
UNIVERSITY OF AGRICULTURE, ABEOKUTA, NIGERIA

DEPARTMENT OF MATHEMATICS

Course Code MTS 461
Course Title GENERAL TOPOLOGY
Number of Units 3 units
Course Duration 3 Hours per week

Course Lecturer Professor J. A. Oguntuase
E-mail: oguntuaseja@unaab.edu.ng

O¢ ce Room B308, COLNAS

Course Outline:
Topological Spaces:De�nition and Examples, Neighbourhood and Neigh-

bourhood systems, Subspaces, Induced Topology. Bases and subbases, Con-
tinuity in Topological Spaces, First and second countable spaces, Separation
axioms : T1; T2; T3; T4 spaces, Hausdor¤, Regular, Normal spaces, Compact-
ness, Connectedness.

Prerequsite: MTS 362 - Metric Spaces

Textbooks

1. James R. Munkres; Topology, 2nd Edition, Prentice Hall Inc., USA,
2000.

2. James Dugundji, Wm. C. Brown Publishers, Dubuque, IOWA, USA,
1989.

3. G. F. Simmons, Introduction to Topology and Modern Analysis, 2nd
Edition, McGraw Hill, New York.

4. Bashir Ahmad, Introduction to General Topology, 2nd Edition, Idea
Publishers, Multan, 2004.

5. Iain Adamson, A General Topology Workbook, Birkhäuser Publishers,
Boston, 1996.

1



6. P. K. Geetha �Topics in Moderm Mathematics, Matscience Report 69,
Institute of Mathematical Sciences, Madras-20, India.

7. J. L. Kelley; General Topology, Springer-Verlag, New York, 1991.

8. Plus any standard text in topology.

What is expected of the Student:
Students are expected to attend all lectures and complete all quizzes,

assignments and examinations. No aids are permitted in quizzes and exami-
nations.

Evaluation of Student Performance:

1. Midsemester Examination: 15% (Date and lenght to be determined).

2. Written Assignments: 10% (Dates to be announced).

3. Quizzes: 5% (Dates not to be speci�ed).

4. Final Examination: 70% (21
2
hrs, date to be determined and �xed by

TIMTEC).

2



1 Topological Spaces:De�nition and Examples

De�nition 1.1 Let X be a non-empty set. A family (class) T of subsets
is called a topology on X if i and only if it satis�es the following axioms:

(i) X; ; belong to T , where ; is the empty set

(ii) the arbitrary union of sets in T belongs to T (arbitrary union)

(iii) the intersection of any two sets in T ( hence �nite sets) belongs to T
(�nite intersection).

The sets belonging to T are called T -open sets and the pair (X; T ) is
called a topological space. When the underlying topology is understood, we
simply speak of �open sets�relative to that topology and usually denote the
corresponding topological space by X:

Example 1.2 Let X be a non-empty set.

(i) If T =fX; ;g ; then T is called the trivial or indiscrete topology and the
corresponding topological space is called the indiscrete space.

(ii) If T is the class of all subsets of X; then T is called the discrete
topology and X; together with T , is called the discrete space.

(iii) Let X = R and T , the class of unions of open intervals on R: Then
T is a topology on R; called the usual topology on R: Similarly, the
two-dimensional space R2; together with the topology constituted by all
the open discs is another topological space.

(iv) Consider X = fa; b; c; d; eg : De�ne

T 1 = fX; ;; fag ; fbg ; fa; b; cgg

T 2 = fX; ;; fag ; fa; c; dg ; fb; c; d; egg

T 3 = fX; ;; fag ; fa; bg ; fa; c; dg fa; b; c; dgg

T 1 is not a topology, since fag [ fbg = fa; b =2 T1g ; while T 2 fails to be
a topology as fa; c; dg \ fb; c; d; eg = fc; dg =2 T 2: However, T 3 is a
topology (verify).
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Example 1.3 Let X be a non-empty set.

(i) If T consists of ; and all those subsets of X whose complements are
�nite, then T is a topology and it is known as a co-�nite topology on
X (verify).

(ii) If T consists of ; and all those subsets of X whose complements are
countable, then T is a topology on X called the co-countable topology
(verify).

Example 1.4 Let X = R and de�ne T to be the class of unions of open-
closed intervals (a; b]: Then T forms a topology on R; called the upper limit
topology on R: Similarly, a class of unions of closed-open intervals [a; b) forms
a topology, called the lower limit topology on R:

Example 1.5 Let (X; d) be a metric space and let the topology be the class
of opoen sets of this metric space. Then such a topology is called a metric
topology generated by the metric d and is denoted by T d:

If X is a space with the metric topology, then X is called metrizable
space. Hence every metric space determines a metrizable space. However, it
is possible to �nd several metrics d on X such that T d = T as shown in
the following example.

Example 1.6 Given a metrizable space (X; T ): Then it is always possible
to �nd several metrics d on X such that T d = T : For example, if we de�ne
d0(x; y) = 2d(x; y): Then d0generates the same topology on X:

Finally, we close theis section by looking at the union and intersection of
two topologies.

