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THE NATURE OF OPERATION RESEARCH 

Definition 

 The phrase operation research is used to describe the application of scientific 

method (observe, model, predict) to the operation and management of organizations 

involving people and other resources (for example, money and machinery). 

The nature and origin of OR 

 The activity of OR really got under way in England and then in the United States, 

during the second world war, when the motivation was the optimization of the allocation 

of scarce military resources. The application of science to warfare dates back to ancient 

times and it involves such luminous names as Archimedes and Leonardo da Vinci. These 

applications of science were devoted to developing ingenious new tools of warfare, new 

armaments. The modern development of operations research was organized on the 

principle of improving the utilization of existing stocks of resources (armament) by 

careful application of the scientific methods. Lanchester’s law represents an early effort 

in the direction of present day operations research being the first modern attempt to 

model the interaction of opposing armies at war. 

 The scope of OR has expanded in the last 30 years and it has been found in civil as 

well as military settings. Some of the civil applications are to hospital management, 

criminal justice system operation, and a variety of commercial enterprises. A hallmark of 

OR is that it is directed toward achieving optimal solutions to problems. E.g., toward 

finding the mix of products for a manufacturer that will maximize profits, towards 

helping the manufacturer choose the right distribution of products among various outlets 

locations so as to minimize transportation costs and so on. 

Phases of OR study 

 The major phases through which an OR team will proceed in order to effect an OR 

study include: 

1. Definition of the problem 

2. Construction of the model 

LECTURE NOTES 
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3. Solution of the model 

4. Validation of the model 

5. Implementation of the final results 

Models and Modelling in OR 

Definition: A model is a general term denoting any abstract or idealized representation of 

a real life system or situation or simply idealized representation of a real life system or 

situation. Models provide a concise framework for analyzing a decision problem in a 

systematic manner and in this respect two basic components are essential for constructing 

a model: the ***objective of the system and the constraints imposed on the system. 

Types of OR Models 

 The most important of OR models is the symbolic or mathematical model. It 

assumes that all the relevant variables, parameters and constraints as well as the objective 

are quantifiable. Thus if xj, j = 1, 2, …, n are the n decision variable of the problem under 

study, and if the system is subject to m constraints, the general mathematical model can 

be written in the form. 

  Optimize z = f (x1, … xn)    (objective) 

s.t. 

 g1 (x1, … xn) ≤ b1   i = 1, 2, … m 

 x1, x2, …, xn ≥ 0.      constraints 

In addition to mathematical model, simulation and heuristic models are used. Simulation 

models ‘initiate’ the behavior of the system over a period of time. This is achieved by 

specifying a number of events that are points in time whose occurrence signifies that 

important information pertaining to the behaviour of the system can be gathered. 
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LINEAR PROGRAMMING MODELS 

Introduction 

 A linear programming is a mathematical technique applicable when the 

relationship among variables can be expressed as directly proportional (Linear) functions. 

 Every linear programming problem consists of a mathematical statement called an 

objective function. This function is to be either maximized or minimize, depending on the 

nature of the problem. For example, profit would be maximized but cost would be 

minimized. Also involved is a set of constrains equations which can either be in form of 

inequalities or equalities of the difference resources available and the proportion of each 

resource necessary to make a unit of the item of interest such as manufactured parts, 

personal policies, inventories etc. 

FORMULATION OF LINEAR PROGRAMMING MODELS 

 The usefulness of linear programming as tool for optimal decision making and 

resource allocation is based on its applicability to many diversified decision problems as 

determining the most profitable product mix, scheduling inventory, planning manpower 

management etc. it has been used for pollution control, personal allocation, capital 

budgeting and financial personnel selection. 

 The effective use and application require, as a first step the formulation of the 

model when the problem is presented. The three basic steps in formulating a linear 

programming are as follows: 

Step 1 

Identify the decision variables to be determined and express them in terms of algebraic 

equations. 

Step 2 

Identify all the limitations or constraints in the given problem and then express them as 

linear inequalities or equalities, in terms of above identified decision variables 

Step 3 

Identify the objective (criterion) which is to be optimized (maximized or minimized) and 

express it as a linear function of the above defined decision variables. 
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 We present below some illustrations on the formulation of linear programming 

models in various situations drawn from different area of management. 

Example 1: Production Planning Problem 

 A tailor has the following materials available. 16 square meters of cotton, 11 

square meters of silk, and 15 square meters of wool. He can make out two products from 

these three materials, namely dress and suite. A dress requires the following: 2 square 

meters of cotton, 1 square meter of silk and 1 square meter of wool. A suite requires 1 

square meter of cotton, 2 square meter of silk and 3 square meter of wool. If the gross 

profit realized from a dress and as suite is respective N30 and N50. Formulate the above 

as a linear programming model. 

