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1 Groups

A binary operation ⋆ on a set G associates to elements x and y of G a third element x ⋆ y of G. For example
addition and multiplication are binary operations of the set of all integers.

Definition 1.1 A group G consists of a set G together with a binary operation ⋆ for which the following
properties are satisfied:

• (x ⋆ y) ⋆ z = x ⋆ (y ⋆ z) for all x, y&z of G (the associative law)

• there exist an element e of G (known as the identity element of G) such that e ⋆ x = x = x ⋆ e, for all
element x of G.

• for each element x of G there exists an element x′ (known as the inverse of x) such that x⋆x = e = x′⋆x
(where e is the identity element of G).

1.0.1 Examples of Groups

1. The set of integers, rational numbers, real numbers and complex numbers are Abelian groups together
with the binary operation of addition.

2. The set of non-zero rational numbers, non-zero real numbers and non-zero complex numbers are are
also Abelian groups with the binary operation of multiplication

3. For each positive integer m ZZm of congruency classes of integers modulo m is a group, where the group
operation is addition of congruence classes.

4. For each positive integer n the set of all singular n× n matrices is a group where the group operation
is matrix multiplication. These groups are not Abelian for n ≥ 2.

1.1 Some elementary properties of groups

In the following the some properties of a group G using multiplicative notation and denoting the identity
element e are given.

Lemma 1.1 A group G has exactly one identity element e such that xe = ex = e for all x ∈ G

Proof
Suppose that f is an element of G with the property that fx = x foe all elements x of G. Then in particular
f = fe = e. Similarly one can show that e is the only element of G satisfying xe = x for all element x of
G.�

Lemma 1.2 Every element x of G has exactly one inverse x−1

Proof
From the axioms of a group, G contains at least one element x−1 which satisfies xx−1 = e and x−1x = e. If
z is any element of G which satisfies xz = e then z = ez = (x−1x)z = x−1(xz) = x−1e = x−1. Similarly if
w is any element of G which satisfies wx = e then w = x−1. In particular we conclude that the inverse x−1

of x is uniquely determined. This ends the proof. �

Lemma 1.3 Let x and y be elements of a group G. Then (xy)−1 = y−1x−1

From the axioms of a group (xy)(y−1x−1) = x(y(y−1x−1)) = x((yy−1)x−1) = x(ex−1) = xx−1 = e.
Similarly (y−1x−1)(xy) = e, and thus y−1x−1 is the inverse of xx−1 as required. �

NOTE In particular that (x−1)−1 = x for all elements x of a group G, since x has the properties
that characterize the inverse of the inverse x−1 of x.
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Give an element x of a group G, we define xn for each positive integer n by the requirement that
x1 = x. Also, we define x0 = e where e is the identity element of the group, and we define x−n to be the
inverse of xn for all positive integers n.

Theorem 1.1 Let x be an element of a group G. then xm+n = xm + xn and xmn = (xm)n for all integers
m and n

Proof
The identity xm+n = xm + xn clearly holds when m = 0 and when n = 0. The identity xm+n = xm + xn

can be shown for all positive integers m and n by induction on n. The identity when both m and n are
negative then follows from the identity x−m−n = x−mx−n on taking inverses. The result when m and n
have opposite signs can easily deduced from that where m and n both have the same sign.
The identity xmn = (xm)n follows immediately from the definitions when n = 0, 1 or −1. The result when n
is positive can be proved by induction on n. The result when n is negative can then be obtained on taking
inverses.�

1.2 Subgroups

Definition 1.2 Let G be a group and let H be a subset of G. We say that H is a subgroup G if the following
conditions are satisfied:

• the identity element of G is an element of H;

• the product of any two elements of H is itself an element of H; the inverse of any element of H is itself
an element of H.

A subgroup H of G is said to be proper if H ̸= G

Lemma 1.4 Let x be an element of a group G. Then the set of all elements of G that are of the form xn

for some integer n is a subgroup of G.