De�nition 1.7 Let T 1 and T 2 be two topologies de�ned on X: If each T
1�open subset of X is also T 2�open, i.e. T 1 � T 2; then T 1 is said
to be coarser (smaller, weaker) than T 2 or T 2 is said to be �ner (larger,
stronger) than T 1:
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Remark 1.8 The intersection of two topologies is a topology, but thier union
need not be a topology. To see this, for, X; ; 2 T 1 and T 2 and therefore
belong to thier intersection. Suppose A;B are open sets in T 1 \ T 2: Then,
in particular, A;B 2 T 1 and A;B 2 T 2: Furtheremore, since T 1 and T 2

are topologies, AUB and A \B belong to both T 1 and T 2 and therefore to
their intersection, which proves that T 1 \ T 2 is a topology. This result can
be generalized to any number of topologies and thus \iT i is also a topology
on X: On the other hand, if X = fa; b; c; g ; T 1 = fX; ;; fagg ; and T
2 = fX; ;; fbgg ; then T 1 [ T 2 = fX; ;; fag ; fbgg which is not a topology
since fag [ fbg = fa; bg =2 T 1 [ T2:

2 Neighbourhood and Neighbourhood systems

There are several ways of describing topologies but most of them are not
convenient. in this section we shall present two most popular ways to describe
topologies.

De�nition 2.1 (Neighbourhood at a point) A subset A of a topological space
X is called a neighbourhood (hereafter abbreviated nbd) of a point x 2 X if
there exists an open set G such that x 2 G � A

Remark 2.2 Observe that A is a neighbourhood of a point x 2 X if and
only if x 2 �A:

If A is a neighbourhood of x 2 X; the we may denote A by Nx: Thus, it
is very obvious that there may be several neighbourhoods of the point x 2 X
and so we have the following de�nition:

De�nition 2.3 The class of all neighbourhoods of a point x 2 X is called
the neighbourhood system of x and is denoted by N (x):

Remark 2.4 Observe that each open set containing the point x 2 X is a
neighbourhood of x; usually called the open neighbourhood of x:

Example 2.5 Let x 2 R: Then the interval [x� �; x+ �] is a neighbourhood
of x; since it contains the open interval (x� �; x+ �) which contains x:

Example 2.6 In an indiscrete space X; X is the only neighbourhood of each
of its points. Therefore, for each x 2 X; N (x) = fXg :

5



Example 2.7 Let X = fa; b; cg and T = f;; fag ; fa; bg ; Xg : Then the
neighbourhood systems of a; b; c are
N (a) = ffag ; fa; bg ; fa; cg ; Xg :
N (b) = ffa; bg ; Xg :
N (c) = fXg :

The following result characterizes open sets in terms of neighbourhoods:

Theorem 2.8 A subset A of a topological space X is open if and only if A
is a neighbourhood of each of its points.

Proof. Necessity. Suppose A is open, then x 2 A � A implies A is a nbd
of each x 2 A:
Su¢ ciency. Suppose A is a nbd of each x 2 A: Then there exists an

open set Gx such that x 2 Gx � A: Then

A =
S
fx : x 2 Ag �

S
x2A

Gx � A or A =
S
x2A

Gx

shows that A is open and the proof is complete.
The following properties characterize the neighbourhood systems and may

also be used to de�ne a topology on X:

Theorem 2.9 The following properties characterize the neighbourhood sys-
tems N (x) of x in a space X:

1. N (x) 6= ;. If A 2 N (x); then x 2 A:

2. If A;B 2 N (x); then A \B 2 N (x):

3. If A 2 N (x); A � B; then B 2 N (x):

4. If A 2 N (x); then there exists B 2 N (x) such that A 2 N (y); for each
y 2 B:

Proof. (1) is obvious.
To prove (2), let A;B 2 N (x): Then there exist open sets G1; G2 such

that x 2 G1 � A; x 2 G2 � B:Hence x 2 G1 \G2 � A\B: Since G1 \G2 is
open, this proves that A \B 2 N (x):
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To establish (3), let A 2 N (x): Since A 2 N (x); then x 2 G � A; for
some G open in X: Since A � B; then x 2 G � A � B which implies
x 2 G � B: This implies that B 2 N (x):
To proof (4), since A 2 N (x); then x 2 B � A; for B open in X:

x 2 B � B gives B 2 N (x):If y 2 B; then B � A implies A 2 N (y); for
each y 2 B:
Conversely, de�ne T = fA � X : A 2 N (x); for all x 2 Ag [ f;g ; then

it is easily seen that T is the desired topology on X for which N (x) is the
neighbourhood system at x 2 X:

3 Subspaces induced Topology. Bases and
subbases

3.1 Subspaces induced Topology

Let (X; T ) be a topological space and A � X: It is possible to assign several
topologies to A without reference to T : However, in this section, we are
interested in assigning a de�nite topology to A which A inherits from its
parent space (X; T ): We shall discuss such a topology, called relative (or
induced) topology and some interesting properties of the resulting space,
called a subspace.

De�nition 3.1 (Relative Topology) Let A be a subset of a space (X; TX).
We assign a topology TA to A in the following natural ways:

TA = fA \G : G 2 TXg :
TA is called the relative topology on A and (A; TA) is called a subspace of

of a topological space X; TX):
Claim 3.2 We claim that TA is a topology on A: (verify this claim)
Example 3.3 LetX = fa; b; c; d; eg with TX = f;; fag ; fc; dg ; fa; c; dg ; fb; c; d; eg ; Xg :
Let A = fa; d; eg : Then

TA = f;; fag ; fdg ; fa; dg ; fd; eg ; Ag :
Remark 3.4 A set may be open in the relative topology and may not be open
in the parent topology. To see this, consider the last example and note that
fdg is open
in A but not open in X:
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4 Continuity in Topological Spaces

In this section, we de�ne continuous map in a topological space and prove
its several properties and characterization..