Solution: 

The information needed to formulate the above problem is summarized in the table below 

Table 1 

Product Dress Suite Material 

Material    

Cotton  2 1 16 

Silk 1 2 11 

Wool 1 3 15 

Profit N30 N50  

Let x1 be number of dresses to be made 

x2 be the number of suites to be made 

Then the total profit z = 30x1 + 50x2 which is the objective function of the problem. 

 The following are constraints or limitations of the problem: 

(a) Only 16 sq. meter available for cotton to be used hence we have 2x1 + x2 ≤ 16 

(b) Limitation on silk would imply that x1 + 2x2 ≤ 11 

(c) That on wool also means x1 + 3x2 ≤ 15 

(d) And finally, at worst the tailor would make no garment implies that x1, x2 ≥ 0 

Rewriting all together we have their linear programming models to be as follows: 

Maximize  z = 30x1 + 50x2  (objective function) 
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s.t. 

  2x1 + x2 ≤ 16   (cotton constraint) 

  x1 + 2x2 ≤ 111  (silk constraint) 

  x1 + 3x2 ≤ 15   (wool constraints) 

  x1, x2 ≥ 0   (non negative constraints) 

Example 2: Cost Minimization Problem: 

 A manufacturer is to market a new fertilizer which is to be mixture of two 

ingredients A and B. The properties of the two ingredients are as follows: ingredient A 

contains 20% bone meal, 30% nitrogen, 40% lime and 10% phosphate and it cost N2.40 

per kilogram. Ingredient B contains 40% bone meal, 10% nitrogen, 45% lime and 5% 

phosphate, and it costs N1.60 per kilogram. Furthermore it is decided that: 

(i) The fertilizer will be sold in bags containing a minimum of 50 kilograms 

(ii) It must contain at least 12% nitrogen 

(iii) It must contain at least 6% phosphate 

(iv) It must contain at least 20% bone meal 

Formulate the above problem as a LPM. 

Solution:  

Let x1 = number of kilogram of ingredient A 

x2 = number of kilogram of ingredient B 

The objective function is 

 Minimize z = 2.4x1 + 1.6x2 

The following are constraints or limitations 

(a) Total weight constraints: x1 + x2 ≥ 50 

(b) Bone meal constraints: 0.2x1 + 0.4x2 ≥ 0.20 

(c) Nitrogen constraints: 0.3x1 + 0.1x2 ≥ 0.12 

(d) Phosphate constraints: 0.1x1 + 0.05x2 ≥ 0.06 

(e) Non negative constraints: x1, x2 ≥ 0. 
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GRAPHICAL SOLUTION METHOD 

 One way of solving a linear programming problem after its formulation is the use 

of graph. This is possible if the decision variables are not more than three. It is very 

handy when the decision variables are two since a graph in 2 dimensions is easier to draw 

than that in 3 dimensions; anything above three dimensions may be difficult. 

Example 3:  

Suppose a manufacturer produce 2 liquids, X and Y because of past sales 

experience the market research estimates that at least as much Y as X is needed. The 

manufacturing capacity of the plant allows for a total of 9 units to be manufactured. If 

each unit of liquid X results in a profit of N2 and the profit for each unit of Y is N1, how 

much of each should be produced to maximize profit? 

Solution: 

Let x be the amount of x to be produced 

y be the amount of Y to be produced 

We may state the given problem mathematically as follows. 

  Max z = 2x + y 

 s.t 

  2x – y ≤ 0 

  x + y ≤ 9 

  x, y ≥ 0 

in the next section we develop a technique (the simplex algorithm) for solving such 

problems in general, but we can solve this particular one geometrically. First we sketch 

the set of point in IR2 that satisfy the set of constraints (shaded part of fig. 1). This region 

is called the feasible region. 
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Figure 1 

If a point is in the region, it satisfies all of the constraints and is called feasible, if it is not 

in the region; it violates at least one of them and is called infeasible. 

 Different points in the infeasible region give different values of the objective 

function. For example, the region (0, 0) is feasible and gives a profit 2 (0) – 0 = 0. 

Similarly, (1, 5) is feasible and gives profit of 2 (1) + 5 = 7, which is better than 0, we 

seek the point or points of the feasible region that yield the maximal profit. 

 Corresponding to a fixed value of z, the set of solutions to the equation z = 2x + y 

is the line (called the objective line) with the slope -2 and y intercept z. In other words, all 

points along the line y = -2x + z correspond to the same z value. Remember that we are 

interested only in those points that lie in the feasible region, and we want z to be as large 

as possible (fig. 2) 
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Figure 2 

 

 

2.0 THE SIMPLEX METHOD 

 Simplex method is a general purpose approach employed in solving linear 

programming problems that are too large to be solved graphically. At this time, the 

simplex method is by far the most widely used algebraic procedure for solving LPP. 

