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 1.0 ALGEBRAIC   STRUCTURE 

Let A be a non-empty set, a binary operation on A is a function  כ such that  ܣ כ ՜ ܣ ǡݔ  is a rule by which every pair of elements כ ,That is. ܣ ݔ  yield a third element z in A, viz  ܣ ߳ ݕ כ ݕ ൌ  . ݖ

Such a set is said to be closed under  כ. 

EXAMPLE 1.1.0   

The usual arithmetic operations +, - ,x ,÷  are binary operations on the Real set.  Similarly, the 

operations ׫ǡתǡ ο are binary operations on the power set  P(A) . 

By an algebraic structure (or algebraic system ) we mean  a non-empty set  S, equipped with one 

or more binary operations. We denote an algebraic structure consisting of set S and a binary 

operation כ by the ordered pair (S, כ). Similarly, an algebraic system consisting of set S and two 

operations כ and o shall be denoted  by the ordered triple (S, כǡ o ). 

EXAMPLE: 1.1.1  

(Գ, +), (ॴ, +), (Է, Ǥ), (Թ, +, .) (ԧ, +, .) (p(X), ׫) and (P (x), ת ,׫ ) are all algebraic systems. 

For any binary operation * defined on a set S,  

1. If x * y = y * x for all x,y א X, then * is said to be communicative. 

2. If x * (y*z) = (x*y)*z for all x,y,z א S then * is said to be associative. 

3. If there is an element e א S such that e*x = x*e = x for all x א S then e is called the 

identity element (or unity element) of S. In particular e*e = e. e.g. 0 and 1 are the identity 

elements of IR with respect to + and . operations respectively since for any x א IR,  x + 0 = 0 + x 

= x, x.1 = 1.x = x. 

4. if there is an element y א S such that x*y = y*x = e for x א S, then y is called the inverse 

of x in S w.r.t*, where e is the identity element of S. 

5. If * and o are operations defined on S we say that o is left distributive over * if  

x o (y*z) = x o y * x o z for all x,y,z א S   



 

 

and o is right distributive over * if 

 (x*y) o z = x o z * y o z for all  x,y,z א S. 

If o is both left and right distributive over * we simply say o is distributive over *. 

 

1.2 THE STRUCTURE OF GROUPS 

1.2.1 DEFINITION AND EXAMPLES OF GROUPS 

An algebraic structure (G,*) is called a group if it satisfies the following properties  

1. * is closed in G 

2. * is associative 

3. the identity element exists  

4. the inverse of each element of G exists. 

A system satisfying only properties 1 and 2 is called a semi group. 

A semi-group in which the identity element exists is called a monoid. 

Now, if in addition to properties 1 – 4, we also have  

5. * is commutative, then (G, *) is called an abelian or commutative group. 

EXAMPLE 1.2.1.0 

It can easily be verified that (ॴ, +), (Թǡ ൅ሻǡ ሺԧǡ ൅ሻ and ሺԹ*, .) are all abelian groups. (Գ, +) is 

not a group since it has no inverse for its elements. 

EXAMPLE 1.2.  

Let G =  { f1,f2ǡ ǥǡ F6}  and x א R Ȃ {0.1} where f1(x) = x, f2(x) = 
ଵ୶,  f3(x)= 1 Ȃ x 

 f4(x) = 
୶ିଵ୶ ,  f5 (x) = 

୶୶ିଵ, f6(x) = 
ଵଵି୶ 



 

 

If we define the binary operation o to be that of functional composition, then (G,o) is a non-

abelian group as can be deduced from the composition table below. 

0 f1 f2 f3 f4 f5 f6 

f1 f1 f2 f3 f4 f5 f6 

f2 f2 f1 f6 f5 f4 f3 

f3 f3 f4 f1 f2 f6 f5 

f4 f4 f3 f5 f6 f2 f1 

f5 f5 f6 f4 f3 f1 f2 

f6 f6 f5 f4 f1 f2 f3 

(G, 0) is not abelian since for example  

(f2 o f6) x = f2 (f6(x)) = f2ቀ ଵଵି௫ቁ =  
ଵଵ ሺଵି௫ሻΤ   =  1 – x = f3(x) 

But  (f6 o f2)(x) = f6(f2(x) = f6ቀଵ௫ቁ = 
ଵଵି భೣ  =   

ଵ௫ିଵ = f5(x) 

Which implies  f2 o f6 ≠ f6  o f2 

EXAMPLE 1.2.1.2 

If we define addition modulo n (i.e. +n) on the set ॴn as aത +  ത =  ൅ aതതതതതതത =  ത for all a,b ߳  ॴn 

Then (ॴn, +n) forms a group called the group of residue classes modulo n. 

 Similarly, it can be shown that the set of residues (or representatives) { 0,1,2,…,n-1} under 

addition modulo n defined by  a +n b = c for all a,b in the set  (where c is the remainder when a + 

b is divided by n) is also a group. It is called the “group of integers modulo n.” 

1.2.2 ELEMENTARY PROPERTIES OF A GROUP 

For any group (G, *) the following properties are satisfied: 

1. The identity element of the group is unique  

2. Each element in the group has a unique inverse  



 

 

3. The inverse of the inverse of an element is the element itself i.e. if a ߳G, then (a-1)-1 = a  

4. If a,b ߳  G then (ab)-1 = b-1a-1. This is called the reversal law. 

5. If a,b,c are elements of a group (G, *) then the cancellation laws hold. That is  

 i. a*c = b*c implies a = b (Right cancellation law) 

 ii.  c*a = c*b implies a = b (Left cancellation law) 

6. If a,b ߳  G, then there exists unique elements x and y in G such that ax = b and ya =b have 

unique  solutions in (G, *). 

1.2.3 FINITE AND INFINITE GROUPS 

If a group consists of a finite number of elements, it is called a finite group, otherwise the group 

is infinite.  E.g.  (G, .) in example 1.2.1.1 is finite while (ॴ, +) is infinite. 

1.2.4 ORDER OF A GROUP AND OF ITS ELEMENTS   

If a group (G, .) is finite, the  number of elements in the group is called the order of the group 

denoted |G| or o(G). 

If x is an element of (G, o) finite or infinite then the order of x is the least positive integer n such 

that xn = e. e.g. the order of the group ({1,a,a2,…,a5},.)  

 

1.3 SUBGROUPS AND COSETS  

A non-empty subset H of a group (G, .) is called a subgroup of (G, o) if (H, o) is itself a group. 

We call H a complex. 

EXAMPLE 1.3.0 

(ॴ, +) is a subgroup of (Է, +) and (Է, +) is a subgroup of (Թ, +). 



 

 

Obviously, any group (G, *) has at least two subgroups viz (G, *) and ({e}, *) where e is the 

identity element in G. These two subgroups are called trivial subgroups of (G,*). Any other 

subgroup of (G,*) is non-trivial. 

Also, the intersection of two subgroups of (G,*) is also a subgroup. However if (H1, *) and (H2, 

*) are subgroups of (G,*) then (H1UH2,*) is a subgroup of (G,*) iff H1 c H2 or  H2 c H1. Also if 

(H1, *) is an arbitrary indexed collection of subgroups of (G, *) then (H1, *) is also a subgroup. 

THEOREM 1.3 

The necessary and sufficient conditions that a complex H is a subgroup of a group (G, *) are: 

(i) H ≠ ׎ 

(ii) for every a,b in H, ab-1 is also in H. 

1.3.1 CENTRE OF A SUBGROUP 

The centre of a subgroup (G,*) denoted c(G) is the subset of G containing those elements which 

commute with all elements of G i.e. c(G) = {x ߳ G: xg = gx for all g ߳ G}. 

1.3.2 COSETS OF A SUBGROUP 

If (G, *) is a group and (H, *) is its subgroup, then the collection 

 H*a = { h*a: a ߳  G, h ߳  H} is called the right Coset of H in G, and  

 a*H = {a*h: a ߳  G, h ߳  H} is called the left Coset of H in G. 

If e is the identity element in (G, *), then since He = eH, H is itself  a Coset. 

For any Cosets aH and bH where a,b߳G  

aH = bH iff a߳ bH. If aבbH then aH ≠ bH. 

Hence, two left (or right) Cosets are either identical or disjoint; and so the left (or right) Cosets 

of a subgroup H of G forms a partition of G.  

The number of left (or right) Cosets of H in G is called the index of H in G, denoted (G:H). 



 

 

EXAMPLE 1.3.2.1 

Find the Cosets of the additive subgroup (2 ॴ, +) of the additive group (ॴ, +). 

Solution: 

The set ॴ = {…, -3, -2, -1, 0, 1, 2, …} 

 2 ॴ = {…, -6, -4, -2, 0, 2, 4, …} 

 If a ߳ ॴ, then the Cosets of 2ॴ  in ॴ corresponding to a is 2ॴ + a. Since the group is abelian ॴ + a = 

a + ॴ, therefore 

 2ॴ + 0 = {{…, -6, -4, -2, 0, 2, 4, …} 

  = 2ॴ = 2ॴ + 2 = 2ॴ + 4 …  etc. 

 2ॴ  + 1 = {…, -5, -3, -1, 1, 3, 5, ... } 

  = 2ॴ + 3 = 2ॴ + 5 = … etc 

Hence the distinct Cosets of (2ॴ, + ) in (ॴ, +) are 2ॴ and 2ॴ + 1; obviously ॴ = 2ॴ U (2ॴ + 1) 

THEOREM 1.3.1 

The order of every subgroup (H, *) of a finite group (G, *) is a divisor of the order of the group. 

PROOF 1.3 

Suppose the order of (G, *) is n and the order of the subgroyup (H, *) is m, then by considering 

the set of all right cosets of H in G where H = { h1,h2, …, hm}, since G is finite, the number of 

right cosets of H in G is finite. Let the number of (distinct) right cosets be k.  

Since the right cosets form a partition of G, the number of elements in G (i.e. n) will be equal to 

the number of elements in all the k right cosets having m elements each. Therefore, 

   N = m.k ฺ  k = n  Τ  

1.3.3 NORMAL SUBGROUP 



 

 

If (H, *) is a subgroup of (G, *) we say H is normal in G denoted H ο G if for all g Ԗ G, gHg-1 = 

H. 

From this definition we can verify that the subgroup of every abelian group is normal. Also, H is 

normal (invariant) if every left cosets of H is also a right coset of H in G. subgroup H, we can 

easily talk of cosets of H in G without specifying whether right or left. 

The trivial subgroups are obviously normal, and so any group having no normal subgroup except 

the trivial ones is called a simple group. 

EXAMPLE 1.3.3.1 

If in example 1.2.1.1, we define a subset H = {f1,f4,f6} then (H, o) is a normal subgroup of (G,o) 

since  fk oH = {f1,f4,f6} = Hofk for  Thus in a normal  

k = 1,4,6. 