De�nition 4.1 Let (X; �) and (Y; �) be topological spaces an f is a map
from X to Y:Then f is said to be continuous if f�1(G) is open in (X; �)
whenever G is open in (Y; �):

We can give a modi�ed form of this de�nition by considering neighbour-
hoods instead of open sets. Indeed, we have

De�nition 4.2 Let f : X ! Y be a map from a topological space X into a
topological space Y:Then f is said to be continuous at a point x 2 X if and
only if for
each neighbourhood V of f(x) in Y; there exists a neighbourhood Uof

x 2 X such that f(U) v V:

Remark 4.3 Observe that neighbourhood can be replaced by open neighbour-
hood in the above de�nition.

Next, we give some characterizations of continuous map in the following
theorem:

Theorem 4.4 Let f : X ! Y be a map from a topological space X into a
topological space Y:Then the following conditions are equivalent:

(i) f is continuous

(ii) For each open set A in Y; f�1(A) is open in X:

(iii) For each closed set B in Y; f�1(B) is closed in X:

(iv) For each open set A v X; f�1(A) v f(A)

(v) For each open set B v Y; f�1(Bo) v (f�1(B))o

(vi) For each open set C v Y; f�1(C) v f�1(C):

8



Proof. (i) =) (ii):If A is open in Y; then for each x 2 f�1(A); f(x) 2 A:
This implies that A is an open neighbourhood of f(x):
By continuity of f , there exists an open neighbourhood B of x 2 X such

that f(B) v A or B v f�1(A): Thus x 2 B v f�1(A): This implies that
f�1(A) is open in X:
(ii) =) (iii): This follows from the fact that f�1(Y �B) = X � f�1(B);

for every B v Y:
(iii) =) (iv): We know that f(A) v f(A) and so A v f�1f(A) v

f�1(f(A)) or A v f�1(f(A)): By (iii);v f�1(f(A)) is closed in X containing
A:Hence A v f�1(f(A))
or f(A) v f(A):
(iv) =) (v): Given that f(A) v f(A); then take A = X� f�1(Bo) =

f�1(Y �Bo); B v Y: Then f(A) v Y �Bo; f(A) v f(A) gives

A v f�1(f(A)) v f�1(Y �Bo) = f�1(Y �Bo) = A

givesA = f�1(Y�Bo) = X�f�1(Bo) is closed. This implies that f�1(Bo)
is open inX: Clearly, f�1(Bo) v f�1(B) implying that f�1(Bo) v (f�1(B))o:
(v) =) (vi): Take B = Y � C v Y � C: Then Bo = Y � C: Hence

f�1(Bo) v (f�1(B))o gives f�1(Y � C) v (f�1(Y � C))o v (f�1(Y � C))o
= (X � f�1(C))o = X � f�1(C) or f�1(Y � C) v X� f�1(C) or X�

f�1(C) v X � f�1(C) or f�1(C) v f�1(C):
(vi) =) (i): Let x 2 X and V an open neighbourhood of f(x) in Y:

Put C = Y � V: Then C is closed implies that C = C and f(x) =2 C: Then
f�1(C) v f�1(C)
gives f�1(C) v f�1(C) =) f�1(C) is closed. Next, put U = X� f�1(C)

and therefore x 2 U: Then U is an open neighbourhood of x and U = X�
f�1(C) gives
U = f�1(Y � C) = f�1(V ) or f(U) = f f�1(V ) v V or f�1(U) v V:

This proves that f is continuous. Hence the proof is complete.
As an application of (ii) in the above characterization we have:

Theorem 4.5 If f : f : (X; �)! (Y; �) and g : (Y; �)! (Z; �) are continu-
ous, then gof : (X; �)! (Z; �) is continuous.
Proof. Easy and left as an exercise.

Theorem 4.6 A map f : (X; �) ! (Y; �) is continuous if and only if the
inverse image of every member of a base for the topology on Y is open in X:
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Theorem 4.7 A map f : (X; �) ! (Y; �) is continuous if and only if the
inverse image of every member of a subbase S for the topology on Y is open
in X:

Proof. Necessity. Suppose f is continuous. Then the inverse image of all
open sets including the members of the subbase S are open in X:
Su¢ ciency. Suppose f�1(A) 2 � ; for every A 2 S: We shall show that f

is continuous. Let U 2 �: Then by de�nition of the subbase

U = [i(Ai1 \ Ai2 \ ::: \ Aini ); where Aik 2 S:

Hence

f�1(U) = f�1 [i (Ai1 \ Ai2 \ ::: \ Aini )
= [if�1(Ai1 \ Ai2 \ ::: \ Aini )
= [i(f�1(Ai1) \ f�1(Ai2) \ ::: \ f�1(Aini )) 2 � ;

since for each Aik 2 S; f�1(Aik) 2 � : Accordingly, f is continuous and
the proof is complete.