Computer programs based on this method can routinely solve LPP with thousands of 

variables and constraints. 

2.1 An Algebraic Overview of the Simplex Method 

 We introduce the problem we will use to demonstrate the simplex method. 

Lowtech industries import electronic components that are used to assemble two different 

models of personal computers. One model is called the LT Deskpro computer and the 

other model is called LT portable computer. Lowtech management is currently interest in 

developing a weekly production schedule for both products. 
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 The Deskpro generates a profit contribution of N50 per unit, and the portable 

generates a profit contribution of N40 per unit. For next week’s production, a maximum 

of 150 hours of assembly time can be made available. Each unit of the Deskpro requires 3 

hours of assembly time, and each unit of the portable requires 5 hours of assembly time. 

In addition, Lowtech currently has only 20 portable display components in inventory; 

thus no more than 20 units of the portable may be assembled. Finally, only 300 square 

feet of warehouse space can be made available for new production. Assembly of each 

Deskpro requires 8 square feet of warehouse space; similarly, each portable requires 5 

square feet. 

Let x1 = no of units of the Deskpro assembled 

x2 = no of units of the Portable assembled 

The complete mathematical model for this problem is presented below: 

Max 50x1 + 40x2 

s.t 

  3x1 + 5x2 ≤ 150   Assembly Time 

  1x2 ≤ 20    Portable display 

  8x1 + 5x2 ≤ 300   Warehouse capacity 

Adding a slack variable to each of the constraints permits us to write the problem in 

standard form. 

 Max 50x1 + 40x2 + 0s1 + 0s2 + 0s3 

 s.t. 

  3x1 + 5x2 + s1    =  150 

  1x2     =  20 

  8x1 + 5x2 + s3    =  300 

  x1, x2, s1, s2, s3 ≥ 0 
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2.2 Basic Solution 

 To determine a basic solution, set n-m of the variables equal to zero, and solve the 

m linear constraints equations for the remaining m variables. We shall refer to the n-m 

variables set equal to zero as the non basic variables and the remaining m variables 

allowed (to be non zero) as the basic variables. 

 A basic solution can either be feasible or infeasible. A basic infeasible solution is a 

basic solution that also satisfies the non negativity condition otherwise it is infeasible. 

 For example, if we set x2 = 0 and s1 = 0 we obtain the following solution to the 

three-equation, five variable set of linear equation determined by the Lowtech 

constraints. 

  x1 = 50 s1 = 0  s3 = -100 x2 = 0  s2 = 20 

 The above solution is referred to as a basic solution for the Lowtech LPP but the 

basic solution is not a feasible solution because s3 = -100. However, suppose we had 

chosen to make x1 and x2 non basic variables by setting x1 = 0 and x2 = 0. Then the 

complete solution corresponding to x1 = 0 and x2 = 0 is: 

  x1 = 0, x2 = 0, s1 = 150, s2 = 20, s3 = 300. 

 This solution is a basic solution since it was obtained by setting two of the 

variables equal to zero and solving for the other three variables. Moreover, it is a basic 

feasible solution since all of the variables are greater than or equal to zero. 

2.3 Setting the Initial Simplex Tableau 

 To provide a convenient means for performing the calculation required by the 

simplex solution procedure, we will first develop what is referred to as the initial simplex 

tableau.  

 We adopt the general notation below in the tableau for representation of a linear 

program. 

cj = objective function coefficient for variable j 

bi = right hand side value for constraint i 

aij = coefficient associated with variable j in constraint i 

We can show this portion of the initial simplex tableau as follows: 
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Table 2 

 (a)      (b) 

c1 c2 ...  cn  c row 

a11 a12 … ain b1  A  b 

a21 a22 … a2n b2  Matrix  Column 

. . … . . 

. . … . . 

. . … . . 

am1 am2 … amn bm 

Thus for the Lowtech problem, we obtain the following partial initial simplex tableau 

Table 3 

x1 x2 s1 s2 s3 

50 40 0 0 0 

3 5 1 0 0 150 

0 1 0 1 0 20 

8 5 0 0 1 300 

2.4 Improving the Solution 

 To improve the initial basic feasible solution, the simplex method must generate a 

new basic feasible solution (extreme point) that yields a better value for the objective 

functions. To do so require changing the set of basic variables and the simplex methods 

provides an easy way to carry out this change of variables. For computational 

convenience, we will add two new columns to the present form of the simplex tableau 

and two rows to the bottom of the tableau. 
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Table 4 

  x1 x2 s1 s2 s3   

Basis CB 50 40 0 0 0   

s1 0 3 5 1 0 0 150  

s2  0 0 1 0 1 0 20  

s3 0 8 5 0 0 1 300  

zj 

cj – zj 

0 0 0 0 0 0 ← Profit 

50 40 0 0 0   

 

Criterion for entering a new variable into the basis 

 Look at the evaluation row (cj – zj) and select the variable to enter the basis that 

will cause the larger per-unit improvement on the value of the objective function. In the 

case of a tie, we follow the convention of selecting the variable to enter the basis that 

corresponds to the leftmost f the columns. 