Similarly, the subgroup (2ॴ, +) ∆ (ॴ, +), and the subgroup (R, +) ∆ (ԧ, +). 

1.3.4 FACTORS OF QUOTIENT GROUP 

If (H, *) is a normal subgroup of (G, *) and we define multiplication of cosets as: 

 Ha  ٘  Hb   =  Ha ٘  b 

then  the set of all cosets of H denoted G/H forms a group under this composition, and is called 

the factor group (or quotient group) relative to H, viz (G/H, ٘). 

Similarly, if we define addition of cosets as Ha + Hb = Ha+b then (G/H, +) is quotient group. 

EXAMPLE 1.3.4.1 

The set of cosets R/ ॴ is a quotient group  w.r.t. multiplication. 

 

1.4 GROUP HOMOMORPHISMS 



 

 

A mapping f:G ื  G! from a group (G, ٘ ) into another group (G!, *) is called a homomorphism 

if for all x,y ߳G. 

 F(x٘ y) = f(x)*f(y) 

where ٘  and * are the binary operations in G and G! respectively. 

Thus, we see that homomorphism is an operation preserving mapping. 

EXAMPLE 1.4.1 

Let (R+,*) be the group of all positive real numbers under multiplication and let (R, +) be the 

group of all real numbers under addition. 

If we define  f: R+ ื  R by  

  f(x)  =  log10
x   

then f is a homomorphism since for any x,y߳ R+  

  f(x,y)  =  log (x,y) 

  =  log (x) + log (y) = f(x) + f(y) 

EXAMPLE 1.4.2 

Suppose G is a group and N ο G and we define the mapping f: G ื  G/N by  

 f(g) = Ng for all g߳ G 

then f is a homomorphism of G onto G/N since  

 f(g1.g2) = N(g1.g2) for g1,g2߳G 

  = Ng1 Ng2 = f(g1)f(g2). 

1.4.1 KERNEL OF HOMOMORPHISM 



 

 

If f is a homomorphism of G into G! then Kernel of f (denoted Ker. (f)) is a subset of G 

containing those elements which are mapped by f to the identity element of G!. i.e. Ker = {g߳ G: 

f(g) = e! where e! is the identity element of G! } 

1.4.2 ISOMORPHISM AND OTHER HOMOMORPHISMS 

A homomorphism f:G ื   G! is called an epimorphism if f is onto i.e. if f(G) = G!  

 If f: G ื G! is one-to-one then f is called a monomorphism. 

A homomophism f: G ื   G! is called an isomorphism if f is one-to-one and onto, thus we say G 

is isomorphic (denoted ؆) to G!.  

A homomorphism f: G ื  G (i.e. G into itself) is called an endomorphism. 

 If f: G ื G is isomorphic and onto then f is called an automorphism. 

EXAMPLE 1.4.2.1 

Let f: ॴ ื  Թ - {o} defined by  

 F(n) = ሼିଵ ௜௙ ௡ ௜௦ ௔௡ ௢ௗௗ ௜௡௧௘௚௘௥ଵ ௜௙ ௡ ௜௦ ௔௡ ௘௩௘௡ ௜௡௧௘௚௘௥  

Then f is clearly a homomorphism, and  

 Ker.(f) = {n߳ॴ : f(n) = 1} = ॴe (even integers) while the direct image f(ॴ) = {1, -1} 

REMARKS 

If f:G ืG! is a homomorphism with kernel K then k οG. Also if e and e! are the identity 

elements of G and G! then 

(i) f(e) = e!  

(ii) f(a-1) = [f(a)]-1 for all a ߳  G 

(iii) if the order of a ߳G is finite and divides the order of a. 

THEOREM 1.4.2.1 (Fundamental Homomorphism) 



 

 

If f: G ืH is a homomorphism of group G into group H then: 

i. The Ker. (f)  = N is a normal subgroup of G 

ii.  the mapping ׎: f(G) ื G/N defined by ׎ (f(g)) = Ng is an isomorphism. 

PROOF 

We first show that N (i.e. Ker (f)) is a normal subgroup of G. N ≠ ׎ since it contains e the 

identity of G. Let n1,n2 ߳N, then 

 f(n1) = f(n2) = e!  

Also since f is a homomorphism  

 f(n1n2
-1) = f(n1)f(n2

-1) = f(n1) [f(n2)]
-1 

 = e1e-1 = e1 

 ฺ n1n2
-1 ߳N. Hence N is a subgroup. 

Now take n߳N, and any g߳G, then 

 f(gng-1) = f(g) f(n) f(g-1) 

 =  f(g) e! [f(g)] -1 

 =  f(g) [f(g)]-1 = e-!  

 ฺ gng-1 ߳N, thus N ο G 

Now the homomorphism f induces map ׎ on G/N. 

Next, we prove that ׎ : f(G) ื  G/N is a mapping. 

It is conceivable that for g1 ≠ g2   

 F(g1) = f(g2). Thus, consider  

 f(g1g2
-1) = f(g1) f(g2

-1) 



 

 

  =  f(g1) [f(g2)]
-1 

  = f(g2) [f(g2)]
-1 = e!   

Hence  g1g2
-1߳N  ฺ   g1߳Ng2   

But g1߳Ng1 also. And since the right cosets form a partition, hence 

 Ng1 = Ng2 

ฺ  (f(g2))׎ = (f(g1))׎  ฺ   is a mapping ׎  

We now show that ׎ is isomorphic 

(i) ׎ is one-to-one, for if ׎ (f(g1)) = ׎(f(g2))  then g1 = ng2 for some n߳N. 

 ฺ  f(g1) = f(ng2) 

  = f(n) f(g2) = e!. f(g2) = f(g2) 

(ii) ׎ is a homomorphism for  

 [of f [Homomorphism]    (f(g1g2))׎ = (f(g1) f(g2)) ׎ 

  = Ng1g2   [Definition of ׎] 

  = Ng1g2   [G/N is quotient] 

 (f(g2))׎  (f(g1))׎ =  

Thus (i) and (ii) show that ׎ is an isomorphism since ׎ is onto by the definition of factor group 

(proof completed). 

EXAMPLE 1.4.2.2  

From example 1.4.2.1 above, we have f: (ॴ, +) ื  (Թ+,.), Ker. (f) = ॴe, f(ॴ, +) = ({-1,1}, .). 

Hence, ॴ/Ker (f) = ॴȀॴe = {  ॴe, ॴo} 

Theorem 1.4.2.1 guarantees that ({ॴe, ॴo},*) ؆ ({1, -1}, .) as can be seen in the tables 



 

 

 

 

 

 

 

 

 

The mapping f- (induced mapping) which establishes the isomorphism is given by  

  ҧ: ({-1,1}, .) ื ({ ॴe, ॴo},*) 

  ҧ (ॴe) = f(0 + ॴe) = f (o) = 1 

  ҧ (ॴo) = f(1 + ॴe) = f (1) = -1 

THEOREM 1.4.2.2 

In an abelian group the only inner automorphism is the identity mapping on G., but in a non-

abelian group there is always a non-trivial inner automorphism. 

 f(-1) = ॴe* ॴe = ॴo   

 f(1) = ॴe* ॴe = ॴe  

PROOF 

We first note that an inner automorphism is an automorphism fa: Gื G such that 

 fa(x) = a-1 xa for all x߳ G. 

Hence let x߳G, if G is abelian, then 

 fa(x) = a-1xa (by definition) 

* ॴe ॴo ॴe ॴo 

ॴe ॴo 

ॴo ॴe 

 

* 1 െͳ ͳ െͳ െͳ 

1 െͳ ͳ 



 

 

 = a-1(a g) (commutativity) 

 = (a-1 a) g = g (associativity) 

fa  is the identity mapping on G. 

If G is not abelian, then for a,b߳G 

 ab ≠ ba ฺ b ≠ a-1 ba (or a ≠ bab-1) 

Now, fa (b) = a-1ba ≠ b 

i.e. fa is not equal to the identity 

 .fa is not a trivial inner automorphism ׵ 

    (proof completed). 

  



 

 

 RINGS AND THEIR ELEMENTARY PROPERTIES 

2.0 INTRODUCTION 

We have established a survey of all the basic ideas and important results necessary for this 

project in section one above. We will now introduce the main topic of lesson – the theory of 

rings – by considering its elementary properties and some useful results derived from these. 

2.1 RINGS 

An algebraic structure (R, +, .) is called a ring if: 

A. (R, +) is an Abelian group. In other words, the following axioms are satisfied. 

 A1: Closure: For all a,b߳R, a+b߳ R 

 A2: Commutativity: For all a,b߳R, a+b = b+a 

 A3: Associativity: For all a,b߳R, (a+b)+c = a+(b+c) 

 A4: Additive identity: There exists a number 0 in R such that a + 0 = 0 + a = a for all a߳R 

 A5: Additive Inverses: There exists an element –a in R such that a+(-a) = 0 for all a߳R 

M. (R, .) is a semi-group: That is 

 M1: Closure Property: For all a,b߳R, a.b߳ R 

 M2: Associativity:  For all a,b,c߳R, (a.b).c = a.(b.c). 

D. Multiplication: ‘.’ Is distractive over additive ‘+’ that is, for all a,b,c in R. 

 D1: a.(b+c) = a.b + a.c (left dist. Law) 

 D2: (a+b).c = a.c + b.c (right dist. Law) 

NOTE: 

1. The additive identity is the zero-element of R, and so should not be confused with the 

number 0. 



 

 

2. It can be shown that – ( - a) = a. Since a + (-a) = 0, let b = -a then a + b = 0, a = -b = -(-a). 

EXAMPLE 2.1.1 

Consider the system (ॴ, +) of integers under addition ‘+’, this forms an abelian group.  Also (ॴ, o) 

is a semi-group with identity 1. Thus the system (ॴ, +, o) form a ring since ‘o’ is distributive over 

‘+’. It is called the ring integers. 

We can also verify that the algebraic systems (Թ, +, o), (Է, +, o) and (ԧ, +, o) are all examples of 

rings. 

2.1.1 COMMUTATIVE RING WITH IDENTITY 

If in addition to the above properties of ring (Թ, +, o) we have also M3: an element 1߳R such that 

for all a߳ R    

a.1 = 1.a = a 

Then (Թ, +) is called a ring with unity or (identity) element. 

If a ring (Թ , +, o) is such that for all a,b߳R 

 M4: a.b = b.a 

Then (Թ, +, o) is called a commutative ring. A ring (Թ, +, o) in which the properties M3 and M4 

are satisfied is called a commutative ring with identity (or unity). 