Proof
Let H = {xn : n ∈ ZZ}. The identity element belongs to H, since it is equal to x0. The product of two
elements of H is itself an element of H since xmxn = xm+n for all integers m and n. Also the inverse of an
element of H is itself an element of H since (xn)−1 = x−n for all integers n. Thus H is a subgroup of G as
required.�

Definition 1.3 Let x be an element of a group G. The order of x is the smallest positive integer n for which
xn = e. The subgroup generated by x is the subgroup consisting of all elements of G that are of the form xn

for some integer n

Lemma 1.5 Let H and K be subgroups of G. Then H ∩K is also a subgroup of G.

Proof
The identity element of G belong to H ∩K since it belong to the two subgroups H and K. If x and y are
elements of H ∩K then xy is an element of H, and xy is an element of K, and therefore xy is an element
of H∩K. Also the inverse x−1 of an element x of H∩K belongs to H and to K and thus belong to H∩K.�

NOTE that generally the intersection of any collection of subgroups of a given group is itself a
subgroup of that group.

1.3 Cyclic Groups

Definition 1.4 A group G is said to be cyclic with generator x, if every element of G is of the form xn for
some integer n.
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1.3.1 Examples of Cyclic groups

1. The group ZZ of integers under addition is a cyclic group generated by 1.

2. Let n be a positive integer. The set ZZn of congruence classes of integers modulo n is a cyclic group of
order n withe respect to the operation of addition.

3. The group of all rotations of the plane about the origin through an integer multiple of 2π/n radians
is a cyclic group of order n. This group is generated by an anticlockwise rotation through an angle of
2π/n radian.

1.4 Cosets and Lagranges Theorem

Definition 1.5 Let H be a subgroup of a group G. A left coset of H in G is a subset of G that is of the form
xH, where x ∈ G and

xH = {y ∈ G : y = xh for some h ∈ H}

Similarly, a right coset of H in G is a subset of G that is of the form Hx, where x ∈ G and

Hx = {y ∈ G : y = hx for some h ∈ H}.

NOTE that a subgroup H of a group G is itself a left coset of H in G.

Lemma 1.6 Let H be a subgroup of a group G. Then the left coset of H in G have the following properties:

1. x ∈ xH for all x ∈ B

2. If x and y are elements of G, and if y = xa for some a ∈ H, then xH = yH

3. If x and y are elements of G, and if xH ∩ yH is non-empty then xH = yH.

Proof
Let x ∈ G. Then x = xe, where e is the identity element of G. But e ∈ H. It follows that x ∈ xH hence 1
is proved.

Let x and y be elements of G where y = xa for some a ∈ H. Then yh = x(ah) and xh = y(a−1h) for all
h ∈ H. Moreover, ah ∈ H and a−1 ∈ H for all h ∈ H, since H is a subgroup of G. It follows that yH ⊂ xH
and xH ⊂ yH and 2 is proved.

Finally, suppose that xH ∩ yH is non-empty for some elements x and y of G. Let z be an element of
xH ∩ yH. Then z = xa for some a ∈ H, and z = yb for some b ∈ H. It follows from 2 that zH = xH and
zH = yH. Therefore xH = yH. This proves 3 .�

Lemma 1.7 Let H be a finite subgroup of a group G. Then each left coset of H in G has the same number
of elements as H.

Proof
To be provided during Lecture�

Theorem 1.2 (Lagrange’s theorem)
Let G be a finite group, and let H be a subgroup of G. Then the order of H divides the order of G.

Proof
Each element of G belongs to at least one left coset of H in G and no element of can belong to two distinct
left cosets of H in G (see Lemma 2.6). Therefore every element of G belongs to exactly one left coset of
H. Moreover, each left coset of H contains |H| elements (Lemma 2.7). Therefore,|G| = n|H| where n is the
number of left cosets of H in G. Hence the result follows. �

Definition 1.6 Let H be a subgroup of a group G. If the number of left cosets of h in G is finite then the
number of such cosets is referred to as the index of H in G, denoted by [H : G].
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The proof of Lagrange’s Theorem shows that the index [G : H] of a subgroup H of a finite group G given
by [G : H] = |G|/|H|.

