 
and one branch CD is of diameter d3 such that the mean velocity is 1.5 m/s. The other 
branch CE is of diameter d4 = 30 mm and conditions are such that the discharge Q2 from 
BC divides so that Q4 = ½ Q3. Calculate the values of Q1, v1, Q2, Q3, d3,Q4 and v4. 
(Douglas et al., 1983, pp. 110). 

 
Figure . 
16 The velocity of a fluid varies with time t. Over the period from t = 0 to t = 8 s the velocity 

components are u = 0 m/s and v = 2 m/s, while from t = 8 s to t = 16 s the components are 
u = 2 m/s and v = -2 m/s. A dye streak is injected into the flow at a certain point 
commencing at time t = 0 and the path of a particle of fluid is also traced from that point 
starting at t = 0. Draw to scale the streakline, pathline of the particle and the streamlines 
at time t = 12 s. (Douglas et al., 1983, pp. 113, 4.1). 
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CHAPTER 2: ELEMENTS OF POTENTIAL FLOW 

Simplifying approximation – the flow is ideal, i.e. no viscosity, incompressible, no surface 

tension effects, if it is a liquid, it does not vaporize. 

2.1 Steady 2-D flow 

We can specify a plane which has no velocity component perpendicular to it. 

FIGURE 

 

222 vuq +=  

Continuity equation ideal for 2-D flow is: 

0=
∂
∂

+
∂
∂

y
v

x
u  (2.1) 

1.2 Stream function, ψ 

 

FIGURE 

 

Fix point A and allow point P to be variable. For steady incompressible flow for any point P, 

volume flow rate across AQP = that across ARP. No matter the shape of AQP, volume flow rate 

across it is constant. 

Since A is fixed, the rate of flow across ARP is a function only of positive P, and this function is 

known as Stream function, ψ.  The ψP is the volume flow rate across any line joining P to A.  

The value of ψ is arbitrarily set to zero at A. 

FIGURE 

If PP ′  is a streamline, rate of flow across AP is equal to rate flow across PA ′  since there is no 

flow across PP ′  (a streamline). 



22 

Compiled by Prof. M. A. Waheed 

PP ′=∴ ψψ   

Flow may be represented by a series of streamlines at equal increment of ψ. 

Consider PP ′  a small distance ⊥nδ  to streamline such that PA ′′  > AP 

Volume flow rate across PA ′′  is less than volume flow rate across AP by ψδ  across PP ′′ . If 

the average velocity perpendicular to PP ′′  is q 

nqδψδ =  

n
q

∂
∂

=⇒
ψ  (2.2) 

Equation (2.2) shows that the closer the streamline for equal increament of ψ, the higher the 

velocty. ψ = 0 may be assigned to any convenient streamline. 

Sign convection 

FIGURE 

The sign convection is that ψ increases from right to left when looking downstream. 

From equation (2.2) and this sign convection: 

x
v,

y
u

∂
∂

−=
∂
∂

=
ψψ  

FIGURE 

At point P differentials of y and x related by 

u
v

xd
yd
=  

udyvdx =∴  

v
dy

u
dx

=or  (2.3) 

Similarly for the x – z plane 

w
dz

u
dx

w
u

dz
dx

=⇒=  (2.4) 
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For the y-z plane 

v
dy

w
dz

w
v

dz
dy

=⇒=  (2.5) 

From equations (2.3) – (2.5) 

w
dz

v
dy

u
dx

==⇒  (2.6) 

The above equation is the mathematical definition of a streamloine.  For a 2-D motion, we can 

relate the concepts of streamline to continuity equation.  Continuty equation for 2-D flow is as 

stated in equation (2.1). This equation is satisfied automatically by introducing a new function 

x
v,

y
u

∂
∂

−=
∂
∂

=
ψψ  (2.7) 

( )t,y,xψψ =  

Substituting equation (2.7) in (2.1) 

0
22

=
∂∂

∂
−

∂∂
∂

⇒
xyyx
ψψ  

Total differential of ψ: 

dy
y

dx
x

d
∂
∂

+
∂
∂

=
ψψψ  

Using equation (2.7) 

udyvdxd +−=ψ  (2.8) 

If ψ = 0 in equation (2.8), we obtain equation (2.3), which is the equation for a streamline. 

Line of a constant stream function is called a streamline. 

From equation (2.2)  

ndqd =ψ  

12 ψψ −  = volume flow rate per unit width passing between the streamlines (m2/s) 

Note: We can define stream function in 2-D flow only, since there will be some ambiguity 

defining the third component of velocity in terms of stream function ψ in equation (2.7). 
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2.3 Circulation and Vorticity 

Consider the figure below 

FIGURE 

Across any line AP in the fluid, the volume flow rate = ∫
P

A
n dsq . Similarly, we can define ∫

P

A
s dsq   

along AP wholly in the fluid. 

Integrating round a fixed closed circuit, we have  

∫=Γ dsqs  

This is called circulation which is positive for a counter clockwise direction. 

Consider a rectangular element in the flow 

FIGURE 

yvxy
y
uuyx

x
vvxu δδδδδδ −⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

++=Γ  

yx
y
uyx

x
v δδδδ

∂
∂

−
∂
∂

=Γ  

circuittheofarea
circuitinitesimalinfanaroundintpoaatVorticity Γ

=  

area
nCirculatio,Vorticity =ω  

y
u

x
v

∂
∂

−
∂
∂

=ω  (2.9) 

Consider a small circular circuit of radius r 

FIGURE 

rqs Ω=  
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where  is the angular velocity 

∫∫ ⋅Ω==Γ θrdrdsqs  

∫Ω= θdr 2  

π22 ⋅Ω⋅=Γ r  (2.10) 

where Ω  = mean angular velocity for all particles on the circuitry about the centre 

2

22
r
r

A
,Vorticity

π

πω Ω
=

Γ
=  

Ω= 2ω,Vorticity   (2.11) 

So, vorticity is twice the angular velocity.  If vorticity is zero at all points in region then the flow 

in the region is said to be irrotational.  Flow in region where vorticity is non-zero is said to be 

rotational. 

Vectorial Approach 

 

Consider the velocity vector at an elemental area of a control surface. 

=uxn rr vector tangential to ds of magnitude vector tangential to ds at magnitude θsinur . 

Vorticity at a point,  

∫∀
=

→∀
dsuxnlim rr1

0
ω  

rotationlocalucurlu KL
rr

==×∇=  (2.12) 

wvu
zyx

kji

ucurl
∂
∂

∂
∂

∂
∂

=
r  

y
u

x
v

z ∂
∂

−
∂
∂

=ω  
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x
w

z
u

y ∂
∂

−
∂
∂

=ω  (2.13) 

z
v

y
w

x ∂
∂

−
∂
∂

=ω  

Basic components of the motion of a fluid element 

FIGURE 

FIGURE 

The deformation of the fluid element may be sub divided into two parts.  The first consist of an 

angular motion of both sides through angle ( )βα −21 .  The second consists of an angular 

distribution ( )βα +21 . 

i.e.  ( )βα −21  - rotation 

      ( )βα +21  - distortion 

Rotation of the element through ( )βα −21  followed by distortion through ( )βα +21  leaves 

sides and  in the angular position shown above.  