EXAMPLE 2.1.1.1 

Consider the power set P(x) discussed in section one, if we define the binary operations ȟ 

(symmetric difference) and ת (inetersection) on P(x) the (P(x), ȟ, ת ) forms a commutative ring 

under these operations. 

EXAMPLE 2.1.1.2 

Let  S = ॴ [ξʹ] be the set of all real numbers of the form x + yξʹ   where x,y߳  ॴ. It is easily 

verifiable that (ॺ, +, o) is a commutative ring with unity. 

EXAMPLE 2.1.1.3 



 

 

Consider the modulo 5 set ॴ5 = {0,1,2,3,4}. It can easily be established that (ॴ5, +5, o5) is a 

commutative ring with unity under these compositions. 

Generally, (ॴn, +n, on) is a commutative ring with unity element ͳത and is called the ring of 

integers modulo n. 

2.1.2 ELEMENTARY THEOREMS ON RINGS 

If (Թ, +, o) is a ring, then the following properties hold good: 

THEOREM 2.1.2.1 

For every element a in Թ, a.o = o.a = o 

PROOF 

Since o is the additive identity then,  

 a.o + a.o = a.(o+o) = a.o = a.o+o 

 ฺ a.o = o by (L.C.L)        (i) 

Conversely, o.a = (o+o).a ฺ  o+o.a = o.a+o.a 

 ฺ o = o.a by (R.C.L)        (ii) 

(i) and (ii) give the result. 

THEOREM 2.1.2.2 

For all a,b in Թ (i) a.(-b) = -(a.b) = (-a).b 

  (ii) (-a).(-b) = a.b 

PROOF 

(i) a.o = o ฺ  a(-b+b) = o  ฺ   a(-b)+a.b = o  

 ฺ a.(-b) = -(a.b) (inverse law)      (iii) 

Conversely, o.b = o ฺ   (-a+a).b = o, (-a).b + a.b = o 



 

 

 ฺ (-a).b = -(a.b)        (iv) 

 (iii) and (iv) give the result. 

(ii) (-a).(-b) = (-a).(-b) = (-a).(-b) + a.o = (-a)(-b)+a(-b+a) 

 = (-a)(-b) + a(-b) + a.b = (-a+a)(-b) + a.b 

 = o(-b) + a.b = o + a.b = a.b 

THEOREM 2.1.2.3 

For all a,b,c in Թ, (i) a(b – c) = ab – ac and (ii) (b – c)a = ba – ca 

PROOF 

(i) a(b – c) = a(b + (-c)) = ab + a (-c) = ab + (-ac) = ab - ac 

(ii) (b – c)a = (b + (-c))a = ba + (-c)a = ba + (-ca) = ba – ca. 

REMARK 

Theorem 2.1.2.1 shows that in a ring with identity, the identity and zero elements are never the 

same (since a.1 = 1.a =a) except if the ring contains only one element o. 

We call a ring ({0}, +, o) consisting of only one element, 0, a zero ring. 

 If Թ ≠ {0} and (Թ, +, o) is a ring with identity then the elements o and 1 are distinct 

because Թ ≠ {0} implies that there must be a non-zero element a in Թ, otherwise, if 1 = 0 then a 

= a.1 = a.o = o which is a contradiction. Thus we can safely assume that any ring with identity 

contains more than one element. 

2.2 SUBRINGS AND ZERO DIVISORS 

2.2.1 ZERO DIVISORS 

A ring (Թ, +, o) is said to have zero divisor (or divisors of zero) if there exists non-zero elements 

a,b ߳Թ such that a.b = o. We call a the “ left zero divisor”, and, b the “right zero divisor”. 

EXAMPLE 2.2.1.0 



 

 

The monoid (ॴ5, o) discussed in example 2.1.1.3 have no zero divisors since there are no such 

elements a,b in ॴ5 such that a,b = o.  

However consider the set ॴ8, = {0,1,2,…,6,7} we see that the  ring (ॴ8, +, o) contains three zero 

divisor 2,4 and 6 since 

  2.4 = 4.6 = 0 (mod 8) 

Whereas none of 2,4,6 is zero. 

THEOREM 2.2.1.1 

A ring is without zero divisors if and only if the two cancellation laws hold for multiplication. 

PROOF 

Let the cancellation laws hold good in Թ and let a.b = 0 where a ≠ o, then a.b = a.o  ฺ   b = o by (L.C.L). Conversely, suppose Թ has no zero divisors and a ≠ o, if ab = ac then: 

 ab – ac = 0 ฺ  a (b – c) = 0 or 

 a(b – c) = a.o ฺ  b – c = o (by L.C.L) ฺ  b = c 

Similarly, we can show that the RCL holds since if b ≠ 0 and a.b = c.b then (a – c) b = o  

 = o.b ฺ  a – c = o (by R.C.L) ฺ   a = c. 

2.2.2 INTERNAL DOMAIN 

A commutative ring with of integers is an integral domain or if a,b are non-zero integers then     

a.b ≠ o.  

The ring of integers modulo p (ॴp, +p, op) where p is prime and is also an integral domain.   

For instance (ॴ8, +, o) is not an integral domain since it has zero divisors 2,4 and 6). 

2.2.3 IDEMPOTENT AND NILPOTENT ELEMENTS 

An element ‘a’ of a ring (Թ, +, o) such that a2 = a is called idempotent element. 



 

 

Also, if any element a߳Թ is such that an = o where n is a positive integer then a is called nilpotent 

element. 

EXAMPLE 2.2.3.1 

In an integral domain D, if e (≠ o) is an idempotent element then it is the identity element of the 

domain. e.g. in (ॴ, +, o), the only idempotent elements of D are 0 and 1. 

Furthermore, the only nilpotent element of an integral domain D is o. 

THEOREM 2.2.3.1 

If (Թ, +, o) is a ring with identity having no zero divisors, then the only solutions of the equation 

a2 = a are a = 0 and a = 1. 

The Proof is very obvious since;  

 If a2 = a and a ≠ o, then a.s = a.1  ฺ a = 1. 

EXAMPLE 2.2.4 (TRIVIAL RING) 

Let (A, +) be any abelian group, and let us define o on A by a o b = o for all a,b߳A. 

Then (A, +, o) is a ring; it is called a trivial ring on A. It is obvious that all the elements of (A, +, 

o) are zero divisors. 

2.2.4 CHARACTERISTIC OF A RING  

If (Թ, +, o) is an  arbitrary ring and there exists a positive integer n such that  

 n . a = o for all a߳Թ     

then the least positive integer with this property is called the characteristic of the ring. 

If no such positive integer exists (i.e. na = o ฺ n = o for all a߳Թ) then we say (Թ, +, o) has 

characteristic zero. 

EXAMPLE 2.2.4.1 



 

 

The rings of integers, rational numbers and real numbers have characteristic zero while the ring 

(p(x), ο, ת) is of characteristic 2 since 2A = AοA = (A – A) ׫ (A – A) = ׎  for all A in P(x). 

THEOREM 2.2.4.1 

Let (Թ, +, o) be a ring with identity, then (Թ, +, o) has characteristic n > 0 iff n is the least 

positive integer for which n.1 = o. 

PROOF: 

If  the ring (Թ, +, o) is of characteristic  n > o then it follows trivially that n.1 = 0. Suppose m.1 = 

0 where 0 < m < n then  

 Ma = m(1.a) = (m1).a = o.a = o 

for every element a߳Թ implying the characteristic of (Թ, +, o) is less than n, a contradiction.  

The converse is established the way. 

CORROLARY 1 

In an integral domain all the non-zero elements have the same additive order, which is the 

characteristic of the domain. 

CORROLARY 2 

The characteristic of an integral domain is either zero or a prime number. 

2.2.5 DIVISION RING (OR SKEW FIELD) 

A division ring is a ring with identity in which every non-zero element has a multiplicative 

inverse. 

 ฺ It is a ring with unity in which the non-zero elements form a group w.r.t 

multiplication. 

FIELD 



 

 

A commutative dicision ring is called a field. Also by implication, we can say that: A field is an 

integral domain in which every non-zero element has a multiplicative inverse. 

Thus, every field is an integral domain. The converse does not hold however, but, any finite 

integral domain is a field. 

EXAMPLE 2.2.5.1 

(Է, +, o), (Թ, +, o) and (ԧ, +, o) are fields of rational, real and complex numbers respectively.  

(ॴ, +, o) is an integral domain which is not a field. 

2.2.6 SUBRING OF A RING 

Let (Թ, +, o) be a ring abd let SCR be a non-empty subset of Թ. If (ॺ, +, o) is itself a ring, then 

(ॺ, +, o) is called a subring of (Թ, +, o). 

From our definition of ring, it is evident that (ॺ, +, o) is a subring of (Թǡ +, o)  if (ॺ, +) is a 

subgroup of (Թ, +), (ॺ, o) is a subsemigroup of (R,o) and the two distributive laws hold for all 

elements of ॺ. 

We should note that both distributive and associative laws automatically hold in ॺ since they are 

valid in Թ, thus they are not particularly required when defining a subring. All that is required 

are: 

i. ॺ is non-empty  

ii.  (ॺ, +) is a subgroup of (Թ, +) and 

iii.  (ॺ, o) is unique. 

EXAMPLE 2.2.6.1 

Consider the ring of integers (ॴ, +, o), the ring of even integers (ॴe, +, o) where ॴe = 2ॴ is a 

subring of (ॴ, +, o) but (ॴo, +, o) considering of odd integers is not. 

EXAMPLE 2.2.6.2  



 

 

Let ॺ = { a + b ξ͵ : a,b ߳  ॴ}, then (ॺ, +, o) is a subring of (Թ, +, o) since for a,b,c,d߳ॴ  
(a+bξ͵).(c+dξ͵ሻ = (ac + 3bd) + (bc + ad) ξ͵  ߳ ॴ and (ॺ, +) is a subgroup of (Թ, +). 

Similarly, (ॴ[ξʹ] +, o) is a subring of (Թ, +, o). 

EXAMPLE 2.2.6.3 

Let (Թ, +, o) be any ring then (Թ, +, o) and ({0}, +, o) are subrings of (Թ, +, o) called “trivial 

subrings”. Also, (Cent. Թ, +, o) is a subring of (Թ, +, o) where cent. Թ = {o ߳ Թ: o.x = x.o for all 

x ߳Թ } is called the centre of the ring (Թ, +, o). 

THEOREM 2.2.6.1    

If ॺ is a non-empty subset of Թ, then (ॺ, +, o) is a subring of (Թ, +, o) iff for a,b ߳ॺ,  a-b ߳ॺ and 

a.b ߳ॺ. 