Corollary 1.1 Let x be an element of a finite group G. Then the order of x divides the order of G.

Proof
To be provided during Lecture�

Corollary 1.2 Any finite group of prime order is cyclic.

Proof
To be provided during Lecture�

1.5 Normal subgroups and quotient groups

Let A and B be subsets of a group G. The product AB of the sets A and B is defined by

AB = {xy : x ∈ Aandy ∈ B}

We denote {x}A and A{x} for all x ∈ G and subsets A ⊆ G. The Associative Law for multiplication of
elements of G ensures that (AB)C = A(BC) for all subsets A,B and C of G. We can therefore use the
notation ABC to denote (AB)C and A(BC); and we can use analogous notation to denote the product of
four or more subsets of G.

If A,B and C are subsets of a group G, and if A ⊂ B then clearly AC ⊂ BC and CA ⊂ CB.
Note that if H is a subgroup of the group G and if x is an elements of G then xH is the left coset of H

in G that contains the element x. Similarly Hx is the right coset of H in G that contains the element x.
If H is a subgroup of G then HH = H. Indeed, HH ⊂ H, since the product of two elements of a

subgroup H is itself an element of H. Also, H ⊂ HH since h = eh for any element h ∈ H, where e, the
identity element of G belongs to H.

Definition 1.7 A subgroup N of a group G is said to be a normal subgroup if G if xnx−1 ∈ N for all n ∈ N
and x ∈ G.

The notation ‘N ▹G’ signifies ‘N is a normal subgroup of G’.

Definition 1.8 A non-trivial group G is said to be simple if the only normal subgroups of G are the whole
of G and the trivial subgroup {e} whose only element is the identity element of e of G.

Lemma 1.8 Every subgroup of an Abelian group is a nornmal subgroup

Proof
To be provided during Lecture�

EXAMPLE
Let S3 be the group of permutations of the set {1, 2, 3}and let H be the subgroup of S3 consist-
ing of the identity permutation and the transposition (12). Then H is not normal in G since
(23)−1(12)(23) = (23)(12)(23) = (13) and (13) does not belong to the subgroup H.

Proposition 1.1 A subgroup N of a normal subgroup of G¿ Let x be an element of G. Then xNx−1 = N
for all element x ∈ G

Proof
To be provided during Lecture�

Corollary 1.3 A sugroup N of a group G is a normal subgroup of G if and only if xN = Nx for all element
x of G.
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Proof
To be provided during Lecture�

Lemma 1.9 Let N be a normal subgroup of a group G and let x and y be elements of G. Then (xN)(yN) =
(xy)N

Proof
To be provided during Lecture�

Proposition 1.2 Let G be a group, and let N be a normal subgroup of G. Then the set of all cosets of N
in G is group under the operation of multiplication. The identity element of this group is N itself, and the
inverse of a coset xN is the coset x−1N for any element x ∈ G.

Proof
To be provided during Lecture�

Definition 1.9 Let N be a normal subgroup of a group G. The quotient group G/N is defined to be the
group of cosets of N in G under the operation of multiplication.

Proof
To be provided during Lecture�

EXAMPLE
Consider the dihedral group D8 of order 8, which we represent as the group of symmetries of a square in the
plane with corners at the points whose Cartesian co-ordinates are (1, 1), (−1, 1), (−1,−1) and (1,−1). Then

D8 = {I,R,R2,R3,T1,T2,T3,T4}

where I denotes the identity transformation, R denotes an anticlockwise rotation about the origin through
a right angle, and T1,T2,T3 and T4 denote the reflections in the lines y = 0, x = y, x = 0 and x = −y
respectively. let N = {I,R2}. Then N is a subgroup of D8. The left cosets of N in D8 are N,A,B and C,
where A = {R,R3}, B = {T1,T3}, C = {T2,T4}. Moreover, N,A,B and C are also the right cosets of N
in D8. On multiplying the cosets A,B and C with one another we find that AB = BA = C, CA = AC = B
and BC = CB = A. The quotient group D8/N consists of the set {N,A,B,C} with the group operation
just described.