De�nition 4.8 A mapping f : (X; �) ! (Y; �); taking a topological space
(X; �) into a topological space (Y; �) is called an open (respectively closed)
mapping
if f(G) is open (respectively closed) in (Y; �) whenever G is open (respec-

tively closed) in (X; �):

Example 4.9 Let f : R ! R in the usual topology be de�ned by f(x) = 1;
8x 2 R: Then, f is clearly a closed map (why)?. Observe that f is not open
(why)?. Note that f
is continuous.

Example 4.10 The identity map i : (X; �) ! (Y; �) is continuous (respec-
tively open) if and only if � v � (respectively � v �). If i is continuous
(respectively open), then it
is not necessarily open (respectively continuous).

Example 4.11 Let f : R! R in the usual topology be de�ned by f(x) = x2;
8x 2 R: Then, f is not open but continuous as well as closed. To see this,
consider A = (�1; 1); then f(A) = [0; 1) this implies that f is not open

but f is continuous and closed. (verify).
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Remark 4.12 The above examples clearly show that continuous map, open
map and closed map are independent notions.

De�nition 4.13 (Homeomorphism) A map f : (X; �) ! (Y; �); taking a
topological space (X; �) into a topological space (Y; �) is called a homeomor-
phism if and only if
the following two conditions are satis�ed:

(i) f is bijective (that is, one-to-one and onto)

(ii) f and f�1 are continuous (that is f is bicontinuous).

Alternatively, a homeomorphism is a one-one, open, continuous mapping
of one topological space (X; �) onto another topological space (Y; �):
Two spaces are topologically equivalent (homeomorphic), written X ' Y

if there exists a homeomorphism of one space onto the other.
Thus if (X; �) and (Y; �) homeomorphic, their points can be put into one-

to-one correspondence in such a way that their open sets also correspond to
each other.

Example 4.14 (1). Let i : (X; �)! (X; �) be the identity map. then i is a
homeomorphism.
(2). Let f : X ! Y be a bijective map from the discrete space X into a

discrete space Y: Then f is a homeomorphism.
(3). Let X = f1; 2g ; Y = fa; bg ; TX = f;; f1g ; Xg ; TY = f;; fag ; Y g :

Let f : X ! Y be de�ned by f(1) = a; f(2) = b: Then f is a homeomor-
phism.

The following result gives the several characterizations of homeomor-
phism:

Theorem 4.15 Let f : X ! Y be bijective. Then the following are equiva-
lent:

De�nition 4.16

(i) f and f�1 are continuous

(ii) f is continuous and open
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(iii) f is continuous and closed

(iv) f(A) = f(A); A v X:

Proof. Left as exercise.

De�nition 4.17 (Topological Property) A topological property is a property
which, if possessed by a topological space, is also possessed by all topological
spaces homeomorphic to that space.

We shall end this section and in particular, topological property with the
following examples:

Example 4.18 Let X = (�1; 1) and f : X ! R be de�ned by f(x) = tan �x
2
:

Then f is a homeomorphism and hence (�1; 1) ' R: Observe that (�1; 1);R
have di¤erent lenghts, therefore �lengh� is not a topological property. Note
also that X is bounded and R is not bounded, therefore,�boundedness�is not
a topological property. �

Example 4.19 Straightness is not a topological property, for a line may be
bent and stretched until it is wiggly. Being �triangular� is not a topologi-
cal property since a triangle can be continuously deformed into a cicle and
conversely. However, limit point, interior point, boundary, neighbourhood
and �rst/second countability compactness and connectedness are topological
properties.

Some of these topological properties will be studied in the subsequent
sections.

5 Separable Spaces and Some Separation Ax-
ioms

In this section, we will study some separation axioms that will enable us
state exactly that a given topology has a reasonable number of open sets to
serve our purpose.

De�nition 5.1 A subset A of a topological space X is said to be everywhere
dense or dense if and only if �A = X:
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Example 5.2 The set of rational numbers Q is dense in R: Observe that in
the case of the indiscrete space, every nonempty subset is dense in X:

De�nition 5.3 A subset A of a topological space X is said to be nowhere
dense if the interior of the closure of A is empty. That is,

�
�A
�0
= ;:

Example 5.4 Take A = f0 < x < 1; x 2 Qg ; then �A = [0; 1] and so
�
�A
�0
=

(0; 1) 6= ;: Therefore, A is not nowhere dense in R: If we take A =
�
1
n

	
;

then �A =
�
0; 1; 1

2
; :::]

	
and so

�
�A
�0
= ;: Hence, A is nowhere dense in R:

De�nition 5.5 A topological space X is said to be separable if it contains a
countable dense subsets.

Example 5.6 R with the usual topology is separable (since the set Q is
countable dense subset of R). However,R with the discrete topology is not
separable since every subset of R is both opoen and closed relative to the
topology and so the only dense subset of R is R itself and it is not countable.

5.1 Ti � Spaces
De�nition 5.7 (T0�Spaces) A topological space X is called a T0�space if
and only if for every pair of distinct points x; y 2 X; there exists an open set
G containing one of them but not the other.