PROOF 

Suppose that whenever a,b ߳ॺ, we have a-b ߳ॺ and a.b ߳ॺ then ॺ is a subgroup with respect to 

addition. Moreover, ॺ is closed under multiplication. Since associativity and distributive laws 

hold in Թ, associativity of multiplication and distributivity hold in ॺ.  Proof completed. 

REMARK 

In a ring with identity, a subring need not contain the identity element. Also, some subrings have 

multiplicative identity whereas the entire ring does not. Also, both the ring and one of its 

subrings possess distinct identity elements. For instance, consider the ring (Թ *x  Թ*, +, o) of all 

ordered pairs of non-zero real numbers where (a,b)+(c,d) = (a+c, b+d) and (a,b).(c,d)=(a.c,b.d). 

We can easily verify that  (Թ *x  Թ*, +, o) is a ring with identity element (1,1) whereas  (Թx0, +, 

o) which is its subring has identity element (1,0). 

 

2.3 RING HOMOMORPHISMS AND ISOMORPHISMS 

2.3.1 HOMOMORPHISM OF RINGS 



 

 

Let (Թ, +, o) and (ॺǡ ْǡ ٖ)  be two rings and f: Թ ื  ॺ be a function, then f is a ring 

homomorphism if and only if  f(a+b) = f(a) ْ f(b), and, f(a.b) = f(a) ٖf(b) for every pair of 

elements a,b in Թ.  

EXAMPLE 2.3.1.1 

Let Թ and ॺ be arbitrary rings and let f: Թ ื ॺ maps each element of Թ onto the zero element 0! 

of ॺ, we find that f is operation preserving  

 f(a+b) = 0! = 0! ْ 0! = f (a) ْ  f(b) 

 f(a.b) = 0! = 0! ٖ 0! = f(a) ٖ  f(b)  

 for all a,b߳  Թ. 

This mapping, as in groups, is the trivial homomorphism. 

EXAMPLE 2.3.1.2 

Consider the rings (ॴ, +, o) and (ॴn, +n, xn), and let f: ॴ ՜ ॴn defined by f(a) = ܽ,  

then f(a+b), ܽ ൅ ܾ ൌ  ܽ +n ܾ = f(a) +n f(b) 

f(a.b) = ܽ Ǥ ܾ ൌ ܽ  on  ܾ  = f(a) on f(b) 

Hence f is homomorphic. 

THEOREM 2.3.1 

Let f: Թ ՜ Թ! be a homomorphism of a ring Թ into Թ!, then  

(i) f(0) = 0! Where 0 and 0! Are the additive identities of Թ and Թ! Respectively. 

(ii) f(-a) = - f(a) for all a ߳ Թ 

(iii) If Թ is a commutative ring then Թ! is also a commutative ring. 

(iv) If Թ is a ring with identity, then Թ! is also a ring with identity. 

(v) If Թ is a ring without zero divisors, then Թ! is also a ring without zero divisors. 



 

 

(vi) If Թ is a skew field then Թ! is also a skew field. 

(vii) If Թ is a field then Թ! is also a field. 

PROOF 

(i) f(a) + f(o) = f(a+o) Definition of homomorphism i.e. f(a) + f(o) = f(a) = f(a) + o! 

 ฺ f(o) = o! by LCL. 

(ii) f(a) + f(-a) = f(a+(-a) definition of homomorphism i.e. f(a) + f(-a) = f(0) = 0!  

  ฺ  f(-a) = - f(a) 

(iii) Since Թ is commutative f(ab) = f(ba)  

 F(a) f(b) = f(b) f(a) (definition of homomorphism) 

 Hence Թ! Is also commutative. 

(iv) Let 1߳  Թ be the unity of Թ, 

 f(a) = f(a.1) = f(a) f(1) 

 ฺ f(1) is the unity element of Թ! 

 Thus Թ! is also a ring with identity. 

(v) From (1) we have f(o) = o!. Since the mapping f is one-one then 0 is the only element of Թ which has the f- image o!. 

 Let f(a) ≠ 0! ฺ a ≠ 0 

 Similarly if f(b) ≠ 0! ฺ b ≠ 0 

 Now, ab ≠ 0 since Թ has no zero divisors  

 ฺ f(ab) ≠ f(0) = 0! 

 Hence Թ! Has no zero divisors. 



 

 

(vi) If Թ is a skew field this means it is a ring with unity element and without zero divisors. 

Thus in view of (iv) and (v), Թ! Will also be a ring with unity element and without zero divisors. 

Hence Թ! Is a skew-field also.  

(vii). If Թ is a field , then it is a commutative ring with unity element and without zero-

divisors. Hence in view of (iii), (iv) and (v) Թ! Will also be a commutative ring with unity 

element and without zero divisors. i.e. Թ! Is also a field. 

 

2.3.2 ISOMORPHISM OF RING 

Two rings (Թ, +, o) and (Թ!, +!, o!) are said to be isomorphism if there exists a one-to-one 

homomorphism f from Թ onto Թ!, and we write (Թ, +, o) ؆ (Թ!, +!, o!). 

2.3.3 KERNEL OF HOMOMORPHISM  

If f is a homomorphism from ring (Թǡ +, o) into ring (Թ!, +!, o!) the kernel of f is  

 Ker. (f) = {a ߳ Թ: f(a) = 0!} 

Where 0! Is the zero element of (Թ!, +!, o!). 

THEOREM 2.3.3.1 

If f is a homomorphism from  (Թ, +, o) onto  (Թ!, +!, o!) then (Թ/ Ker(f), +, o) ؆  ሺԹǨǡ൅Ǩǡ  Ǩሻ. 
PROOF 

Define  : Թ/ Ker(f) ՜  Թ! The induced mapping by taking   (a + Ker (f)) = f(a). 

From the proof of theorem earlier (Թ/ Ker(f), +, o) ؆ ሺԹǨǡ ൅Ǩǡ  Ǩሻ by  . Thus we only need to 

show that   preserves the multiplication operation (Թ/ Ker(f), +, o). How   (a + Ker (f)).(b + Ker 

(f)) =   (a.b + Ker (f)) =   (a.b) = f(a)-2f(b) =   (a + Ker (f))1. (b + Ker (f)). Proved. 

2.3.4 IMBEDDING OF A RING INTO ANOTHER 

A ring Թ is imbedded in another ring Թ! If there exists some subrings ॺ or Թ! Such that Թ ؆  ॺ. 



 

 

THEOREM 2.3.4.1 

Any ring can be imbedded in a ring with identity. 

PROOF 

Let Թ be an arbitrary ring and ॴ the ring of integers. Construct the cross product  

 Թ x ॴ = {(a,b): a ߳Թ, b ߳ॴ} 
and define the following operations on Թ x ॴ 
 (a,m) + (b,n) = (a+b, m+n) 

 (a,m).(b,n) = (ab + mb + na, mn). 

Under these operations Թ x ॴ becomes a ring. Its additive and multiplicative identities are (0,0) 

and (0,1) respectively, since (0,0)+(a,b) = (a,b) and, (0,1).(a,b) = (a,b) and the additive inverse of 

any element (a,m) is (-a, -n). Hence Թ x ॴ is a ring with identity. 

Now, consider the subset Թx {0} of Թ x ॴ  
 Թx {0} = {(a,0) : a߳ Թ} 

This is a subring of Թ x ॴ since if (a,0), (b,0) ߳ Թx{0} then 

 (a,0)+(b,0) = (a+b,0) ߳ Թx{0} 

 (a,0).(b,0) = (a.b, 0) ߳ Թx {0} 

To show that Թx {0}  is isomorphic to Թ, define f: Թ ՜ Թx {0} by 

 f(a) = (a,0) 

Evidently, f is one-to-one, and is also operations preserving for  

 f(a+b) = (a+b,0) = (a,0)+(b,0) = f(a)+f(b) 

  f(a.b) = (a.b,0) = (a,0).(b,0) = f(a)+f(b) 

Hence Թ ؆ Թx {0} and so Թ is imbedded in Թ x  . This complete the proof. 



 

 

NOTE: 

Since it is possible to embed any ring without identity in a ring with identity, there is no loss of 

generality in assuming that every ring has an identity element. 

EXAMPLE 2.3.4.1 

(ॴ, +, o) is embedded in (Է, +, o) by the embedding f: m ՜ m/1 while (ॴ, +, o) is embedded in 

(ԧ, +, o) by the embedding f: a ՜ a + o,i. 

THEOREM 2.3.4.2  

 Any finite integral domain is a field. 

PROOF 

Suppose a1,a2, ….,an are elements of ring (Թ, +, o). For a fixed non-zero element a߳Թ, consider 

a.{a1,a2,…,an}. The products a.a1, a.a2, …, a.an are all distinct, for if a.a1 = a.aj, then a1 = aj, by 

the leftcancellation law. It follows that each element of Թ is of the form a.a1. 

In particular, there exists some a1߳Թ such that a.a1 = 1. Since multiplication is commutative we 

have a1 = a-1 which shows that every non-zero element of Թ is invertible. 

Hence, (Թ, +, o) is a field. 

2.3.5 FIELD OF QUOTIENTS 

Let D be an integral domain and F be a field containing a subset D’ such that D ؆D’, then F is 

called the field or quotients of D (or the quotient field of D). 

We now extend the ideas of the above theorem into constructing the embedding field itself, that 

is, the field of quotient. 

THEOREM 2.3.5.1 

Any integral domain can be embedded in a field. That is, from the elements of an integral 

domain D, it is possible to construct a field F which contains a subset D’ isomorphic to D. 

PROOF 



 

 

Let D be an integral domain and let Do denote the set of all non-zero elements of D.  

 Form a set D x Do, say, S = {(a,b): a߳D, b߳ Do} 

Define a relation ̱  as follows: 

 (a,b) ̱ (c,d) iff ad = bc for all (a,b),(c,d) ߳S. 

This is an equivalence relation, because (a,b) ̱ (a,b) since ab = ba ฺ  ̱ is reflexive. 

Also, if (a,b) ̱(c,d), then ad = bc or cd = da ฺ(c,d) ̱  (a,b).  That is ̱ is symmetric. 

Also, if (a,b) ̱  (c,d) and (c,d) ̱  (e,f) 

Then,  ad = bc and cf = de 

 i.e. (ad)f = (bc)f ฺ  (ad)f = b(cf) 

 ฺ a(df) = b(de) 

 i.e. a(fd) = b(ed) ฺ (af)d = (be)d 

 ฺaf = be  (by R.C.L) 

 (a,b) ̱  (e,f) ฺ  ̱ is transitive. 

Hence, the relation partitions the product set S into disjoint equivalence classes. 