Assuming α, β to be small. 

radius
arc

x
tx

x
v

=
∂
∂

=
δ

δδα 1   

y
ty

y
u

δ
δδβ 1

∂
∂

=   

The average rate of rotation in the positive or counter clockwise sense 

( ) tz δβα −=Ω
2
1   

Fluid rotation is defined as the average angular velocity of two mutually perpendicular 

differential element of fluid. 

Substituting for α, β 
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⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=Ω
y
u

x
v

z 2
1  (2.14a) 

This is rotation about z-axis. 

Similarly 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−
∂
∂

=Ω
z
v

y
w

x 2
1  (2.14b) 

⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

−
∂
∂

=Ω
x
w

z
u

y 2
1  (2.14c) 

vorticityu =×∇==Ω
rrr

ω2  

Note: 

1. The rotation we are talking about is the rotation of an infinitesimal element about its axes 

and not the axis about which general rotational motion occurs in vortices or curvilinear 

flow. 

2. Flows outside the boundary layer have almost no vorticity but those in the boundary layer 

have very strong vorticity. 

3. For body to rotate there must be a torque applied by shear forces.  Since there are no 

shear forces in inviscid flow, such flow is irrotational 

 

1.4. Potential Flow 

Irrotational flow is otherwise called potential flow. 

0=×∇== uucurl rrr
ω   

A function whose curl is zero cam always be represented by the gradient of the scalar function 

Because of the vector identity  

( ) 0=φgradcurl ,  

where φ = velocity potential 

φφ ∇== gradvr  (2.15) 
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Continuity equation for incompressible flow 

0=⋅∇ vr  (2.16) 

In view of equation (2.15) 

( ) 02 =∇=∇⋅∇ φφ  (2.17) 

Equation (2.17) is called Laplace’s equation 

In Cartesian coordinate 

02

2

2

2

2

2
=

∂

∂
+

∂

∂
+

∂

∂

zyx
φφφ  (2.18a) 

In cylindrical polar coordinate 

011
2

2

2

2

2 =
∂

∂
+

∂

∂
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∂
∂

∂
∂

zrr
r

rr
φ

θ

φφ  (2.18b) 

Any function φ which satisfies equation (2.18) can be a velocity potential representing an 

irrotational flow fluid 

 

2-D Incompressible Potential Flow 

In a 2-D flow potential function satisfies 

02

2

2

2
=

∂

∂
+

∂

∂

yx
φφ    (2.19) 

where  

y
v,

x
u

∂
∂

=
∂
∂

=
φφ  (2.20) 

For irrotational flow 

0=×∇= urr
ω  

0=
∂
∂

−
∂
∂

⇒
y
u

x
v  (2.21) 
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But 
x

v,
y

u
∂
∂

−=
∂
∂

=
ψψ    (2.22)  

Substituting equation (2.22) in (2.21) 

02

2

2

2
=

∂

∂
+

∂

∂

yx
ψψ  (2.23) 

Comparison of equation (2.20) and (2.22) 

yy
v,

yx
u

∂
∂

−=
∂
∂

=
∂
∂

=
∂
∂

=
ψφψφ  (2.24) 

Equations (2.24) are known as Cauchy-Riemann’s equations. From them, if either the potential 

or stream function is known the other may be computed.  In 2-D polar coordinates the relation 

corresponding to equ. (2.24) is: 

rr
v,

rr
vr ∂

∂
−=

∂
∂

=
∂
∂

=
∂
∂

=
ψ

θ
φ

θ
ψφ

θ  (2.25) 

φ = constant lines are defined by 

0=
∂
∂

+
∂
∂

= dy
y

dx
x

d φφφ  

v
u

y
x

dx
dy

const
−=

∂∂
∂∂

−=
= φ

φ

φ
 

ψ   = constant lines are defined by  

0=
∂
∂

+
∂
∂

= dy
y

dx
x

d ψψψ  

u
v

y
x

dx
dy

const
=

∂∂
∂∂

−=
= ψ

ψ

ψ
 

Thus 

1−=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

== constconst dx
dy

dx
dy

ψφ
 (2.26) 

which is the requirement that lines of constant φ and ψ are orthogonal. 
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FIGURE 

 

Lines of constant φ and ψ  form an orthogonal network. 

From the spacing of φ and ψ lines, velocities can be computed.  Pressure may be determined 

from Bernoulli’s equation.  Since there is no flow through any of the streamlines, anyone of them 

may be considered as possible solid boundary. 

2.6 Flow Nets 

Flow nets are grids of curvilinear square.  These grids are formed by ψ = constant and φ = 

constant lines. 

Procedure for drawing flow nets 

• Fixed solid boundaries are streamlines since they have no flow across them. 

• The axis of symmetry is also a streamline since there is no flow across it. 

• Between the solid boundaries or axis of symmetry and solid boundaries other streamlines 

are sketch by guess work. 

• The set φ = constant lines are drawn in such a way that they cross the streamlines at right 

angle making δψ = δφ. 

The alternative to draw flow nets by trial and error is to use the precise mathematical expression 

for the stream function and velocity potential and plot the flow net exactly. 

Flow Separation 

Whenever divergence of streamline is appreciable the flow tends to separate, e.g. at the approach 

to a stagnation point A′  in the figure below following recession of boundary B′ , and following 

sudden enlargement. 

 

FIGURE 
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The more rapidly streamlines converge the better does the flow net (drawn on the basis that the 

flow is everywhere irrotational) represent the actual flow.  In the zone of flow separation the 

solid boundary is not the outermost streamline.  Thus flow net can indicate region in which 

separation may be expected in flow pass a given geometry and also how boundary may be 

‘streamlined’ to reduce the chances of separation.  Elimination of separation improves the flow 

pattern and reduces the dissipation of energy. 

Obtaining pressures and velocity from flow Nets 

Once velocity and pressure are specified at any point in a flow, velocity and pressure at any other 

point in the flow net can be obtained. 

FIGURE 

 

Flow rate between  and  remains constant 

2211 nqnq Δ=Δ  (2.27) 

2

1
1

2

1
12 s

sq
n
nqq

Δ
Δ

=
Δ
Δ

=  (2.28) 

22 ns Δ=Δ  for square grids 

Obtain pressure at any point by applying Bernoulli’s equation. 

oPqP =+ 2
2
1 ρ   = constant throughout the flow for irrotational flow. 

 

Example 1: 

Check if the function 22 yx=ψ  represents a flow field.  Sketch the field if it does. 

Solution: 

If ψ represents a flow field, the velocity components,  and , derived from it must satisfy the 

continuity equation.  
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yx
y

u 22=
∂
∂

=
ψ   

22xy
x

v −=
∂
∂

−=
ψ   

xy
x
u 4=
∂
∂   

xy
y
v 4−=

∂
∂   

044 =−=
∂
∂

+
∂
∂ xyxy

y
v

x
u   

Thus the given function ψ represents a flow field. It follows that 

x
y

ψ
±=  

 

FIGURE 

 

 

 

 

Example 2: 

The components of the velocity vector of a flow field are  and .  Obtain the 

equation of the streamline. 

Solution: 

The equation of the streamline in two dimensions is 

v
dy

u
dx

=  
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x
dy

y
dx

−
=⇒  

dyydxx =−  

cyx
+=−

22

22
  

222 rcyx ==+  

This is an equation of a circle of radius r and centre at the origin. 