Example 5.8 (i) Every subspace of a T0�space is also a T0�space. To see
this, if Y is a subspace of a T0�space X; then foe each pair of distinct points
x; y 2 Y; there exists an open set G containing x but not y; since x; y 2 X
also.
(ii) Let X = fa; b; cg and � = f;; fag ; fbg ; fa; bg ; Xg :Then

a; b : a 2 fag ; b =2 fag
b; c : b 2 fbg ; c =2 fbg
a; b : a 2 fag ; c =2 fag :

This shows that X is a T0�space.
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5.2 T1�Space
De�nition 5.9 (T1�Spaces) A topological space X is called a T1�space if
and only if for every pair of distinct points x; y 2 X; ech belongs to an open
set which does
not contain the other. That is, x; y 2 X implies that there exist open sets

G; H such that x 2 G; x =2 H and y 2 H; y =2 G:

Remark 5.10 Every subspace of a T1�space is a T1�space. To see this, let
Y be a subspace of a T1�space X; then x; y 2 Y =) x; y 2 X; hence 9 open
sets G;H such that x 2 G; x 2 H; and y 2 H; y =2 G: This implies that
x 2 G \ Y; x =2 H \ Y and y 2 H \ Y; y =2 G \ Y: This implies that (Y; �Y )
is a T1�space.

Example 5.11 Let X = fa; b; cg and de�ne

� 1 = fX; ;; fagg
� 2 = fX; ;; fag ; fbg ; fcg ; fa; bg ; fb; cg ; fc; agg :

Then (X; � 1) is not a T1�space, since b and c belong only to X which
also contains a; whereas (X; � 2) is not a T1�space.

Remark 5.12 Every T1�space is a T0�space but not conversely. To see
this, take X = f1; 2g and � = f;; f1g ; Xg ; then X is a T0�space but not a
T1�space.

The following result gives a characterization of a T1�space:

Theorem 5.13 A topological space X is a T1�space if and only if every
singleton set in X is closed.

Proof. Necessity Let X be a T1�space . We shall show that each singleton
fxg is closed by showing that X � fxg is open.
Now, let y 2 X�fxg ; x 6= y: Then 9 an open set H such that y 2 H and

x =2 H: Then y 2 H � X �fxg and hence [fH : y 2 X � fxgg = X �fxg :
This implies that X � fxg is open.
Su¢ ciency. Suppose that each fxg is closed. We shall show that X is a

T1�space. Let x; y 2 X; x 6= y: Then X � fxg ; X � fyg are open in X:
Hence, x 2 X � fyg ; y =2 X � fyg and x =2 X � fxg ; y 2 X � fxg : This

implies that X is a T1�space and the proof is complete.
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5.3 T2�Space or Hausdor¤ Space
De�nition 5.14 (T2�Spaces) A topological space X is called a T2�space or
Hausdor¤ space if and only if for every pair of distinct points x; y 2 X; there
exist open
sets G;H such that x 2 G; y 2 H and G\ H = ;:

Remark 5.15 Every subspace of a T2�space is a T2�space . To see this, let
Y be a subspace of a T2�space X: TLet x; y 2 Y: Then x; y 2 X also and
since X is
a T2�space, there exist open sets G;H such that x 2 G; y 2 H and

G \H = ;: But G \ Y; H \ Y are open in �Y
and (G \ Y ) \ (H \ Y ) = Y \ (G \H) = Y \ ; = ;:

Example 5.16 Every metric space is a Hausdor¤ space. To see this, let
(X; d) be a metric space and let x; y 2 (X; d): Now consider the open sphere
G;H with
centres x; y and radius �

3
: Since x 6= y;then d(x; y) = � > 0: Suppose

G \H 6= ;: Let z 2 G \H; then d(x; z) < �
3
; d(y; z) < �

3
and so by triangle

inequality we have

d(x; y) � d(x; z) + d(z; y) < �

3
+
�

3
=
2�

3

which contradicts the fact that d(x; y) = �: Hence G\H = ; and so (X; d)
is Hausdor¤.

Remark 5.17 Every T2�space is a T1�space but not conversely as the fol-
lowing example shows: Let R be with the co�nite topology. Then R is a
T1�space but
not a T2�space.

Example 5.18 LetX = fa; b; cg and � = f;; fag ; fbg ; fcg ; fa; bg ; fb; cg ; fc; ag ; Xg :
Then X is a T2�space as well as a T1�space.

Remark 5.19 Observe from Remarks 5.12 and 5.17 that T2 =) T1 =) T0
but the reverse implications do not hold.
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5.4 Regular and Normal Spaces

De�nition 5.20 A topological space X is said to be regular if for every closed
subset F of X and for every x 2 X; x =2 F; there exists disjoint open sets G;
H such
that x 2 G and F � H:

Remark 5.21 Every subspace of a regular space is regular. To see this, let
X = fa; b; cg and � = fX; ;; fag ; fb; cgg : Clearly, the class % of closed sets
is given
by % = f;; X; fb; cg ; fagg : Then (X; �) is a regular space but it is not a

T1�space since fbg and fcg are not closed sets.

De�nition 5.22 A regular space which is also a T1�space is called a T3�space.

Theorem 5.23 Every T3�space is a T2�space.

Proof. Let X be a T3�space. Since X is a T1�space, if x 2 X; fxg is a
closed set. If x =2 y; then by the regularity of X; there exist open sets G; H
such
that y 2 G; fxg � H and G \ H = ;: This implies that every pair of

distinct elements x; y 2 X satis�es the criterion for a space to be Hausdor¤.
Hence, X is a T2�space and the proof is complete.