Let us denote the equivalence class containing  

 (a,b)  by ܽ ܾൗ  (oe [a,b] or (ܽ ǡ ܾ) 

 i.e. ܽ ܾൗ  = {(c,d): (c,d) ̱  (a,b)} of course, if (a,b) ̱ (c,d) ฺ
௔௕ = 

௖ௗ ฺad = bc. 

Now let us form a set F where  

 F = {
௔௕: a߳ D, b߳ Do} is the set of equivalence classes 

And define the following operations of F: 



 

 

Addition:  
௔௕  ൅  ௖ௗ ൌ ௔ௗା௕௖௕ௗ  for all 

௔௕ ǡ ௖ௗ ߳F 

Multiplication:  
௔௕  Ǥ ௖ௗ ൌ ௔௖௕ௗ for all 

௔௕ ǡ ௖ௗ ߳F 

We claim that these operations are well-defined and illustrated as follows: 

 If 
௔௕ ൌ ௔భ௕భ   ܽ݊݀ ௖ௗ ൌ ௖భௗభǡ  then 

(i) 
௔௕ ൅ ௖ௗ ൌ ௔భ௕భ ൅ ௖భௗభ  ฺ ௔ௗ ା ௕௖௕ௗ ൌ ௔భௗభା ௕భ௖భ௕భௗభ  

 ฺ(ad + bc) b1d1 = bd(a1d1 + b1c1) 

From L.H.S, (ad + bc)b1d1  = adb1d1 + bcb1d1 

    = ab1dd1 + bb1cd1 

    = ba1dd1 + bb1dc1 

    = bda1d1 + bdb1c1 

    = bd(a1d1 + b1c1) = RHS 

Hence, addition is well defined. 

(ii) 
௔௕  Ǥ ௖ௗ ൌ ௔భǤ௖భ௕భǤௗభ    ฺ  acb1d1  = bda1c1  = bda1c1 

 From L.H.S, acb1d1 = a1bcd1 

  = ba1dc1  =  bda1c1 = R.H.S 

Hence multiplication is also well defined. 

Now we can verify that under these operations F forms a field. 

The additive identity is 
଴௔  where a ≠ 0 

And the multiplicative identity is 
௔௔ǡ  a ≠ 0 

The additive inverse of 
௔௕ ൌ െ ௔௕ and the multiplicative inverse of 

௔௕ is 
௕௔ (a ≠ 0) 

Associativity, commutativity and distributivity can also be easily established. Hence (F, +, o) is a 

field. 



 

 

Now Let D’ c F where  

 D’ = ቄ௔௫௫ ǣ ܽ߳ ǡ  ߳ ଴ቅ 
Since if x ≠ 0, y ≠ 0, then ௔௫௫ ൌ ௔௬௬   for axy = xay 

Hence, we can write D’ for any non-zero x as  

 D’ = ቄ௔௫௫ ǣ ܽ߳ ቅ 
Now we define a mapping f: D ՜D’ by  

 f(a) = 
௔௫௫  for all a߳ D 

f is one-to-one because if f(a) = f(b) then  

 
௔௫௫ ൌ ௕௫௫  ฺ ଶݔܽ  ൌ ܾݔଶ  ฺ ሺܽ െ ܾሻݔଶ ൌ Ͳ 

Or a – b = 0 ฺ  a = b 

f is onto, since for any 
௔௫௫ ߳D’ there is ܽ߳D such that f(a) = 

௔௫௫  

Finally f preserves operations because 

 f(a+b) = 
ሺ௔ା௕ሻ௫௫ ൌ ሺ௔ା௕ሻ௫మ௫మ ൌ ௔௫మା ௕௫మ௫మ  

  = 
௔௫మ௫మ ൅ ௕௫మ௫మ ൌ ௔௫௫ ൅ ௕௫௫ ൌ ݂ሺܽሻ ൅  ݂ሺܾሻ 

And ݂ ሺܾܽሻ ൌ  ሺ௔௕ሻ௫௫ ൌ ௔௕௫మ௫మ ൌ ௔௫Ǥ௕௫௫Ǥ௫  

  = 
௔௫௫  Ǥ ௕௫௫ ൌ ݂ሺܽሻǤ ݂ሺܾሻ 

Hence, f is isomorphic, that is, D ؆ D’. 

We see that the elements of D’ can be identified with the elements of D in a one-to-one basis, 

and so D c F. 

EXAMPLE 2.3.5.1 



 

 

We see that (Է, +, o) is the quotient field of (ॴ, +, o) since if ॴ c field F, then all the ab-1 (or 

a/b) where a ߳ ॴ, b ߳ॴ must also be in F. Thus (Է, +, o) must be a subring of F and (Է, +, o) 

is thus the smallest field containing (ॴ, +, o). 

Similarly, we can construct the field of quotients (Թ, +, o) from (Է, +, o); and the field (ԧ, 

+, o) from (Թ, +, o). 

EXAMPLE 2.3.5.2 

(Թ, +, o) is the quotient field of both (Էൣξʹ൧ǡ൅ǡ  ሻ and (Էሾξ͵ሿ, +, o) while (ԧ, +, o) is the݋

quotient field of (ॴ[i], +, o).   
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Sets

Definition

A set is a collection of objects which can be distinguished from each other.We

shall said that a set is defined if whenever any object is given, it is possible

to decide whether or not it belongs to the set.The objects comprising the set

are generally called the elements of the set and they may be finite or infinite

in number.



Example:

1. A school constitutes a set and each student or teacher is an element of

the set.

2. The whole number 1, 2, 3, ... constitutes a set and each whole number

is an element of this set.

Capital letters are use to denote sets and small letters a, b, c, d, ... to denote

elements.The symbol needed for enclosing the elements of a set is a pair of

braces,so that when a set A is specified by listing the elements a, b, c, d and

e contained in A,we will write

A = {a, b, c, d, e}

The symbol : or | is used for ’such that’. Example

N = {n : n is a whole number} indicates that N is the set of all

elements n such that N is a whole number .That is N is the set of all whole

number.

Membership of a set :

The element that make up a set are usually called member of that set.We

use the symbol ∈ to stand for ’is a member (element) of’ while the symbol

/∈ stand for ’is not a member (element) of’ e.g

If A = {a, b, c} then a ∈ A, d /∈ A
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Finite and Infinite set:

A finite set is one whose members are countable.e.g

1. Consider a set A = {n : n is a whole number, 0 < n < 20}.

2. Member of a football team.

An infinite set is one whose elements are uncountable,as they are infinitely

numerous. e.g

The set N of all whole numbers is an infinite set and we could write it thus:

N = {1, 2, 3, ...} with ..., to show it goes on forever.

The set consisting of a single object is called a singleton set.

Subsets:

A set T is called a subset of a set S if every element of T ia also an element

of S.We write T ⊆ S or S ⊇ T . Observe that this definition implies that

every set is a subset of itself.However,if T is a subset of S and T 6= S,we say

that T is a proper subset of S and then write T ⊂ S or S ⊃ T .Thus T is a

proper subset of S if T is a subset of S and there exist at least one element

of S that is not in T .

Two sets S, T are equal if and only if S ⊆ T and T ⊆ S

Example:

Kano state,Lagos state,Oyo state is a proper subset of states in Nigeria

Empty set:

A set is said to be empty or null if it contains no elements.If a set S is
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empty,we write S = φ or {}. e.g

S = {x|x ∈ R and x2 + 1 = 0} = φ since x2 + 1 = 0 has no real roots.

Empty set φ is a subset of every set.

Equality of sets:

Two sets are equal if they have the same elements e.g

{a, e, i, o, u} = {e, o, u, i, a}.
Also we introduce two new symbols namely =⇒ and ⇐⇒. e.g

x ∈ {x, y, z} =⇒ {x} ⊂ {x, y, z}.
This means that the statement on the right hand side must follow from the

statement on the left but the statement on the left does not necessarily follow

from that on the right.

=⇒ stands for implies and ⇐⇒ stands for ’implies and implied by’ or ’if and

only if’

For any two sets A and B,

If x ∈ B =⇒ x ∈ A, then B ⊂ A.

A ⊂ B and B ⊂ A =⇒ A = B.

Universal set :

The set containing all elements under discussion in a particular problem is

called the universal set and is denoted by symbol Σ

Complement:

Given a set A,then the set which contains all the elements of the universal

set,which are not elements of A is called the complement of A and is denoted
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by A′ or Ac.Thus

A′ = {x : x ∈ Σ and x /∈ A} e.g

Σ = {1, ..., 8},A = {2, 4, 6, 8}, A′ = {1, 3, 5, 7}.
Equivalent set:

If to each elements of a set A there corresponds an element of another set B

and to each element of B there corresponds an element of A,the element of

the two sets are said to be in one-to-one correspondence.The sets are then

said to be equivalent.The symbol which expresses this relationship is ∼ and

A ∼ B means that A is equivalent to B.e.g

The sets A = {a, b, c} and B = {1, 2, 3} are equivalent because we could

make the first element of A correspond to the first element of B and so on.

The sets A = {a, b, c, d} and B = {1, 2, 3, 4, 5} are not equivalent because

even through we can pair all the elements of A with some of the elements of

B,the reverse procedure leaves one element without any pair.

Power set:

The family β of all subsets of S is called the power set of S and is denoted

by 2s.

For example

Is S = {1, 2, 3},β = {φ, S, {1}, {2}, {3}, {1, 2}, {2, 3}, {3, 1}} = 23.

Definition:

Let Ω be any set .The family or collection of sets Sω written {Sω}ω∈Ω is said

to be indexed by Ω and Ω is called an indexing set for this family.
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For example

1. Let Ω = N = set of all natural number and Sn = 1 + 1
2

+ ... + 1
2n .Then

the family {Sn|n ∈ N} is indexed by Ω = N .

2. (*) Let Ω = {1, 2, 3, 4, 5} and Sω=all integral multiples of ω.Thus S1 =

Z

S2 = 2Z = {...,−4,−2, 0, 2, 4, ...}
S3 = 3Z = {...,−6,−3, 0, 3, 6, ...}
Sω = {...,−2ω,−ω, 0, ω, 2ω, ...}ω ∈ Ω

3. Let Ω = the set of all English words and Sω = {x|x is a letter in ω ∈
Ω}
Suppose ω is the word ’fence’ then Sω = {e, f, n, c}

4. let Ω = {a, b, c}
Sa = {all even integers}
Sb = {x ∈ Z| − 10 ≤ x ≤ 5}
Sc = {all integers ≥ −5}

The last example shows that indexing set may have no direct bearing on

the sets being indexed. Ω may just provide a way of distinguishing the set

concerned.

Intersection:

Suppose we have two sets S, T .The intersection of S and T is the set of
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all elements common to both S and T and is denoted by S ∩ T . Thus

S∩T = {x|x ∈ S and x ∈ T}.Observe that if T ⊂ S, then S∩T = T .Also

if S ∩ T = φ,we say S and T are disjoint.