FIGURE 

 

Example 3: 

Deduce the expression for velocity potential for the flow represented by yx=ψ  

Solution: 

x
xy

u =
∂
∂

=
∂
∂

=
φψ  

y
yy

v −=
∂
∂

=
∂
∂

−=
φψ   

dy
y

dx
x

d
∂
∂

+
∂
∂

=
φφφ  

dyydxx −=  

∫∫ −= dyydxxφ  

cyx
+−=

22

22
φ  

cyx
+

−
=

2

22
φ   
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where c is a constant of integration. In order to eliminate c, φ can be zero value at the origin.  

Thus  
2

22 yx −
=φ . 

Example 4: 

Using the orthogonality relationship between φ and ψ, deduce the general equation for the 

gradient of the velocity potential for an irrotational flow represented by 22 yxx +−=ψ . 

Solution: 

x
x

21 −=
∂
∂ψ  

y
y

2=
∂
∂ψ   

0=
∂
∂

+
∂
∂

= dy
y

dx
x

d ψψψ  

( ) 0221 =+− dyydxx   

( )
y

x
dx
dy

2
21 −

−=
ψ

 

Using the relation 1−=
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

ψφ dx
dy

dx
dy  

( )x
y

dx
dy

21
2
−

−=⇒
φ

 

 

Vortices 

Energy variation across curved stream lines 

FIGURE 

Two streamlines on an inclined plane 
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α = angular of plane to horizontal 

Consider steady flow between two curved streamlines. P and V will be functions of r and θ but if 

flow is assumed to be axisymmetric ( 0=∂∂ θ ) then P and V will be function of r only. 

Pressure force acting radically outward 

Pr, Sø – (P + 2p/2rSr)(r + Sr)Sø + 2(P + 1/2
2p/2rSr)Sr Sø 

Simplifying and ignoring third order term we obtain – 2p/∂r r St Sø 

 

Weight forces 

Component of weight in outward radial direction is – pgr ∂ø Sr sin α = pgr ∂2Sø 

Since ∂r sin α = ∂2 

The total of the two forces create the required centripetal acceleration. 

→ - (∂r/rrSr∂ør - pgr∂z∂ø) = pr∂ø∂r v2/r 

Simplifying, we obtain 

dp/dr + pg dz/dr – pv2/v = 0 …………………………………………………..(29) 

therefore dp =  -pgdz + pv2/rdr 

or dp/pg = - dz + v2/grdr ……………………………………………………………(30) 

Bernoulli’s equation states 

E = z + p/pg + V2/2g …………………………………………………………………….(31) 

This is constant along a streamline if flow is frictionless. Differentiating equation  (31) 

dE/dr = dz/dr + 1/pg dp/dr + v/g dv/dr ……………………………………………..(32) 

From equation (30) 

dp/dr = - pg dz/dr + p v2/r …………………………………………………………….….(33) 

substituting equation (33) in (32)) 
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dE/dr = dz/dr + 1/pg (-pg dz/dr + p v2/r) + v/g dv/dr 

dE/dr = v/g(v/r + dv/dr) 

………………………………………………………………………….(34) 

 

This is the expression for the variation of total energy along streamlines included to the 

horizontal. It also applies to streamlines on the horizontal. 

 

Two-Dimensional Curvilinear flow of inviscid flow  

Two-dimensional flow may involve 

Free or Natural cylindrical vortex {both have zero verticity } 

Free or Natural Spiral vortex {both have zero verticity } 

Force4d vortex 

Radial flow 

 

A vortex is a mass of fluid in which the flow is circulating.  

Filament of vortex is the locus of the centres of circulation 
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A sources is a point within a fluid from which fluid issues out symmetrically in all directions. 

Strength q of a sources is the volume of fluid which issued from it in a unit time →Vr=q/2ߨr. 

A sink is the exact opposite of a sources, i.e a point to which the fluid converges uniformly and 

from which fluid id continuously removed.  

 

Note: 

A sowrie or sink is an abstraction which can never be perfectly realized. But it is a useful 

mathematical concepts. 

 

Free cylindrical vortex (a.k.a. potential vortex) 

 

Radial

A

Source

Sink
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A flow pattern in which the streamlines are concentric circles is known as a plane circular vortex 

if the particles of fluid in the flow do not rotate on their own axes, the flows is said to be 

irrotational and the vortex is known as an irrotational or free vortex. 

 

   

 

 

 

 

 

   

 

 

 

 

The circulation around the element area r∂ ø. ∂r is ┌ (+ve ccw) = (v + ∂v )(r + ∂r) ∂ø – vr ∂ø = (r 

∂v + v∂v) ∂ø. 

 

Vorticity, w = ┌/area = v/r + dv/dr as ∂r →0 

For irrotational flow, w is zero 

i.e. v/r + dv/dr = 0 

integrating the expression 

→Ln V + Ln r = A 

Ln(vr) = A 

eLnVr=eA 

r

4

v

4 +

v +
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Vr = c 

V = c/r ………………………………………..(34) 

C is the strength of the vortex. This equation describes the variation of velocity with radius in a 

free, irrotational vortex. 

 

circulation  around a circuit corresponding to a streamline 

 

 rvߨ2 = ┌

 

But vr = constant 

 

→┌ = constant  

 

W = ┌/area = 2ߨrv/ߨr2= 2v/r = 0. 

The centre of free vortex is rotational, the velocity there tends to infinity as well as velocity 

centre is a singular point. 

 

Horizontal variation of pressure 

Applying Bernoulli’s equation to any two concentric streamlines on a horizontal plane. 

 

P1/Pg + V1
2/2g = P2/Pg + V2/2g 

 

P1 – P2/Pg = V2
2 – V1

2/2g 
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Applying equation ………… (34) 

 

V1 = C/r1, V2 = C/r2 

 

→ P1 – P2/Pg = C2/2(1/r2
2 – 1/r1

2) …………………(35) 

 

For compressible flow 

 

P1 / P1 – P2/ P2 = C2/2 (1/r2/2 – 1/r2
1 ……………… (36) 

 

Variation of pressure, P with height and rading from equ. (30), dp = - pgdz + PV2/r dr 

Applying equ. (34) 

 

Dp = - pgdz + pc2/r3 dr 

 

Integrating: P = - pgz – pc2/2r2 + B, Boundary conditions: 

 

P=Po as r → w and z = zo then B1 = Po + pgzo P – Po = g (zo – z) – C2/2r2 …………..(37) 

       P 

 

For flow with a free surface, P=Po on the free surface and equ. (37) becomes zs – zo – C2/2gr2 

…………..(38) 

Where zs = height of free surface at radins r. equ. (38) is the equation of a second order. 
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HYPERBOLOID 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z

z

r

Flui

Datum

Velocity

r

V =
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(ii) Forced vortex 

 

This is a vortex in which the fluid instates as a solid body about an axis due to extreme force. 

Let it be the angular velocity. 