De�nition 5.24 A topological space X is said to be completely regular if
and only if for every closed subset F of X and for every x 2 X; x =2 F; there
exists a
continuous real valued function f : X ! [0; 1] such that f(x) = 0 and

f(F ) = 1:

Claim 5.25 Every subspace of a completely regular space is completely reg-
ular.

Theorem 5.26 Every completely regular space is regular.

Proof. Assume that X is completely regular. Then, let F be a closed
subset of X and let x 2 X; x =2 F: Then, there exists a real valued function
f : X ! [0; 1]
such that f(x) = 0 and f(F ) = 1: Since the real line R is Hausdor¤, the

subspace [0; 1] of R is also Hausdor¤. Hence, there exist open sets G; H such
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that 0 2 G; 1 2 H; G \ H = ;: But f�1(G) and f�1(H) are open in X
since f is continuous and their intersection is empty. Hence, X is a regular
space.

De�nition 5.27 A completely regular space which is also a T1�space is
called a Tychono¤ space.

De�nition 5.28 Let F = ffig be a class of functions from any set X to a
set Y: Then F is said to separate points if and only if every pair of distinct
points x; y 2 X;
there exists an fi 2 F such that fi(x) 6= fi(y):

Remark 5.29 Observe that if F = fsin x; sin 2x; sin 3x; ...g is a class of
functions on R; then fi(0) = fi(�) = 0: So F does not separate points of R:

Theorem 5.30 The space %(X;R) of all continuous real valued functions
de�ned on a Tychono¤ space X separates points.

Proof. Let X be a Tychono¤ space and let x; y 2 X: Since X is a T1�space,
fxg and fyg are closed. SinceX is completely regular, there exists a real
valued continous function f : X ! [0; 1] such that f(x) = 0 and f(fyg) =

1 which implies that f(x) 6= f(y): Hence %(X;R) separates points of X.

De�nition 5.31 A topological space X is said to be normal if and only if
for every pair F1; F2 of disjoint closed subsets of X; there exists disjoint open
sets G; H such
that F1 � G and F2 � H:

Example 5.32 Let X = fa; b; cg and � = fX; ;; fag ; fbg ; fa; bgg ; then the
class % of closed sets is given by % = f;; X; fb; cg ; fa; cg ; fcgg : If F1 and F2
are disjoint
closed subsets of X; one of them (say) F1; must necessarily be ;: Hence,

; and X are disjoint and open sets and so F1 � ; and F2 � X: Thus
(X; �) is a normal space. But it is not a T1�space since fag and fbg are

not closed; neither is it regular since a =2 fcg and the only open set
containing c is X itself, which contains a:
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Example 5.33 (i) Let X = fa; b; cg and � = f;; fag ; fbg ; fa; bg ; Xg : Then
X is normal. Observe that X is neither T1 nor regular
(ii) Any space with the discrete topology or trivial topology is normal, for

in the �rst case every subset is open and closed while in the
second case, the only two subsets are X and ;; which are both open and

closed.

Finally, we close this section by de�ning a T4�space.

De�nition 5.34 A normal space which is also a T1�space is called a T4�space.

Theorem 5.35 Every T4�space is a T3�space.

Proof. Let X be a T4�space. Let x 2 X and let F be a closed subset of X
disjoint from x: Since X is T1�space, the singleton fxg is closed. By the
normality condition on X; there exist open sets G; H such that fxg � G;

F � H and G \H = ;: This implies that X is a T3�space.

Lemma 5.36 (Urysohn) Let X be a normal space. If F1 and F2 are closed
subspaces of X; then there exists a real-valued continuous function
f : X ! [0; 1] such that f(F1) = 0 and f(F2) = 1:

Remark 5.37 By virtue of Urysohn�s lemma, a T4�space is a Tychono¤.
Also, since a complete regular space is regular, a Tychono¤ space is a T3�space.

6 Compactness

De�nition 6.1 Let X be a topological space. A class fGig of open subsets
of X is an open cover of X if each point in X belongs to at least on Gi: In
other words, X v [iGi: A subclass of an open cover, which is itself an open
cover is called a subcover.

De�nition 6.2 A topological space X is said to be compact if every open
cover has a �nite subcover. A compact subspace of a topological space is a
subspace which is compact as a topological space in its own right.
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Example 6.3 (i) The class G = f(�n; n) : n 2 Ng and H = f(�2n; 2n) : n 2 Ng
are open covers of the real line R in the usual topology. Observe that H is a
subcover of G:
(ii) The class F =

�
( 1
n
; 1) : n = 2; 3; :::

	
is an open cover of (0; 1) as a

subspace of R:

Example 6.4 Consider the class fBp = p 2 Z� Zg ; where Bp is the open
disc in R2 with centre p = (m;n) and radius r = 1;Z is the set of integers.
This class constitutes an open cover of R2: However, the class of open discs
with centre p and radius 1

3
will not cover R2; since there exist points like

(1
3
; 1
3
) which do not belong to any member of the class.

Example 6.5 1. All �nite spaces are compact and may be referred to as
trivial compact spaces.

2. Every co�nite space is compact

3. R with the usual topology is not compact

4. No in�nite discrete space is compact

Verify all the assertions in Example 6.5.