1.6 Homomorphisms

Definition 1.10 A homomorphism θ : G −→ K from a group G to a group K is a function with property
that θ(g1 ⋆ g2) = θ(g1) ⋆ θ(g2) for all g1, g2 ∈ G, where ⋆ denotes the group operation on G and on K

EXAMPLE
Let q be an integer. The function from the group ZZ of integers to itself that sends integer n to qn is a
homomorphism.

EXAMPLE
Let x be an element of a‘group G. The function that sends each integer n to the identity element xn is a
homomorphism from the group ZZ of integers to G, since xm+n = xmxn for all integers m and n.

Lemma 1.10 Let θ : G −→ K be a homomorphism. Then θ(eG) = eK , where eG and eK denote the identity
elements of the groups G and K. Also θ(x−1) = θ(x)−1 for all elements x of G.

Proof
To be provided during Lecture�
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Definition 1.11 An isomorphism θ : G −→ K between group G and K is a homomorphism that is also a
bijective mapping G onto K. Two groups G and K are said to be isomorphic if there exists an isomorphism
mapping G onto K.

EXAMPLE
Let D6 be the group of symmetries of an equilateral triangle in the plane with vertices X,Y and Z and let
S3 be the group of permutations of the set {X,Y, Z}. The function which sends a symmetry of the triangle
to the corresponding permutation of its vertices is an isomorphism between the dihedral group D6 of order
6 and the symmetric group S3

EXAMPLE
Let R be the group of real numbers with the operation of addition and let R+ be the group of strictly
positive real numbers with the operation of multiplication. The function exp : R −→ R+ that sends each
real number x to the positive real number ex is an isomorphism: it is both homomorphism of groups and a
bijection. The inverse of this isomorphism is the function log : R+ −→ R that sends each strictly positive
real number to its natural logarithm

Definition 1.12 The following are some terminologies regarding homomorphism:

• A monomorphism is an injective homomorphism.

• An epimorphism is a surjective homomorphism.

• An endomorphism is a homomorphism mapping a group into itself.

• An automorphism is an isomorphism mapping a group onto itself.

Definition 1.13 The kernel Kerθ of the homomorphism θ : G −→ K is the set of all elements of G that
are mapped by θ onto the identity element of K.

EXAMPLE
Let the group operation on the set {+1,−1} be multiplication, and let θ : ZZ −→ {+1,−1} be the homo-
morphism that sends each integer n to (−1)n. Then the kernel of the homomorphism θ is the subgroup of
ZZ consisting of all even numbers.

Lemma 1.11 Let G and K be groups, and let θ : G −→ K be a homomorphism from G to K. Then the
kernel kerθ of θ is a normal subgroup of G.

Proof
To be provided during Lecture�

NOTE
If N is a normal subgroup of some group G then N is the kernel of the quotient homomorphism
θ : G −→ G/N that sends g ∈ G to the coset gN . It follows therefore that a subset of a group G is a normal
subgroup of G if and only it it is the kernel of some homomorphism.

Proposition 1.3 Let G and K be groups, let θ : G −→ K be a homomorphism from G to K, and let N
be a normal subgroup of G. Suppose that N ⊂ kerθ. Then the homomorphism θ : G −→ K induces a
homomorphism θ : G/N −→ K sending gN ∈ G/N to θ(g). Moreover

Proof
To be provided during Lecture�

Corollary 1.4 Let G and K be groups, and let θ : G −→ K be a homomorphism. Then θ(G) ∼= G/kerθ.
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Proof
To be provided during Lecture�

1.7 The Isomorphism Theorems

Lemma 1.12 Let G be a group, let H a subgroup of G, and let N be a normal subgroup of G. Then the set
HN is a subgroup of G, where HN = {hn : handn ∈ N}.