V = wr ……………….. (39) 

W = v/r = dv/dr ………………… (39a) 

 

 

From equ. (34) 

De/dr = v/g (dv/dr + v/r) = v/g (2 w) 

P2,de= ʃ v/g (2w)dr = ʃ2
1 2 w2r/g dr 

 

E2  - E1 = w2/g ( r2
2 – r1

2 

 

 E2 – E1 = V2
2 –V2

1 ……………… (40) 

      g 

 

 

 

 

 

 

r

dr r +

v +dv
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Verticity =  

From equ.(30) 

  dp = - pgdz + pv2  

 

Applying equ. (39) 

dp = -pgdz + Pw-2rdr 

 

Integrating  

P = -  pgz + p  

 

Boundary conditions: 

P = Po + r= ro and z = zo 

= B = Po + pgzo – p   

P- Po = 1/2w-2 (r2- r2
o) – g (z-zo) …………… (41) 

 

If vortex has a free surface P = Po = constant at the free surface  

From equ (41) the profile of the free surface is given as  

Zs = zo + w-2  

      2g 

Which is the equation of a PARABOLOID 
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Free Surface profile 

 

 

 

 

 

Forced vortex about vertical axis formed in liquid in open container 

 

(iii) Combined vortex (Ramkine vortex) 

 

Forced vortex at core surrounded with free cyclical vortex. Let r=a be the Unit of forced vortex 

core. 

The velocity at r=a is v = w- a 

Velocity of the free vortex at r = a is v = c/a  

These two velocities values are the same:  w- = c/a2 ……………. (42) 

w r

r

z

Z

r

z

w
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At r = a, using (41) pressure is  

Pa = 1/2 pw-2a2 – pg (z – z0) + Po ………………. (43) 

Using the equation derived for free vortex 

P1 = - pgz –pc2/2r2 + B1 ……………(44) 

At a, 

B = Pa + pgz + pc2/2a2 

But V = c/a = w-a 

→ c2/a2 = w-2a2 

B1 = Pa + pgz + p/2 w-2a2 …………………(45) 

Substituting for Pa from equ.  (43). 

→ B1 = ½ pw-2a2 – pgz + pgz0 +P0 + ½ pw-2a2  

= pw-2a2 + pgz0 + p0 ……………(46) 

Substituting equ. (46) in equ. (44) the pressure distribution at r > a is 

P = -pgz – P c2/2r2 + pw-2a2 + pgz0 + p0 

Substituting for a from equ. (42) 

P = P0 + pg(z0-z) – p/2 w-2a4/r2 + pw-2a2 

P = P0 + pw-2a2 (1 – a2/2r2) – pg (z –z0). …………………… (47) 

If there is a free surface P = p0 at the free surface, the free surface equ. For r>a is zs = z0 + w-2a2/g 

(1 – a2/2r2) 
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(iv) Radial flow 

 

 

 

 

 

 

 

 

 

 

a

z

a Surface

Datum

Velocity

a

x
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Let the velocity at distance x from the centre be vx. The horizontal flow can be considered as 

curvilinear flow of infinite radins. 

Equation derived for free vortex may then be used. 

   Vr = c 

Differentiating 

Vdr + rdv = o 

v/r = - dv/dr 

de/dr = v/g (- dv/dr + dv/dr) = o 

No change in energy across the streamline. 

Q = source strength = m3/s  

Q = volume flow rate 

= v = q/2rxt 

 

  

 

      v1 = q/2∏x1t    v2 = q/2∏x2t 

 

Applying Bcrnoulli’s equation between any two points 

 

P2/pg + v2
2/2g + z2 = P1/pg + v2

1/2g + z1 

P2 – p1/pg = q2/8∏2t2g  + (z1 – z2) ……………….(48) 

 

(v)  Free spiral vortex 

 

x

X
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This is a combination of free cylindrical vortex and radial flow. 

Applying Bcrnoulli equation between any two points (since E is constant). 

 

p1/pg + v2
1/2g + z1 = P2/pg + v2

2/2g + z2  

But v2
2 = v2

2t + v2
2r and v2

1t + v2
1r 

So P2 – P1 + (z2 – z1) = v2
1t – v2

2t  r v2
1r – v2

2r 

        pg            2g     2g 

 

Considering unit thickness of the flow. 

 

V1r = Q/2∏r1 and v2r = Q/2∏r2 

 

Where Q = flow rate per unit thickness 

 

V1t = c/r1 and v2t = c/r2 

 

P2 – p1 + (z2 – z1) = c2 + (Q/2∏)2 (1/r2
1 – 1/r2

2) ……………..(49) 

    Pg        2g 

 

V1t/v1r = v2t/v2r = 2∏c/Q ………………… (50) 
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θ = tan-1 vt/vr 

 

= constant for all radii 

 

Path of a fluid particle passing through such a vortex is an EQUIANGULAR SPIRAL. 

Examples of free spiral vortex are bath tab vortex, the tornado, etc. 

 

Flow pattern and their combination potential and stream function for simple flow  

Uniform flow parallel to the x-axis 

 

Q = Ax satisfies lapcore equation. 

U = ∂φ/∂x = A 

V = ∂Q/∂y = 0 

 

V

V
Vr
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Using Cauchy – Rieman’s equation 

 

A = ∂φ/∂y 

φ = Ay + f(x) 

 

Where f(x) is an arbitrary function of x  

But ∂φ/∂y = 0 = - ∂φ/∂x = df/dx 

:- f = constant 

 

Take f = 0, for commence 

→ φ = Ay …….. (51) 

Q = Ax ………….(52) 

 

 

 

 

 

 

 

 

 

 

 

 

Increasing
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Uniform flow parallel to the y-axis flowing upward 

  

 

 

 

 

 

 

Uniform flow not parallel to any of the axes 
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Line sink 

 

 

 

 

 

 

Vr = q/2∏r 

 

Where q = strength of source 

Vr = 0 

Vr = ∂φ/∂r = 1/r ∂φ/rθ 

Vθ = 1/r ∂θ/∂r = - ∂φ/∂r 

φp – φA = flow across Ap 

 

= ʃθ0 vr.rdθ = ʃ0
θ q/∂∏ . rdθ 

 

Let φA = 0, at θ = 0, φ = 0 

φ = q/∂∏ θ ………………….. (55) 

vr = ∂φ/∂r 

ɖ - φo = ʃr
o vr dr  

          = ʃr
o q/2∏ dr 

 

0 2A
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 = q/2∏ en (r/ro) 

Let φ = 0 at ro = 1 

Then φ = q/2∏ enr …………… (56) 

 

Flow to a line sink 

 

 

 

 

 

 

 

Vortices 

Free vortex 

       Vr = O, vθ = c/r 

Where c = strength of vortex 

 = ȵ/2∏ 

 

 

 

 

 

 

 

Sin k
  = - q  

 = -q  
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dφ = vrrdθ – vθ dr 

Since vr = 0 

dφ = - vθ dr. 

 

φ = - ʃ vθ dr = - ʃ c/r dr 

 

    = - Γ   ʃ  1dr  

          2∏  r  

 

Let φ = 0 at r = 1 

Then φ = Γ enr ……………. (58) 

 2∏ 

For ccw rotation 

 

Note that the sign of these equation becomes positive for cw rotation, since Γ = - ve for cw 

rotation. 