Theorem 6.6 Any closed subspace of a compact space is compact.

Proof. Let X be compact and let Y be a closed subspace of X: We shall
show that Y is compact.
Let fGig be an open cover of Y: Each Gi; being open in the relative

topology on Y; is obtained as the intersection of Y with an open subsets
Ui of X: Since Y is closed, Y c is open and so Y c together with the Ui�s
constitutes an open cover of X: But X is compact and therefore this open
cover admits a �nite subcover. If Y c occur in this subcover, we omit it
and the remaining sets constitutes a �nite subclass fUi1 ; Ui2 ; :::; Uimg whose
union covers X: By taking the intersections of each of these Uim�s with Y;
we obtain a �nite subcover fGi1 ; Gi2 ; :::; Gimg of the original cover fGig of Y
which implies that Y is compact.

Theorem 6.7 Any continuous image of a compact space is compact.
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Proof. Let f : X ! Y be a continuous mapping taking a compact space X
into an arbitrary topological space Y: Let the image of X under f be f(X):
We shall show that f(X) is a compact subspace of Y: Let fGi : i 2 Ig be an
open cover of f(X):Then each Gi = f(X) \Hi; Hi is open in Y: Since f is
continuous, f�1(Hi) is open in X; for each Hi and ff�1(Hi) : i 2 Ig forms
an open cover of X: By the compactness of X; ff�1(Hi) : i 2 Ig has a �nite
subcover. The union of the corresponding Hi�s, of which these are inverse
images clearly contains f(X) and therefore the associated Gi�s constitute a
�nite subcover of the original open cover of f(X): This implies that f(X) is
compact as a subspace of Y:

De�nition 6.8 A class of subsets G = fGi : i 2 Ig of a nonempty set X is
said to have the �nite intersection property, if every �nite subclass fGi1 ; Gi2 ; :::; Gimg
of G has a nonempty intersection, that is, Gi1 \Gi2 \ ::: \Gim 6= ;:

Example 6.9 LetX = R and G = f:::; (�1;�2); (�1;�1); (�1; 0); (�1; 1); (�1; 2); :::g
is a class of open intervals. Then G has a �nite intersection property. Also,
if X = R and G =

�
(0; 1); (0; 1

2
); (0; 1

4
); :::

	
: Then G has a �nite intersection

property.

Next, we characterize compactness in terms of closed sets as follows:

Theorem 6.10 (Characterization of Compactness)The following state-
ments are equivalent in a space

1. X is compact

2. Every class of closed sets with empty intersection has a �nite subclass
with empty intersection.

Proof. (1) =) (2): Suppose fFig is a class of closed set with \Fi = ;: Then
by De-Morgan�s law X = X �; = X �\Fi = [(X � Fi): This implies that
fX � Fig is an open cover of X: Since X is compact, therefore X has a �nite
cover fX � Fi1 ; X � Fi2 ; :::; X � Fing ; that is, [nj=1(X �Fij) = X: Again by
De-Morgan�s law \nj=1Fij = X �X = ;: This gives (2):
(2) =) (1): This is similar and hence left for the reader to verify.

De�nition 6.11 A subset A of a topological space X is said to be sequen-
tially compact if and only if every sequence in A has a subsequence which
converges to a point in A:
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Remark 6.12 If A is a �nite subset of X; then it is sequentially compact.
For, if fxng is a sequence in A; then at least one of the elements x 2 A
must appear an in�nite number of times in the sequence. Thus fx; x; :::g is a
subsequence of fxng and it converges to x 2 A: Also, the open interval (0; 1)
is not sequentially compact, since the sequence

�
1
2
; 1
3
; 1
4
; :::
	
converges to 0

and so does every subsequence. But 0 =2 (0; 1):

De�nition 6.13 A subset A of a topological space X is countably compact
if and only if every in�nite subset B of A contains a limit point belonging to
A:

Example 6.14 Every closed and bounded interval is countably compact.

Remark 6.15 Note that if B is an in�nite subset of A = [a; b]; then B is
also bounded and hence contains a limit point (by the Bolzano-Weierstrass
theorem which states that every in�nite bounded set bas at least one limit
point) which belongs to A since A is closed. Observe that the open interval
(0; 1) is not countably compact since B =

�
1
2
; 1
3
; 1
4
; :::
	
has only one limit

poin, 0; which does not belong to (0; 1):

Theorem 6.16 Let X be a topological space. If X is compact or sequentially
compact, then it is also countably compact.

Proof. We shall show that compact =) countably compact (= sequen-
tially compact. First, assume that X is compact. Let A be a subset of X
with no limit point belonging to X: Then each point x 2 X belongs to an
open set GX which contains at most one point of A:The class fGXg is an
open cover of X and by the compactness of X; there exists a �nite subcover
fGX1 ; GX2 ; :::; GXmg such that A � X � [mi=1GXi : But each GXi :contains
at most one point of A and hence being a subset of [mi=1GXi can contain at
most m points which in turn implies that A is �nite. Thus, every in�nite
subset of X will contain at least one limit point in X which proves that X is
countably compact. Next, suppose X is sequentially compact and let A be
an in�nite subset of X: Then there exists a sequence fxng 2 A with distinct
terms and this contains a subsequence fxnig ; also with distinct terms. This
subsequence converges to a point x 2 X: Hence, every open set containing
x; contains an in�nite number of points of A: Accordinly, x 2 X is a limit
point of A which implies that X is countably compact.
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Remark 6.17 The continuous image of a sequentially (countably) compact
set is sequentially (countably) compact.