If Ω = {ω} is any indexing set for a family {Sω}ω∈Ω we define the intersection

∩ω∈ΩSω of members of this family as the set of all elements common to all

the Sω, ω ∈ Ω.Thus ∩ω∈ΩSω = {x|x ∈ Sω for each ω ∈ Ω}.
For example

Let S = {1, 3, 5, 7, 9},T = {x ∈ Z|x3−6x2+11x−6 = 0}.Then S∩T = {1, 3}.
Union:

Let S, T be two sets.We define the union of S and T ,written S ∪ T , as

the set of elements which are either in S or T .Thus S ∪ T = {x|x ∈
S or x ∈ T}.It follows that S ∪ T = T ∪ S.If Ω is an indexing set

for a family {Sω}ω∈Ω,then the union ∪ω∈ΩSω of the sets Sω is defined as

∪ω∈ΩSω = {x|x is in at least one Sω.

For example

In example (*),∪ω∈ΩSω = Z.

Theorem: If S, T are two sets,then

1. S ∩ (T ∩ V ) = (S ∩ T ) ∩ V

2. (S ∪ T ) ∪ V = S ∪ (T ∪ V )

3. S ∩ (T ∪ V ) = (S ∩ T ) ∪ (S ∩ V )

4. S ∪ (T ∩ V ) = (S ∪ T ) ∩ (S ∪ V )
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Proof: (1)-(2) (exercise)

3. Let x ∈ L.H.S,then x ∈ S and x ∈ T ∪ V . This implies that x ∈ S and

x ∈ (T or V ).

i.e x ∈ (S and T ) or x ∈ (S and V ).

i.e x ∈ S ∩ T or x ∈ S ∩ V ,

i.e x ∈ S ∩ T ∪ x ∈ S ∩ V

Hence x ∈ R.H.S.

Therefore S ∩ (T ∪ V ) ⊆ (S ∩ T ) ∪ (S ∩ V ).

Let x ∈ R.H.S,then x ∈ S ∩ T or x ∈ S ∩ V .

i.e x ∈ (S and T ) or x ∈ (S and V )

=⇒ that x ∈ S and x ∈ T or V

i.e x ∈ S ∩ (T ∪ V )

Hence (S ∩ T ) ∪ (S ∩ V ) ⊆ S ∩ (T ∪ V )

Therefore (S ∩ (T∪) = (S ∩ T )n ∪ (S ∩ V )

Definition:

A family {Sω}ω∈Ω of subset Sω of a set S is said to form a partition if

1. S = ∪ω∈ΩSω and

2. For any Sω, Sω′ ,either Sω = Sω′ or Sω ∩ Sω′ = φ

i.e ω 6= ω′ =⇒ Sω ∩ Sω′ = φ

Definition:

Let S, T be two sets,we define S − T ,the difference of S and T (sometimes

read ’S minus T ) as the set of elements which are in S but not in T .
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For example

Let S = {1, 2, 3, 4, 7, 10}
T = {2, 7, 5, 8, 11}
S − T = {1, 3, 10}
Theorem:

1. A−B ⊂ A

2. (A−B) ∩B = φ

Proof:

1. Let x ∈ (A − B). By definition x ∈ A and x /∈ B. In any case x ∈ A,so

(A−B) ⊂ A

2. Let x ∈ (A−B) ∩B

Then x ∈ A−B and x ∈ B (1)

Now x ∈ A − B implies that x ∈ A and x /∈ B. This contradicts (1).Hence

there does not exist any element in (A−B) ∩B.

Therefore (A−B) ∩B = φ.

Theorem:

1. Σ′ = φ, φ′ = Σ

2. (S ′)′ = S

3. (S ∪ T )′ = S ′ ∩ T ′

4. (S ∩ T )′ = S ′ ∪ T ′

(3) and (4) are known as De Morgan’s law.

Proof.
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3. Let x ∈ (S ∪T )′ then x /∈ (S ∪T ). i.e x /∈ (S or T ).Then clearly x ∈ S ′

and x ∈ T ′ which means that x ∈ S ′ ∩ T ′ i.e (S ∪ T )′ ⊆ S ′ ∩ T ′. Similarly let

x ∈ S ′ ∩ T ′,then x ∈ S ′ and x ∈ T ′. i.e x /∈ S and x /∈ T . Hence x cannot be

in S ∪ T ,since it is neither in S nor in T . i.e x ∈ (S ∪ T )′.

Therefore S ′ ∩ T ′ ⊆ (S ∪ T )′.

Therefore (S ∪ T )′ = S ′ ∩ T ′.

Definition: Let S, T be two sets.The symmetric difference of S and T is

defined as (S ∪ T )− (S ∩ T ) and written as S 4 T .

Definition: Let {Sω}ω∈Ω be a family of sets indexed by Ω. The disjoint

union or set sum of Sω is define as ∪ω∈Ω{Sω × {ω}} and written as ∨ω∈ΩSω.

If sets Sω are disjoint then ∨ω∈ΩSω and ∪ω∈ΩSω have the same number of

elements.

For example.

1. Let Ω = {1, 2}, S1 = {a, b}, S2 = {c, d}
Then S1 ∨ S2 = {(a, 1), (b, 1), (c, 2), (d, 2)}
2. Let Ω = {a, b, c}
Sa = {1, 2, 3, 6, 8, 10}, Sb = {2, 4, 6, 7, 9}, Sc = {4, 11, 6, 1, 3, 18}
Then Sa∨Sb∨Sc = (Sa×{a})∪(Sb×{b})∪(Sc×{c}). Note that Sa∪Sb∪Sc

has 11 elements but Sa ∨ Sb ∨ Sc has 17 elements.

Definition: The cartesian product ( or product set) of S and T written as

S × T is the set of all ordered pair (a, b) such that a ∈ S and b ∈ T .

If S or T is a null set,then so is S × T .If S has s elements and T has t
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elements,S × T has st elements. If either S or T is infinite and the other is

non-empty,then S × T is infinite.

For example

Let S = {c, d}, T = {4, 7, 9} then S×T = {(c, 4), (c, 7), (c, 9), (d, 4), (d, 7), (d, 9)}.
Hence S × T has 6 elements.

Definition: The cartesian product S1×...×Sn of n sets S1, ...Sn as the set of

all n-tuples (α1, ..., αn) where αi ∈ Si, i = 1, 2, ..., n with the understanding

that (α1, ..., αn) = (α′1, ..., α
′
n) if and only if αi = α′i.

For example

The Euclidean 3-space =R×R×R = {(a, b, c)|a, b, c ∈ R}.
Definition: An open sentence in a single variable x is an expression of the

form p(x) such that when x is replaced by a specific value like a,then p(aP

is either true or false.

An open sentence in two variables x, y is an expression of the form p(x, y)

such that whenever x, y are given specific values a, b say,then p(a, b) is either

true or false.

For example

1. x divides y is an open sentence in x and y p(2, 4) is rue but p(3, 5) is false.

2. x− y = 4 is an open sentence in two variables p(12, 8) is true but p(9, 6)

is false.

Definition: Let S and T be two sets. A propositional function defined on

S × T is an open sentence p(x, y) where x takes in S and y in T .
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Definition: Let S, T be two sets.A relation ∼ from S to T is given by a

triple (S, T, p(x, y)) where p(x, y) is a propositional function on S × T .

If p(a, b) is true,write a ∼ b (to be read a is in relation to b). Otherwise write

a ∼ b. If ∼ is a relation from S to T ,we may write it as ∼: S −→ T and

b =∼ (a) where a ∈ S, b ∈ T and p(a, b) is true. If ∼= (S, S, p(x, y)) we say

that ∼ is a relation on S.

Definition: Let ∼ be a relation from a set S to a set T .The domain D of ∼
is the subset of S consisting of first co-ordinate elements of ∼∗. i.e

D = {a|(a, b) ∈∼∗}.
The range F of ∼ is the subset of T consisting of second co-ordinate elements

of ∼∗ i.e

F = {b|(a, b) ∈∼∗}.
For example

S = {1, 3, 4, 7, 8},T = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
Let ∼= (S, T, p(x, y)) where p(x, y) means y = 2x.

Then ∼ ∗ = {(1, 2), (3, 6), (4, 8)}.
D = {1, 3, 4}, F = {2, 6, 8}.
Definition: A relation ∼ on a set S is said to be reflexive if a ∼ a for all

a ∈ S i.e (a, a) ∈∼∗ for all a ∈ S.

(**) For example

Let S = N ,the set of all natural numbers.For a, b ∈ N ,let a ∼ b means a

divides b.Then a divides a for all a ∈ N and so ∼ is reflexive.
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Definition: A relation ∼ on a set S is said to be symmetric if a ∼ b implies

that b ∼ a for all a, b ∈ S. i.e (a, b) ∈∼∗ implies that (b, a) ∈∼∗ for all

a, b ∈ S.

For example

In the example (**) above,∼ is not symmetric,since a divides b does not nec-

essarily imply that b divides a.

e.g 2|6 but 6 does not divide 2.

Definition: A relation ∼ on a set S is said to be transitive if a ∼ b and

b ∼ c imply that a sin c. i.e (a, b) ∈∼∗, (b, c) ∈∼∗ imply that (a, c) ∈∼∗.
e.g In the example (**) above,∼ is transitive,since a divides b and b divides

c imply that a divides c.

Definition: A relation ∼ on a set S is called an equivalence relation if ∼ is

reflexive,symmetric and transitive.

For eaxample

Let S = Z. Define a ∼ b by 5 divides (a − b). Then ∼ is an equivalence

relation.

Proof.

5 divides (a− b) implies that (a− b) = 5k for some k ∈ Z i.e a = 5k + b.

So a ∼ a since a = 5k + a for some k = 0 ∈ Z i.e ∼ is reflexive.

Now a ∼ b implies that a = 5k + b. i.e b = a + 5k′ where k′ = −k also in

Z.Hence a ∼ b implies b ∼ a ie.∼ is symmetric.

Now a ∼ b,b ∼ c all imply that a = 5k1 + b, b = 5k2 + c respectively for some
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k1, k−2 ∈ Z i.e b = a−5k−1 and a−5k−1 = 5k2 + c i.e a = 5(k1 +k2)+ c.

Now k1 + k2 = k ∈ Z.Hence a = 5k + c for k ∈ Z.

Thus a ∼ b, b ∼ c imply a ∼ c. Hence ∼ is transitive.

Therefore ∼ is an equivalence relation.

Definition: Let ∼ be an equivalence relation on a set S. foe a ∈ S, we

define equivalence class of a as the set of all elements b in S such that a ∼ b

and denote this set by [a].The set of all equivalence classes in S is called the

quotient set of ∼ and written s/ ∼.