 

ɖφ = vr dr + rvθ dθ  

 

upon substitution and making φ = 0 at θ = 0 

φ = ʃ Γ/2∏ dθ = Γθ/2∏ ………….. (59) 
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(ii) FORCED VORTEX 

 

  

 

 

 

 

 

 

φ = - ʃ vθdr = - ʃ w-rdr = - ½ w-r2 + const. 

but φ = 0 at r = 0 

:- φ = - ½ w-r2  

For counter clockwise rotation. 

If vortex is cw 

φ = ½ wr2  

 

(iii) RAMKINE VORTEX 

 

Rotational core of rations a 

 

 

 

 

 

V + V
c

dr

∂
θ

A

Γ ABCD = (Vθ + d Vθ)(r + dr)dθ -  Vθrdθ 

=(Vθdr + rdVθ) dθ 

Dividing by area  

Vorticing of = 2ϖ 

Vθ = ϖr,  Vr = 0 

ɖφ = ɖφ/ ɖθ + ɖφ/ ɖr ɖr 

= Vrr ɖθ - Vθ ɖr 

Φ = -Γ/2∏ ln (r/a) 

Φ = 0 at r = a
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Super position 

 

The governing equation for potential flow v-2ø = 0 

Linear partial differential equation 

∂2φ + ∂2φ =0 

∂x2     ∂y2 

Let φ1 and φ2 represent two different solution of lapcole’s equation. Then if 

φ3 = φ1 + φ2 , φ3 is also a solution since  

 

∂2φ + ∂2φ   =  ∂2φ + ∂2φ      =    ∂2φ + ∂2φ = 

∂x2     ∂y2     ∂x2     ∂y2      ∂x2     ∂y2 

→ 1         → 2 

Likewise velocity given by φ1 and φ2 can also be added vertorially to get velocity given by φ3. 

But pressure corresponding to φ1 and φ2 cannot be added to give pressure of φ3 since Bernoulli 

equation is not linear in velocity terms. 

 

Combination of Basic flow pattern  

(a) Uniform rectilinear flow + line source. 

φ = uy + qθ = ur sinθ + qθ  

 2∏     2∏ 

Uniform flow with velocity parallel to x- 
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S = stagnation point at s 

Velocity = 0 

Pt (r,θ) = (q/2∏v , ∏) 

φ = ursinθ + q θ/2∏ 

vr = 1/r ∂φ/∂θ 

vr = 1/r (ursinθ + q/2∏) 

    = ucosθ + q/2∏ 

At s, vr = 0 

:- cosθ = - q 

 2∏ru 

Vθ = - ∂φ/∂r 

     = usinθ 

At s, vθ = 0 

:- usinθ = 0 

y



58 

Compiled by Prof. M. A. Waheed 

    sinθ = 0 

:- θ = ∏ 

 

At s, vθ = vr = 0 

Combining both results at s, θ = ∏ 

cos∏= - q 

             2∏ru 

-1= - q 

       2∏ru 

 

→ r =  q 

         2∏ru 

 

Hence coordinate s (r,θ) = (  q      , ∏) 

                    2∏ru 

 

Substitute in equ. (60) 

φ = ursinθ + qθ/2∏ 

at staymation point 

φs = u, q/2∏u sm∏ + q∏/2∏  

φs = q/2 

 

The streamline φ = q/2 can represent a solid boundary since there can be no flow across a 

streamline. This streamline is called RANLINE BODY or HALF-BODY. 
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As r → w, u = U, v → = O 

Source and sink of numerically equal strength  

 

Source at A and sink at B 

 

 

 

 

 

 

 

 

φ = qθ1/2∏ - qθ2/2∏ = q/2∏ (θ1 – θ2) ……….(61) 

If A is at (-b, θ) and B is at (b, O) 

Then θ1 = tan-1 y/x+b θ2 = tan-1 y/x-b 

 

tan (θ1 – θ2) = tanθ1 – tanθ2 

  1+ tan θ1 tan θ2 

 = y/x+b – y/x-b 

 1 + (y/x+b)(y2x-b) 

  

 = -2by/x2-b2+y2 

 => θ1 – θ2  = tan-1 = ( –2yb) 

               (x2-b2 + y2) 

A

Θ

B

P( )
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 φ = - q/2∏ tan-1 = ( –2yb) 

           (x2-b2 + y2) ……………. (62) 

 

(c) Source and sink of numerically equal strength combined with uniform rectilinear flow. 

 

Uniform rectilinear flow with velocity U parallel to x-axis. 

Source at (-b,O) and sink at (b,o) 

 φ = Uy – q/2∏ (θ2 – θ1) 

 

 = Uy - q/2∏ tan-1 = ( –2yb) 

               (x2 - b2 + y2) …………………..(63) 

 

 

 

 

 

 

 

 

 

 

Stagnation pts s1 and s2 

Line φ = O called Ranline oval can replace the oval with a solid body of that shape. 

S S

Φ 0
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(d) Doublet or Dipole (Source + sink) 

 

If the source and the sink shown in (b) are moved indefinitely closer together but the product 

qx2b is maintained firute and constant the resulting pattern is a doublet or dipole. Angle apis 

becomes zero and the streamline becomes circle tangent to the x-axis. 

 

 

 

 

 

 

 

 

 

 

From equation ………… (62) 

 

Φ → - 1/2∏ [ ] → -  

 

Φ = -    …………………(64) 

 

Where cr = qb/  = constant = strength of doublet 

2bq = constant 

As 2b → 0 

tan θ → 0 
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(e) Doublet + uniform rectilinear flow 

 

Φ = uy -  

= ur sin  -   

 

Φ = (ur – c/r) sin  ……………………(65) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation … (65) show that Φ = 0 when = 0 ,  

 

Let c/u = a2 

r

s
φ 0
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i.e Φ = 0 along x – axis and a radius r = a about origin  equation (65) may be written as  

 

Φ = u(r – a2/r)sin   …………………….. (65a) 

 

This flow pattern represents 2 – D ideal in-viscid flow around a circular cylinder of radius a with 

its centre at the origin. 

 

Velocity at any point in the flow  

 

vr = 1/r 2Φ/2  = u(1 – a2/r2)cos  

 

v2 = - 2Φ/2  = u(1 – a2/r2)sin  

 

At the surface of the cylinder 

 

r = a, and vr = 0, v2 = -2usin   

 

Stagnation point labeled s occur at  = 0 and  

 

Velocity at surface is a maximum at   

 

V =   
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Far upstream where P is unaffected by cylinder, piezometric pressure, = P = Pp + pgz  

Applying Bernoullis equation. 

 

P = ½ pu2 =px + ½ pv2 

 

P = P + ½ pu2 - ½ pv2 

At cylinder surface, v = v� = - 2usin� 

 

P - P = ½ pu2 - ½ p. 4 u2 sin2� 

        = ½ pu2 (1 – 4 sin2�) 

 

P – p = (1 – 4 sin�) 

½ pu2 

 

 

 

 

 

  

 

 

 

 

 

Ideal fl id theor

Q

E perimental
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The pressure distribution is symmetrical about the origin, hence the net force exerted by the fluid 

on the cylinder in any direction is zero capart from a possible huvy only force). This result 

conflicts with practical experience, and the condition is known as d’Alembert’s paradox. 

 

 

 

 

 

 

 

 

 

Real flow around a cylinder (Laminar flow) 

 

 

(f) Free spiral vortex 

 

This is the combination of free cyclical vortex and radial flow. 