We end this section by looking brie�y at local compactness.

De�nition 6.18 A topological space X is said to be locally compact (brie�y
L-compact) at a point x 2 X if and only if x has a compact neighbourhood in
X:If X is L-compact at every point, then X is called a locally compact space.

Example 6.19 Compact spaces are L-compact. Suppose X is compact. X
is a neighbourhood of each of its points implies X is L-compact.Thus, we
have the following result.

Theorem 6.20 A compact space is L-compact.

Example 6.21 R with the usual topology is L-compact, since for each xR;
we have (a; b) � [a; b]: Thus [a; b] is a neighbourhood of x which is compact
by Heine-Borel theorem. This proves that R is L-compact. But recall that R
is not compact.

Remark 6.22 The above example clearly shows that a locally compact space
may not be compact. Therefore, the class of compact spaces is a subclass of the
class of L-compact spaces. Hence the notion of local compactness generalizes
the notion of compactness.

7 Connectedness

De�nition 7.1 (Connected Space) Let X be a topological space. Then X is
said to be disconnected if and only if there exist nonempty disjoint open sets
G and H such that X = G [H and G \H = ;: X is said to be connected
if and only if it cannot be expressed as the union of two disjoint, nonempty
open (closed) sets:

Example 7.2 1. (0; 1)�
�
1
3

	
is disconnected

2. fxg � R is connected

3. Every indiscrete space is connected
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4. Every discrete space with more than one point is disconnected

5. R with the upper limit topology is disconnected, since fx : x > ag and
fx : x � ag are both open sets which forms a disconnection of R:

Example 7.3 Let X = f0; 1g and � = f;; f0g ; Xg : Then X is connected.
This space is called the Sierpinski space.

Example 7.4 Let X = fa; b; cg and � 1 = f;; fcg ; fa; bg ; Xg and � 2 =
f;; fbg ; fcg ; fb; cg ; Xg Then (X; � 1) is disconnected while (X; � 2) is con-
nected.

De�nition 7.5 A subset A of a topological space X is said to be disconnected
if there exist open sets G; H of X such that A \ G and A \ H are disjoint
nonempty sets whose union is A: We say that G[H is a disconnection of A:

De�nition 7.6 A subset A of a topological space X which is not connected
is said to be disconnected.

The characterizations of connected spaces are given in the following result:

Theorem 7.7 Let X be a topological space, then the followings are equiva-
lent:

1. X is connected

2. The only open and closed subsets of X are ;; X

3. There does not exist a continuous map f : X ! f0; 1g from a space X
onto the discrete space f0; 1g :

Proof. We this theorem by contrapositive method.
� (2) =) � (1): Suppose A � X that is both open and closed, and

A 6= ;; A 6= X: Then X = A [ (X � A) gives a disconnection of X:
� (3) =) � (2): Suppose there is a continuous map f : X ! f0; 1g from

a space X onto the discrete space f0; 1g : Then f�1 f0g and f�1 f1g are open
and X = f�1 f0g[ f�1 f1g : Thus f�1 f0g ; f�1 f1g are the nonempty open
and closed subsets of X:
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� (1) =) � (3): If X = A [ B; A;B are nonempty disjoint open sets.
Then de�ne g : X ! f0; 1g as

g(x) =

�
1 if x 2 A
0 if x =2 A:

Then g is continuous surjective map. This completes the proof.
The above theorem can be stated in the following form:

Theorem 7.8 Let X be a topological space, then the followings are equiva-
lent:

1�X is disconnected

2�There exists a nonempty proper closed and open subset of X

3�There exists a continuous map f : X ! f0; 1g from a space X onto the
discrete space f0; 1g :

Now we study the invariance properties of connected spaces.

Theorem 7.9 Any continuous image of a connected space is connected.

Proof. Let f : X ! Y be a continuous mapping of a connected space X into
an arbitrary topological space Y: We have to show that f(X) is a connected
subspace of Y: Suppose f(X) is disconnected. Then, there exist open sets
G;H of Y such that f(X) � G [ H; G \ H � (f(X))c,f(X) \ G 6= ;;
f(X)\H 6= ;: As f is continuous, f�1 fGg and f�1 fHg are open sets of X
and f�1 fGg[ f�1 fHg = X gives a disconnection of X; which contradicts
the connectedness of X: Thus f(X) is connected as a subspace of Y:

Theorem 7.10 A topological space X is said to be disconnected if and only
if there exists a continuous mapping f of X onto the discrete two-point space
f0; 1g :

Proof. Suppose X is disconnected. Then, there exist open sets G;H such
that X = (X \G) [ (X \H): De�ne the map f by

f(x) =

�
1 if x 2 (X \H)
0 if x =2 (X \G):

24



Clearly, f is continuous and onto since (X\G) and (X\G) are nonempty,
open and disjoint.
Conversely, if there exists such a continuous mapping of X onto f0; 1g ;

then X is disconnected. For, if X were connected, f being continuous, its
image f0; 1g should be connected by the last theorem and f0; 1g is certainly
disconnected.
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