For example

In the example (**) above,

[0] = {b ∈ Z|b = 5k for all k ∈ Z} = {...,−10,−5, 0, 5, ...}
[1] = {b ∈ Z|b = 1 + 5k for all k ∈ Z} = {...,−9,−4, 1, 6, 11, ...}
.

.

.

[4] = {b ∈ Z|b = 4 + 5k, for all k ∈ Z} = {...,−6,−1, 4, 9, 14, ...}
of course [5] = [0]

The equivalence classes above are called residue classes modulo 5.In gen-

eral case where 5 is replaced by an arbitrary positive integer m,then the

equivalence classes are called residue classes modulo m and are given by

[0], [1], ..., [m− 1].
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Theorem: If ∼ is an equivalence relation on a set S,then the set of equiv-

alence classes of ∼ gives a partition of S.Conversely,given any partition of

S,there exists an equivalence relation ∼ on S such that the set of equivalence

classes of r is the given partition.

Natural Numbers

Let N be a non-empty set.Assume the following axioms on N .

1. There exists an injective map α : N −→ N ; the image α(a) of a ∈ N is

denoted by a∗ and is called the successor of a.

2. The successors form a proper subset of N .

3. (Axioms of induction ): Let S be any subset of N which contains a non-

successor and such that a ∈ S =⇒ a∗ ∈ S. Then S = N .

The first principle of Mathematical Induction

Let Tn be a statement concerning natural members n.Assuming that T1 is

true and that the truth of Tr implies the truth of Tr∗ ,then Tn is true for every

n ∈ N .

Proof

Suppose S is the subset of elements r ∈ N for which Tr is true.Then 1 ∈ S

and t ∈ S =⇒ t∗ ∈ S.So by the induction axioms S = N .Hence the result.
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Definition:

(a). Define ′+′ : N ×N −→ N such that for m,n ∈ N,mn satisfies

1. m + 1 = m∗

2. m + n∗ = (m + n)∗ (b). ′.′ : N × N −→ N such that for m, n ∈ N,m, n

satisfies

1. m.1 = n

2. m.n∗ = m.n + m

Theorem: The following laws are satisfied by the (+) and (.) defined on N .

For all m,n, q ∈ N ,we have

1. m + n = n + m; mn = nm (Commutative law)

2. m + (n + q) = (m + n) + q; m(nq) = (mn)q (associative law)

3. m + q = n + q =⇒ m = n; mq = nq =⇒ m = n (cancelation law)

4. m.(n + p) = m.n + m.p (distributive law)

Thus (N, +), (N, .) are commutative semi groups.

proof.

2. Let m,n be fixed natural numbers and Tq the assertion that m+(n+q) =

(m + n) + q for all q ∈ N .Now T1 is true by the definition above,since

m + (n + 1) = m + n∗ = (m + n)∗ = (m + n) + 1

We now assume that Tr is true and show that Tr∗ holds i.e

m + (n + r)∗ = (m + n) + r∗.Now by the definition above (a-(2))

m + (n + r∗) = m + (n + r)∗ = (m + (n + r))∗ and also
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(m+n)+ r∗ = ((m+n)+ r)∗ so that the truth of Tr implies the truth of Tr∗

So, Tr is true for all n ∈ N .

Example:

17 divides (3× 52n+1 + 23n+1) for any n ∈ N .

proof

let Tn be the statement that 17 divides 3×52n+1 +23n=1. Obviously T1 holds

since

3× 53 + 24 = 52 × 17− 2× 17 = 23× 17

Now assume Tr holds .We prove that Tr+1 holds

3× 52(r+1)+1 + 23(r+1)+1

= 52(3× 52r+1 + 23r+1)− 22r+1(52 − 8)

= 52(3× 52r+1 + 23r+1)− 22r+1)× 17

Since Tr holds,17/(3× 52r=1 + 23r+1) and so Tr+1 holds.

Second principle of Mathematical induction

Let Tr be a statement about a natural number r,if for each r,the truth of Tq

for all q < r implies the truth of Tr,then Tn is true for all n.

proof

Let S be the set of natural numbers,such that Ts is not true.If S 6= φ,then by

the well-ordering principle (every non-empty subset of N has a first or least

element is known as well-ordering principle of N) for N ,S has a least element

r,say Tr is not true but Ts is true for all s < r,contradicting our induction
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hypothesis. So S = φ. So Tn is true for all n ∈ N .

Integers

Definition: Consider the set N×N ,the cartesian product of N by itself.

Define a relation on N ×N by (a, b) ∼ (c, d) if and only if a + d = b + c

Definition: The set I of equivalence classes [a, b] of relation ∼ defined above

is called the set of integers.

Positive integers

N can be identified with a subset of I as follows:

Define a mapping φ : (N, +) −→ (I, +) by n −→ [n∗, 1].

φ is well=defined since a = b =⇒ a + 1 = b + 1 i.e [a∗, 1] = [b∗, 1].

φ is injective since [a∗, 1] = [b∗, 1] =⇒ a = b. So φ is an injective homomor-

phism N −→ I. The elements in the image of N under φ are called positive

integers.

The Zero integers

For any a, b ∈ N ,[a, a] = [b, b] and [a, b] = [c, b] if and only if c = a.Also

for any a, c, d ∈ N, [a, a] + [c, d] = [c, d] + [a, a] = [c, d].hence [a, a] for any

n ∈ N ,the zero integer denoted by 0 i.e [a, a] for any a ∈ N is the identity
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element of (I, +).

Negative integers

Let I be the set of all [a, b] ∈ I such that a < b. Now for a, b ∈ N, [a, b] +

[b, a] = [a + b, b + a] = [r, r] = 0 for any r ∈ N . Thus [b, a] is the additive

inverse of [a, b].We denote this element by −[a, b].

Definition: Let n ∈ I. The absolute values of a written |a| is defined by

|a| = {a if a≥0
a if a<0

Thus |a| = 0 if and only if a = 0 and |a| ∈ T= if a 6= 0.The following laws

holds, for a, b ∈ I.

1. −|a| ≤ a ≤ |a| any a ∈ I

2. |ab| = |a||b|
3. |a| − |b| ≤ |a + b| ≤ |a|+ |b|
4. |a| − |b| ≤ |a− b| ≤ |a|+ |b|.

Divisibility and Primes

Definition: Let b be an integer.An integral divisor or factor of b is an integer

a such that b = ac for some integer c. b is also said to be divisible by a or an

integral multiple of a. We write a|b if a divides b.If a|b and 0 < a < b,then a

is called a proper divisor of b.

Examples

19



4|12,

−5|25

1| all (integer)

Theorem: If

1. a|b,then a|bc for any integer c

2. If a|c then a|bx + cy for any integers x, y.

3. If a|b and b|a,then a = ±b

4. If a|b and a > 0, b > 0 then a ≤ b.

proof

2. a|b, a|c =⇒ b = ar and c = as for some r, s ∈ Z, bx + cy = arx + asy =

a(rx + ry)

So a|(bx + cy)

Definition: An integer p such that |p| > 1 is called a prime or a prime

number if the only divisor of p are ±1 and ±p.

p > 1 is a prime if there is no divisor d of p such that 1 < d < p.An integer

a which is not a prime is said to be composite.

Example

1. 5, 7, 13 are primes

2. 24 = 8× 3 is composite.

Theorem: (Division Algorithm)

For any integers a, b, b > 0 there exist unique integers q, r such that a =

bq + r, 0 ≤ r ≤ b
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Proof.

Consider the set S = {a − bx|x ∈ Z and a − bx ≥ 0}. S 6= φ since for

instance either a− b|a| or a + b|a| ∈ S. By definition of S,either 0 ∈ S, in

which case 0 is the least element of S or all elements in S are in N in which

case S has to contain a least element by well-ordering principle for N .In any

case,S must contain a least element r ≥ 0. Now,by definition of S, r = a−bq

for some q ∈ Z and so,a = bq + r,Since r ≥ 0,we only have to show r < b.

Suppose r ≥ b,then r−b = a = a−bq−b = a−b(q+1) ≥ 0.However,a−bq−b <

a − bq,contrary our choice of q such that r is the least element in S. So

0 ≤ r < b.

We now show that q, r are unique.Suppose a = bq + r = bq′ + r′ where

0 ≤ r < b and 0 ≤ r′ < b.Then b(q′ − q) = r − r′. So b|(r − r′). But

|r − r′| < |b|. So r − r′ = 0 i.e r = r′.Hence q = q′ also.

Definition: In the expression a = bq = r, q is called the quotient and r the

remainder.

Definition: Let a, b be two integers.A common divisor of a and b is an in-

teger d such that d|a and d|b.Suppose that every common divisor of a and b

also divides d,then d is called the greatest common divisor or highest com-

mon factor of a and b written (g.c.d) or (h.c.f) respectively.

We also write d = (a, b). observe that if d, d′ are two gcd’s of a, b,then

d′ = ±d.Therefore a g.c.d of two integers is a non-negative integer .

If (a, b) = 1,we say that a and b are relatively prime.
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Examples:

1. (18, 42) = 6

2. (15, 7) = 1.so that 15 and 7 are relatively prime.

Theorem: If a, b be two non-zero integers,then d = (a, b) exists.Moreover

d = ua + vb for some integers u, v.In general if d = (a1, ..., an) is the h.c.f of

n non-zero integers {ai},then d =
∑n

i=1 xia− i for some integers xi ∈ Z.

proof.

Let S = {xa+yb|x, y ∈ Z}. Then S contains a set T of positive integers and

by well-ordering principles T has a least element d = ua + vb,say for some

belongs to Z. Now a = qd + r for some integers q, r where 0 ≤ r < d. So

r = a− qd = (1− qu)a + (−qv)b, so that r ∈ S.Hence r = 0 and so a|a.

Similarly it can be shown that d|b.Now suppose any other integer c,say ,di-

vides both a and d. Then c|ua and c|vb,so that c|(ua + vb) i.e c|d. Therefore

d = ua + vb is the h.c.f of a and b.

Example

1. Find d = (1824, 760)

Solution

1824 = 760× 2 + 304

760 = 304× 2 + 152

304 = 152× 2

Thus d = (1824, 760) = 152

2. Find integers u, v such that d = ua + vb in the example above.
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Solution

152 = 760− 304× 2

= 769− (1824− 760× 2)2

= 760× 5− 1824× 2

= 5b− 2a

where a = 1824, b = 760

So u = −2, v = 5

Theorem (**)

1. (ca, cb) = c(a, b) for any positive integer c

2. If t|a, t|b and t > 0,then (a
t
, b

t
) = 1

t
(a, b)

If d = (a, b) then (a
d
, b

d
) = 1

3. (b, a) = (a,−b) = (a, b + at) for any t ∈ Z.