Source + cw vortex 

Ѱsv = ѱ source  + ѱ free vortex  

  = q�  + Γ/2Π enr 

     2Π  

  = 1/2Π (q� + Γ enr) ……………………(66) 

 

∂ ∂ ∂
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Ѱsv = �source + � free vortex 

 

=     q�  enr + Γ/2Π � 

       2Π  

  = 1/2Π (q enr  + Γ �) ……………………(67) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(g)  Doublet, uniform rectilinear flow and free vortex 

 

Ѱ = u (r – a2/r) sin� - Γ/2Π en (r/ro) …………….(68) 

 

 

 

S

1

8
7

2
3
4

5
6
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Case (a) Γ = 0 

 

 

 

 

 

 

 

 

 

 

Case (b) Γ = 1 

             4Πau 

 

 

 

 

 

 

Case (c)  Γ = 1 

               4Πau 

 

 

 

ss
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Case (d) )  Γ = > 1 

               4Πau 

 

 

 

 

 

 

 

 

 

 

 

Tangential velocity 

v� = - ∂ѱ 

           ∂r 

    = - {u(1 + a2/r2)sinɵ - Γ/2Π .1/r} 

    = - u(1 + a2/r2)sinɵ + Γ/2Π .1/r 

 

At surface of sylinder, vr = 0 and r = a 

vɵ/r =a = - 2 usinɵ + Γ/2Πa 

 

a
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At stagnation points on cylindrical surface 

Vɵ = 0 :- sinɵ = Γ/4Πau 

 

When Γ/4Πau < 1→ we have two stagnation points. 

 

When Γ/4Πau = 1 we have two stagnation points. 

 

When Γ/4Πau > 1→ vɵ cannot be zero on the cylinder. 

 

On the cylinder surface, vr = 0 

vɵ = total velocity 

p + ½ pv2 = p + ½ p(vɵ)2
r = a  = k  

p = k – ½ p(4 u2sin2ɵ - 2uΓ sinɵ + Γ2/4Π2a2) 

 

p = k1 – ½ p (4 u2sin2ɵ - 2ur/Πa sinɵ) 

 

where k1 = k – ½ pΓ 

       4Π2a2 
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Fx = - ʃ2Π 0 pa cosɵ dɵ 

 

Fy = - ʃ2Π 0 pa sinɵ dɵ 

Integration shown that fx = 0 

Fy = - puΓ  Fy = - ʃ2Π 0 sin2ɵ dɵ = puΓ 

           Π 

 

= Force per unit length acting on the cylinder. 

Fy is perpendicular to direction of uniform rectilinear flow and is generally known as LIFT. 

Fx distsparallel to the direction of uniform rectilinear flow is generally known as MAGNUS 

EFFECT. It was shown later by M.W. kutta and N.E Joukuwsli independently that for a body of 

any shape in 2 –D flow the transverse force per unit length is – puΓ in the plane of the flow and 

is perpendicular to the direction of flow. This result is known as kutta-Joukowski law and is one 

of the most useful results of ideal fluid flow theory.  

 

 

∂θ 

θ

a 

∂F = Pa ∂θ

x

y 
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Examples of Magnus effect. 

 

(i) deflection of golf or tennis or cricket or ping pong balls which are “cut” or “sliced” or 

given a “top” spiri → transverse force. For a sphere, magnus effect is refers to as ROBINS 

EFFECT.  

(ii) Flethner’s rotor-ship which had large vertical cylinder on the deck. 

 

(iii) Lift force on onrcraft wings blade of properties and turbores. 

 

Elementary Aerofoil Theory 

Commonly used terms in reference to aerofoils  

 

Chord line: A straight line in the plane of the aerofoil cross-section, which serves as a datrum. 

It is commonly taken as the line joining the centres of curvature of the leading (i.e front) edge 

and trailing (i.e rear) edge. 

Chord, c: The length of the chord line produced to meet the leading and trailing edges. 

Span b: The overall length of the aerofoil (in the direction perpendicular to the cross 

section). 

Plan Area, s: The area of the projection of the aerofoil on a plane perpendicular to the section 

(or profile) and containing the chord line. For an aerofoil with a cross section constant along the 

span,  plan area = chord x span 

Mean chord: c = s/b 

Aspect ratio, AR or A = Span/mean chord A = b/c = b2/s 

Lift, L:  That component of the total aerodynamic force on the aerofoil, which is 

perpendicular to the direction of the on winning fluid. Lift is not necessarily vertical. 
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Drag, D: That component of the total aerodynamic force on the aerofoil, which is parallel 

to the direction of the oncoming fluid. 

Lift Coefficient, CL: L/( ½ pu2s) 

Drag coefficient CD: D/( ½ pu2s) (U = velocity relative to the aerofoil of the fluid upstream). 

Angle of Attack, x: The angle between the chord line and the direction of the oncoming fluid. 

More significantly, zero angle of attack is sometimes defined as that for which the A lift is zero. 

 

Example 5 

A source with strength 0.2m2/s.m and a vortex with strength 1m2/s are located at the origin. 

Determine the equation for velocity potential and stream function. What are the velocity 

components at x = 1m and y = 0.5m7. 

 

Solution: 

The velocity potential for the source is  

Ѱ = - 0.2 enr m2/s  

 ח2 

 

And the corresponding stream function. 

Ѱ = - q �  = - 0.2 � m2/>  

 ח2            ח2 

The velocity potential for the vortex is  

Ѱ = - 1 � m2/s  

           ח2     

And the corresponding stream function is 
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      Ѱ = - 1 enr m2/s  

 ח2       

   Adding the respective functions gives 

 

 � = - 1 (0.1 � - ½ enr) and 

 ח        

 

 Ѱ = - 1 (0.1 � - ½ enr)  

 ח        

 

The radial and tangential velocity components are  

Vr = - ∂ѱ =  1 

          ∂r     10חr 

Vɵ = - 1/r   ∂ѱ =  1 

               ∂ɵ     2חr 

At point (1, 0.5),  1.11 7m/s 

→ vr = 0.0285 m/s v� = 0.143 m/s. 

 

Example 6 

Distinguish between free spiral and forced vortices give two examples of each. 

Show that the horizontal variation of pressure in a free spiral vortex is given by              po – p = 

c2 + (c/2ח)1 2/r2   

 pg   2g 

Where c = strength of the free vortex  
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  � = source strength  

  po = pressure as r → w. 

Water leaner the guide passages of an inward-flow turbine at a radius of 1.2m. its velocity is than 

2.0m/s at an angle of 70” to the radius. It enters the runner at a radius of 900mm. neglecting 

friction and assuming that the flow is entirely tow-dimensional, calculate the pressure drop 

between the guide passages and entry to the runner.  