Proof
To be provided during Lecture�

Theorem 1.3 (First Isomorphism Theorem)
Let G be a group, and let H be a subgroup of G, and let N be a normal subgroup of G. Then

HN

N
∼=

H

N ∩H

Proof
To be provided during Lecture�

Theorem 1.4 (Second Isomorphism Theorem)
Let M and N be normal subgroups of a group G, where M ⊂ N . Then

G

N
∼=

G/M

N/M

Proof
To be provided during Lecture�

1.8 Group Actions, Orbits and Stabilizers

Definition 1.14 A left action of a group G on a set X associates to each g ∈ G and x ∈ X an element g ·x
of X in such a way that g · (h · x) = (gh) · x and 1 · x = x for all g.h ∈ G and x ∈ X, and 1 denotes the
identity element of G

Given a left action of a group G on a set X, the orbit of an element x of X is the subset {g · x : a ∈ G}
of X and the stabilizer of x is the subgroup {g ∈ G : g · x = x} of G

Lemma 1.13 Let G be a finite group which acts on a set X on the left. Then the orbit of an element x of
X contains [G : H] elements, where [G : H] is the index of stabilizer H of x in G.

Proof
To be provided during Lecture�

1.9 Conjugacy

Definition 1.15 Two elements h and k of a group G are said to be conjugate if k = hhg−1 for some g ∈ G

NOTE

• It can readily be verified that the relation of conjugacy is reflexive, symmetric and transitive and
therefore an equivalence relation on a group G.
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• The equivalence classes determined by this relation are referred to as the conjugacy classes of G.

• A group is a disjoint union of its conjugacy classes. The conjugacy class of the identity element contains
no other element of G.

• A group G is Abelian if and only if all its conjugacy classes contain exactly one element of the group
G.

Definition 1.16 Let G be a group. The centralizer Z(h) of an element h of G is the subgroup of G defined
by Z(h)={g ∈ G : gh = hg}.

Lemma 1.14 Let G be a finite group and let h ∈ G. Then the number of elements in the conjugacy class
of h is equal to the index [G : Z(h)] of the centralizer Z(h) of h in G.

Proof
There is a well-defined function f : G/Z(h) −→ G defined on the set G/Z(h) of left cosets of Z(h) in G,
which sends the coset gZ(h) to ghg−1 for all g ∈ G. This function is injective and its image is the conjugacy
class of h. The result follows. �

Let H be a subgroup of a group G. One can easily verify that gHg−1 is also a subgroup of G for
all g ∈ G, where gHg−1 = {ghg−1 : h ∈ H}

Definition 1.17 Two subgroups H and k of group G are said to be conjugate if K = gHg−1 for some g ∈ G

given any element h ∈ H there exist uniquely determined integers such that h = m1b1 +m2b2 + . . .+mrbr

given a
The relation of conjugacy is an equivalence relation on the collection of subgroups of a given group G.

1.10 Finitely Generated Abelian groups

Let H be a subgroup of additive group ZZn consisting of all n-tuples of integers with the operation vector
addition. A list b1, b2, . . . , br of elements of ZZn is said constitute an integral basis (or ZZ-basis) of H if the
following conditions are satisfied:

• the element m1b1 +m2b2 + . . .+mrbr belongs to H for all integers m1,m2, . . . ,mr

• given any element h ∈ H, there exist uniquely determined integers m1,m2, . . . ,mr such that h =
m1b1 +m2b2 + . . .+mrbr

Note that the elements b1, b2, . . . , bn of ZZn constitute an integral basis of Zn if and only if every elements
ZZn is uniquely expressible as a linear combination of b1, b2, . . . , bn with integer coefficients. It follows from
basic linear algebra that the rows of an n × n matrix of integers constitute an integral basis of ZZn if and
only if the determinant of that matrix is ±1.

Theorem 1.5 Let H be a non-trivial subgroup of ZZn. Then there exists an integral basis b1, b2, . . . , bn of
ZZn, a positive integer s where s ≤ n and positive integers k1, k2, . . . , ks for which k1b1, k2b2, . . . , ksbs is an
integral basis of H.

Proof
To be given during lecture. �
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