Theorem (***)

If a, b, c are integers and c|ab, (b, c) = 1, then c|a.

Corollary:

Let p be a prime and {a−1, ..., an} a set of n integers.If p divides a1a2...an,then

p divides at least one of the ai.

Theorem: Unique factorization theorem or fundamental theorem of Arith-

metic:

Every positive integer n > 1 can be expressed as a positive prime uniquely,except

for the order of prime factors.

proof
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We use the second principle of induction.Let Tn be the statement that a given

integer n > 1 can be expressed as a product of positive primes.

If n is a prime p,then the theorem holds since p is itself a product with only

one factor .Otherwise n is composite and therefore has the form n = ab where

a < n, b < n,Assume that Tr is true for r < n,then a = p1, ...,u, say, and

b = q1, ..., qv So n = ab = P1, ...puq1, ..., qv.Thus Tn is true.

We now prove uniqueness. Suppose n = P1, ...pk = q1, ..., qj are two prime

factorizations of n.

Since P1|n,then P1|(q1, ..., qj) and by the corollary above,P1|qj for some j.Since

both p1, qj are primes,we have P1 = qj.So by cancelation law,we can cancel

out P1, qj from both sides to have P2, ..., pk = p1q2...qj−1qj+1...q1.

If we repeat the process successively with p2, p3, ., .., pk the L.H.S involving

the Pi will become 1 and so also with the R.H.S.Hence l = m and every Pi

is equal to some qj.

Corollary: Every integer n > 1 can be written in the form n = P x1
1 ...P xi

i

where Pi’s are distinct primes and the {ai} are positive integers ≥ 1.

Definition: Let a1, ..., an be non-zero integers.An integer b is called a com-

mon multiple of the {ai} if ai|b for i = 1, 2, ..., n. b is called the least common

multiple (l.c.m) of the {ai} if b is a common multiple of the {ai} and given

any other common multiple c of the {ai},then b|c.We denote the l.c.m of the

set {ai}, i = 1, 2, ..., m by [a1, ..., am].

For example
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l.c.m of 6 and 15 is 30.

Theorem: There are finitely many primes.

Proof.

Suppose there were k of them, say p1, ..., pk.Consider the integer 1+p1...pk =

s.Then Pi 6= s for i = 1, 2, ..., k. So if a prime q divides s, q must be distinct

from {p− i}.Now s is either a prime,in which case it is distinct from the pi,or

it is composite, in which case it has a prime factor distinct from the }p− i}.
In either case,we have a prime,different from the {pi},contradicting the fact

that there were k of them.So their number must be infinite.

Congruencies

Residue classes: Let m be a fixed integer greater than one, which will be

referred to as modulus.Two integers x and y are said to be congruent with

regards to the modulus m , or congruent modulo m, if x − y is divisible by

m. This is written symbolically as

x ≡ y(modm)

and is equivalent to the statement that there exists an integer k such that

x = y + km

For example, 3 ≡ 18(mod5),−2 ≡ 14(mod8), 12 ≡ 0(mod3). Any integer

whatever is congruent modulo m with precisely one of the integers in the set

Zm = {0, 1, 2, 3, ..., m− 2,m− 1}
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which is therefore called a complete set of residues modulo m.

Definition: The equivalence classes of R are called the residue classes of

R modulo n.If b ∈ [a], b is called a residue of a modulo n or b is said to be

congruent to a modulo n.

A set T = {a1, ..., an} of integers is called a complete residue system modulo

n if T contains exactly one integer each from the residue classes modulo n. i.e

given any x ∈ Z,there exists one and only one ai such that x ≡ ai(modulon).

Let m be some fixed positive integer.Let a, b ∈ Z;then we say that a is con-

gruent to b (modulo m) if and only if a− b is divisible by m.i.e for k ∈ Z we

have a− b = km.

Example

1. {0, 1, 2, 3, ..., n− 1} is a complete residue system modn

2. For n = 7, {0, 1, 2, 3, 4, 5, 6}, {14, 15, 16, ..., 20} are complete residue sys-

tems mod7.

Theorem: Let a, b, c, d, n be integers.

1. If a ≡ b(modn) and c ≡ d(modn),then ra + tc ≡ rb + td(modn) where r, t

are integers.

2. If a ≡ b(modn) and c ≡ d(modn),then ac ≡ bd(modn)

3. If a ≡ b(modn), c/n and c > 0,then a ≡ b(modc)

4. Let f(x) be a polynomial in Z[x],suppose that a ≡ b(modn),then f(a) ≡
f(b)(modn)

5. Suppose that n1, ..., ns are integers,then a ≡ b(modni) for each i,if and
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only if a ≡ b(mod[n1, ..., ns])

Theorem: Let a, c, d, n be integers,d = (c, n).Then ca ≡ cb(modn) if and only

if a ≡ b(modn
d
).Thus if d = 1,then a ≡ b(modn).

Definition: A reduced residue modulo n is a set V = {a1, ...as} of integers

such that (ai, n) = 1 for each i, ai does not congruent to aj(modn) for i 6= j

and such that every integer y with (y, n) = 1 is congruent modulo n to some

members ai of set V .

Note that if a ≡ b(modn),then (a, n) ≡ (b, n).

Binary operation

The rule by which we combine any two elements of a set to produce a third

element is what is we shall call a law of composition or an operation.If any

law of composition (*) is such that for all a, b ∈ S, a ∗ b defines a unique

element c ∈ S, we say that the law of composition (*) is closed and (*) is an

operation.Clearly ∩,∪,×, + are all binary operations which we are familiar

with.

Rules of binary operation

1. Closure:

Let S be a set.An operation * on S is a binary operation if for every

pair of elements a, b ∈ S.a ∗ b is in S.Then S is closed with respect to

the binary operation *.
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2. Commutative property:

Let (S, ∗) be a set S together with a binary operation * on S. The bi-

nary operation * on S is said to satisfy the commutative law or property

if for every pair a, b in S,a ∗ b = b ∗ a

3. Associative property:

Let (S, ∗) be a set S together with a binary operation * on S.The bi-

nary operation * on S is said to satisfy the associative law or property

if for every triple a, b, c ∈ S, (a ∗ b) ∗ c = a ∗ (b ∗ c)

Example:

1. (a) i (N, +), (Z, +), (R, +) is closed with respect to addition

ii Addition on N, Z, R is commutative

iii Addition on N, Z,R is associative

(b) i (N,×), (Z,×), (R,×) is closed with respect to multiplication

ii Multiplication on N is commutative

iii Multiplication on N is associative

(c) (N,−), (Z,−), (R,−)

(i) N is not closed with respect to subtraction

e.g 2, 3 ∈ N but 2− 3 = −1 /∈ N

Z is closed with respect to subtraction

R is closed with respect to subtraction

ii Subtraction on N is not commutative

e.g 2, 3 ∈ N but 1 = 3− 2 6= 2− 3 = −1
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Likewise subtraction on Z,R is not commutative.

iii Subtraction on N,Z,R is not associative

(d) (Z∗,÷), Z∗ − Z {0}, (R∗,÷), R∗ = R {0}
i Z∗, R∗ is not closed with respect to division.

ii Division on Z∗, R∗ is not commutative.

e.g 2, 3 ∈ Z∗, R∗ but 2÷ 3 6= 3÷ 2

iii Division on Z∗, R∗ is not associative

e.g 2, 3, 5 ∈ Z∗, R∗ but 2
15

= (2÷ 3)÷ 5 6= 2÷ (3÷ 5) = 10
3

Example 2:

A binary operation
⊗

on the set R of real numbers is defined as

a
⊗

b = a + b− 3ab

for every pair a, b ∈ R,show that

(a) the operation
⊗

on R is commutative

(b) the operation
⊗

on R is associative. Solution

(a) Show that a
⊗

b = b
⊗

a for every pair a, b ∈ R

L.H.S = a
⊗

b = a + b− 3ab = b + a− 3ba = b
⊗

a = R.H.S

Hence
⊗

on R is commutative.

(b) Show that (a
⊗

b)
⊗

c = a
⊗

(b
⊗

c) for every a, b, c ∈ R.

L.H.S = (a + b− 3ab)
⊗

c

= (a + b− 3ab) + c− 3(a + b− 3ab)c

= a + b + c− 3ab− 3ac− 3bc + 9abc
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R.H.S = a
⊗

(b + c− 3bc)

= a + (b + c− 3bc)− 3a(b + c− 3bc)

= a + b + c− 3ab− 3ac− 3bc + 9abc

= L.H.S

Hence
⊗

on R is associative.

4. Identity:

Let (S, ∗) be a set S together with a binary operation * on S.If there

is an element e ∈ S such that

e ∗ a = a ∗ e = a

,for all a ∈ S,then e is called an identity on set S with respect to the

binary operation *

5. Inverses:

Let (S, ∗) be a set S together with a binary operation * on S,having

an identity e.If a and b are elements in S such that

a ∗ b = b ∗ a = e

then a is called the inverse of b and b is called the inverse of a in

(S, ∗).Denote the inverse of a by a−1.Thus b = a−1 and a = b−1.

Example:
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In (R,
⊗

) where a
⊗

b = a + b− 3ab for all a, b ∈ R determine:

(a) an identity if it exists,

(b) numbers which have an inverses.

Solution

(a) Solve for e,the equation a
⊗

e = a

=⇒ a + e− 3ae = a

=⇒ (1− 3a)e = 0 =⇒ e = 0

Hence 0 is the identity in (R,
⊗

)

(b) Given a,solve for b,the equation a
⊗

b = 0

=⇒ a + b− 3ab = 0

=⇒ b(1− 3a) = −a =⇒ b(3a− 1) = a

=⇒ b = a
3a−1

,if a 6= 1
3

=⇒ a−1 = a
3a−1

,if a 6= 1
3

Hence all numbers,except 1
3
,have inverses in (R,

⊗
)

6. Distributive law:

Let (S, ∗, o) be a set S together with two binary operations * and o on

S.If for every a, b, c ∈ S,

a ∗ (boc) = (a ∗ b)o(a ∗ c)

then we say that ∗ is left distributive over o.

If (aob) ∗ c = (a ∗ c)o(b ∗ c) then we say that ∗ is a right distributive

over o.
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If ∗ is both left distributive and right distributive over o,then ∗ is

distributive over o.

Example:

Consider (R.∗, ⊗
) where a ∗ b = ab and a

⊗
b = a + b + ab for all

a, b ∈ R.

(a) Is * distributive over
⊗

?

(b) Is
⊗

distributive over *?

Solution

(Excersise)
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