 

Solution:- 

See pg . 32/45 x 27 

See pg. 32 

 

 

 

 

 

 

 

 

Vr = v sin�, vt = v cos� 

Ri = 1.2m 

V = 20m/s, � = 70’ 

R2 = 900m = 0.9m 

Vit = 20 cos 70’ = 6.84m/s 

Vir = 20 sin 70’ = 18.794m  

Vt = c/r 

VE
VNr 
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C = rv1t = 1.2 x 684 

C = 8.208 m2/s  

    Also � = 2חrvr  

 x 1.2 x 18.794 ח2 = 

 = 141.70 m2/s 

 

P2 – p1 + (z2 – z1)o = c2 + (ѱ/2ח)1} 2/r2
1 – 1/r2

2} 

Pg     2g 

 

P2 – p1   = pg [c2 + (ѱ/2ח)2] {1/r2
1 – 1/r2

2} 

       2g 

 

  = 1000x9.81 x [8.1082 + (141.7/2ח)2] x {1/1.22 – 1/0.92} 

     2x9.81 

= - 155.55 kpa 

:- P2 – p1 = 155.6 kpa 

 

Example 

 

A two-dimensional flow is described by the velocity components u = 5x3 and v = 15x2y. 

Determine the stream function, velocity and acceleration at point p (x = 1m, y = 2m). 

 

Solution: 
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U = 5x3, v = - 15 x2y 

U = ∂ѱ 

       ∂y 

 

=> ѱ = ʃu dy = ʃ 5x3 dy 

         = 5x3y + f(x) ……………. (1) 

 

V = ∂ѱ 

       ∂x 

 

=> ѱ = ʃ- vdx = ʃ 5x2 ydx 

         = 5x3y +f(y) ……………. (2) 

Equation (1) and (2) 

=> ѱ = 5x3 y 

 

At point p (1,2) 

=> ѱ = 5x13x2  

     ѱ = 10m2/5 

 

=> ux = 5x3  =5x13  

         = 5m/5 

 

=> v = 15x2y  
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      = 15x12x2 

V = - 30m/5 

 

Vortices  

 

Energy variation across curved stream lines 

 

 

 

 

 

 

 

 

 

 

 

 

          

Example 7 

A two-dimensivanl flow is described by the velocity components u = 5x3 and v = - 15x2y. 

Determine the stream function, velocity and acceleration at point p (x = 1m, y = 2m) 

 

Solution: 

θ ∂θ 

V  + ∂v/∂r 
∂θ

V

P 

P + ∂p/∂r ∂r 
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[U] =   

       =  

[U] = 30.41m/d 

[a] = a2
x + a2

y 

 

Ax = u ∂u + v∂u 

            ∂x     ∂y 

= (5x3)(15x2) + (-15x2y)(0) 

    = 75x5 

Ax = u ∂u + v∂u 

            ∂x     ∂y 

 

= (5x3)(-30xy) + (-15x2y)(-15x2) 

    = -150x4y + 225x4y 

   = - 300 + 450 

Ay = 150m/d2 

{a} =  

[a]  = 167 – 71m/s2 
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CHAPTER 3: FLOW IN PIPES 

 

Laminar flow 

In laminar flow, the fluid velocity is relatively low. The fluid particles move in uniform fasluion 

with their paths not crossing one another. 

 

 

 

 

 

 

 

 

 

For laminar flow in pipes, the following expression gives the volume flow rate � 

  

 � = t1 R4 dp 

        8 ml 

Where R = pipe inner radius 

         Dp = pressure difference between the 2 sections considered 

         N = Dynamic viscosity  

         L = length between the section 

The expression is the poiseuille’s formular a proof of which is given below. 

 
P2P1 

r

R

∆p = P1 – P2
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For the cylindrical pipe of radius r. the force it experience dive to the pressure difference is equal 

to the drag hence. 

 

  Dp. חr2 = - u du/dr.   ח rl 

 

In the expression for drag, the negative sign is present because du/dr (the velocity gradient) is 

negative. 

 

At r = R, u = o, hence integration yield  

 

  U = dp (R2 – r2) 

           4ml 

 

Using ∂ = ʃR
∂ u . 2חrdr and substituting for u we finally obtain. 

 

 Q = חR4. Dp 

  8ml 

Mean velocity V = Q = R2Dp 
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 R2      8NLח        

   

Maximum velocity Umax = Dp . R2 (Umax occurs arr = o) 

    4NL 

 

 i.e. Umax = 2V 

Wall friction stress λω = - U (du/dr)r = R 

 

From the expression of pressure force = Drag we obtain πR2 dp = λω. 2πrl 

λω = RDP 

         2l 

From the expression for mean velocity we have  

 

  Dp = V.8NL  

      R2 

  

 Hence λω = R/2L (V. 8ml) 

    R2 

 Or λω = 4nv 

         R 

A non-dimensional friction coefficient f is defined as  

 F = λω =   8nv =   16n = 16 

                   ½ pv2   pv2R    pvd    Re 

Furthermore, the Reynolds number the of flow through a pipe of diameter D is given by  
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  Re = PVD 

           N 

 

Reynolds number is a ratio of mertia to viewer’s forces. When incrtial is small compared to 

viewer forces, the flow is lammar. When the reverse is the cade, the flow is tribulent. In 

calculating when Re < 2000, lammnar flow prevails. 

 

 Turbulent flow in pipes. 

 

For this flow the velocity is relatively large fluid particles cross form layers to layers, i.e. the 

motion of a particular particle when observed in detail is zig-zag overall motion is parallel to 

pipe axis. 

 

The turbulent flow situation occurs more commuuly in Engineering practice then the laminar 

flow situation. It has not be possible so far to derive entirely from first principle the expression 

which govern turbulent flow. A lot of experimentally derived equations are used. Generally it is 

taken that turbulent flow occurs in pipe when Re > 2500 

Transition flow 2000 < Re < 2500 

Lammnar flow Re < 2000 

 

It is known that mechanical vibration encourage the onset of turbulent flow. Furthermore as the 

relative roughness of the pipe increases the tendency for turbulency to occur is high. Relative 

roughness is the average height of protrusion divided by the pipe diameter. 

 

 

 
Microscopic view of a 

length of pipe 

K 

D
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Relative roughness = K/D 

 

New pipes are often taken as smooth and old one as rough. 

 

 

 

 

 

 

 

Velocity gradient (and hence resistance) at the wall is greater for turbulent flow. 

For turbulent flow, the ratio of mean velocity to maximum velocity is approximately 0.8 when 

Re is large. The resistance to flow increases with the mean velocity more rapidly than for lamer 

flow. This is because of eddies in the flow. When the flow is turbulent, there exists a laminar sub 

layer at transition zone and the fully turbulent zone. There are relations for the velocity 

distribution in each layer. These relations are not being presented here as they are applicable to 

boundary layer there. The following expression for friction factor has been obtained empirically 

and they are used when their respective condition holds.  

 

 

 

 

VE 

a 
A 

Laminar flow (Parabolic 

Turbulent flow (Flatter profile) 
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For smooth pipes 

F = 0.316 Re^0.25 for Re < 2 x 10^4 

F = 0.08 Re -¼,  Re < 80,000 

 Given by Blasins 

 Lamnar sub-layer higher than the protrusions. 

Logarithmic resistance: formular from prandti 1/f = 4 log10 (Rejf) – 0.4 

 

Re is as high as 3.4x106. Iterations are carried out with this equation. Note that f = f (Re) for 

smooth pipes.  

 

Rough pipe 

Here protrusions at the wall are higher than the laminar sub-layer. Alternatively it could be that 

Re is very large (up to 108, even if the pipe is new). 

 

Nikuradsegare the relation  

1/f = 4 log (D/2x) + 3.48 

i.e f is independent of Reynolds number note that: 

f = f (Re) = laminar flow 

f = f (Re) – turbulent flow in smooth pipe  

f = f(k/D) – turbulent flow in rough pipe. 

 

Friction factor f 

The friction factor is the ratio of wall shear stress to dynamic pressure 

 f =  λω  
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       ½ pv2  

 

 

 

 

 

 

 

Dynamic pressure = stagnation pressure – static pressure = ½ pv2 

 

Darcy – ileisbach equation  

 

This equation gives the frictional head loss hf for either turbulent or laminar flow in terms of 

friction factor, mean velocity, v, pipe length, L and pipe diameter. 

 

 

 

 

 

 

 

  V = pvd = 900 x 0.691 6 x 75 x 10-3 

   N  0.17 

 

Stagnation Static pressure 

(place as the side) 

Major

L 

Tw 

Tw 

P1 P2
Velocity

P1 > P2∆ 
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Forces balance to give 

 

(p1  - p2) חD2/4 =  λω πDL  

 

Using p1  - p2  = hf pg and λω = f ½ pv2  we can obtain 

hf = 4f v2 L 

        2gD 

 

Example 

 

An oil of specific gravity 0.9 and N = 0.17 kg/ms is pumped through a pipe whose diameter and 

length are 75mm and 750m respectively. The flow rate is 2.75 kg/s. check that the flow is 

larminar calculate the pressure drop in the pipe and the power required to overcome friction.  

 

Solution:   

 Re = pvd 

   N 

Volume flow rate � = ḿ  = πD2 V 

     P 4 

 V = 4 ḿ 

   pπD2  

 

 = 4 x 2.75 
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   900 x π x (75 x 10-3)2   

 

   V = pvd = 900 x 0.691 6 x 75 x 10-3 

   N  0.17 

 

 Re = 274.6. 

 

The flow is larminar  

Forum poissenille’s equation 

  

 Dp = 8NL Ɵ 

             πR4   

 

   dp = 8 x 0.17 x 750 x 2.75 

           π x (37.5 x 10-3)4 x 900 

 

 Dp = 5.02 bar 

  

 Dp = hfpg 

 Hf = Dp/pg 

 

Power  = nighf 

 = pƟghf 
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 = pƟg . Dp/pg 

Power  = ƟDp 

 = 1.53kw. 

 

Water flows through a 50cm diameter pipe which may be regarded as rough. The flow rate is 

0.5m3/s and the head loss per unit length is 0.05m. Taking m = 0.0013kg/ms for water, find the 

relative roughness of the pipe. 

 

Solution: 

 

 Ɵ = 0.5m3/s 

 V = 4Ɵ 

        πD2 = 2.546m/s 

 

 hf = 4f02L 

  2gD 

 hf = 4fv2 = 0.05 

 L 2gD 

 

 = f = 0.0189 

 

 Re = pud = 1000 x 1.5 x 50 x10-1 

     N  1.3 x 10-3 
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  = 9.792 x103 

   

Using charge  

From f – Re – k/y charge 

Relative roughness k/d = 0.057. 

 

Questions: 

 

At one time, water flows through a 25cm diameter pipe at the rate of 160dm3/hr and at another 

time at the rate of 680dm3/hr.  

The viscosity of water is 0.0013kg/ms. Using f = 16/Re for lammar flow and f = 0.064/Re for 

turbulent flow, compare the frictional losses for the two conditions of flow. 

 

An oil water consists of 200 tubes with each tube having an internal diameter of 12mm and a 

length of 3.5m. An oil of specific gravity 0.9 is forced through the tubes at a speed of 1.8m/s. 

The viscosity of the oil varies linearly from the inlet to the outlet. At the inlet the viscosity is 

0.029kg/ms while at the outlet it is 0.1kg/ms. Calculate the power required to pump the oil 

through the cooker. (3.65kg). 

 

Pipe losses 

 

Darcy-weisbach equation gives the lose along the length of the pipe. Losses also occur in pipe 

fittings such as expansions, contractions, elbows, bends, valves, etc.  
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These losses are minor and may be neglected only when the pipe length is short, losses in fittings 

may be major. The losses invariably arise from sudden changes of velocity which generate large-

scale turbulence in which energy is dissipated as heat. 

 

The source of the loss is usually unfired to a very short length of the pipe, but turbulence 

produced may persist for a considerable distance downstream. The total head lost in a pipe may 

be calculated as the sum of the normal friction for the length of pipe considered and the 

additional bosses. 

The losses in fittings are frequently expressed in the form. 

 

  Head lose = k u2/2g  

 

The value of k is practically constant at high Reynolds number. 

 

 

Loss at abrupt enlargement  

 

 

 

 

 

 

 

 

 

P1 

A1 
U1 

B 

G 
F

E(2

(1 C 

P2

A1

U2
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Consider flow in a pipe with sudden enlargement as shown above. Fluid emerging from the 

smaller pipe is unable to follow the abrupt deviation of the boundary, resulting in pockets of 

turbulent eddies formation in the corners and dissipation of energy as heat. 

Velocity u1 and u2 are uniform with u2 < u1. 

The net force acting towards the right of ht control volume BCDEFG is  

 P1A1 + p1 (A2 – A1) –p2A2  

Where pi represents the mean pressure of the eddying fluid over the annular face GD and is 

sensibly equal to p1. The net force on the fluid equals the rate of increase of momentum in that 

direction. 

 

  (P1 - p2)A2 = pQ (u2 – u1)  

   

  P1 - p2  = pQ (u2 – u1) = pu2 (u2 – u1)  

      A2 

From the energy equation for a constant density fluid we have. 

  

 P1/pg + u2/2g + z1 = p2
1/pg +  u2

2 /2g + z2 + hf  

  

 :- hf = p1 –p2 + u2
1 – u2

2 

            Pg   2g 

 

Substituting the expression for p1 – p2  

 

=>  hf = u2 (u2 – u1)  + u2
1 – u2

2 = (u1 – u2)2 
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Since A1 u1 = A2u2 

 

=> hf = u2
1 (1 –A1)2 = u2

2  (A2 – 1)2 

  2g      A2      2g     A1 

  

Exit loss  

 

If A2 → p1 the head loss at an abrupt enlargement tends to u21/2g. This occurs at submersed 

outlet of a pipe discharging into a large reservoir. The loss is usually termed the exit loss for the 

pipe. 

 

 

 

 

 

Loss at sudden contraction, elbours, etc. 

 

 

 

 

 

 

 

(2 d2 -

Area 
Ac

Ac
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In this flow, a vena contractor is formed immediately downstream of the junction. The flow after 

the vena contracta downstream section (1) is uniform. The lost of head is assumed to be given by  

 hf =  u2
2  (A2 – 1)2   = u2

2  (1 – 1)2 

  2g    A2          2g   ԑ 

 

Where Ac represents the cross-selfonal area of the vena contracta and the coefficient of 

contraction, Cc = Ac/A2. The value of Cc depends explicityly on A2/A1. The lost of head can be 

determined using the following expression. 

  Hp = k u2/2g  

 

 

Where the values of k is tabulated as a friction of d2/d1  

d2/d1 0 0.2 0.4 0.6 0.8 1.0 

K 0.5 0.45 0.38 0.28 0.14 0.00 

 

 

 

U2

A2