Criterion for removing a variable from the current basis (minimum ratio test) 

 Suppose the incoming basic variable corresponds to column j in the A portion of 

the simplex tableau, for each row I, compute the ratio bi/aij for each aij greater than zero. 

The basic variable that will be removed from the basis corresponds to the minimum of 

these ratios. In the case of a tie, we follow the convention of selecting the variable that 

corresponds to the uppermost of the tied rows. 
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Table 5 

  Entering  
  Variable 

  x1 x2 s1 s2 s3  bi/aij 

Basis CB 50 40 0 0 0   

s1 0 3 5 1 0 0 150 150/3 = 50 

s2  0 0 1 0 1 0 20 20/0 = ∞ (ignore) 

s3 0 8 5 0 0 1 300 300/8 = 37.5 

zj 

cj – zj 

0 0 0 0 0 0  

50 40 0 0 0   

 

Adopting the usual programming terminology refer to this squared element as the pivot 

element. The column and the row containing pivot element are called the pivot column 

and pivot row respectively 

Table 6 

  x1 x2 s1 s2 s3   

Basis CB 50 40 0 0 0   

s1 0 0 25/8 1 0 -3/8 75/2  

s2  0 0 1 0 1 0 20  

x1 50 1 5/8 0 0 1/8 75/2  

zj 

cj – zj 

     1875 ← Profit 

       

 

 

 

 

 

 

 

Leaving 
Variable 
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Complete Second Tableau 

Table 7 

  x1 x2 s1 s2 s3   

Basis CB 50 40 0 0 0   

s1 0 0 25/8 1 0 -3/8 75/2  

s2  0 0 1 0 1 0 20  

x1 50 1 5/8 0 0 1/8 75/2  

zj 

cj – zj 

50 250/8 0 0 50/8 1875  

 70/8 0 0 -50/8   

 

Moving Towards a better Solution 

Table 8 

  x1 x2 s1 s2 s3  bi/aij 

Basis CB 50 40 0 0 0   

s1 0 0 25/8 1 0 0 -3/8 75/2 / 25/8 = 12 

s2  0 0 1 0 1 0 20 20/1 = 20 

x1 50 1 5/8 0 0 1/8 75/2 75/2 / 5/8 = 60 

zj 

cj – zj 

50 250/8 0 0 50/8 1875  

0 70/8 0 0 -50/8   

 

The new tableau resulting from there row operations is as follows 

Table 9 

  x1 x2 s1 s2 s3   
Basis CB 50 40 0 0 0   
s1 40 0 1 8/25 0 -3/25 12  
s2  0 0 0 8/25 1 3/25 8  
x1 50 1 0 -5/25 0 5/25 30  
zj 
cj – zj 

50 40 14/5 0 26/5 1980  
0 0 -14/5 0 -26/5   
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Note that the values of the basic variables are x2 = 12, s2 = 8, and x1 = 30, and the 

corresponding profit is 40 (2) + 0 (8) + 50 (30) = 1980. 

Optimally Criterion 

 The optimal solution to a LPP has been reached when all of the entries in the act 

evaluation row (cj – zj) are zero or negative. In such cases, the optimal solution is the 

current basic feasible solution. 

Interpreting the optimal solution 

 The optimal solution of the Lowtech problem, consisting of the basic variables x1, 

x2 and s2 and non basic variables s1 and s3 is written as follows. 

x1 = 30, x2 = 12, s1 = 0, s2 = 8, s3 = 0. 

 Indicating that there are no idle unit of the assembly time constraint and the 

warehouse capacity constraint, in other words, these constraints are both binding. 

Moreover, if management wants to maximize total profit contribution, Lowtech should 

produce 30 units of the Deskpro and 12 units of the portable. Since s2 = 8, management 

should note that there will be eight unused portable display units. 

SUMMARY OF THE SIMPLEX METHOD 

 The steps followed to solve a linear program using the simplex method can now be 

summarized as follows: 

 We assume that the problem has all less than or equal to constraints and involves 

maximization. 

Step: 

1. Formulate a LP model of the problem 

2. Add slack variables to each constraints to obtain standard form 

3. Set up the initial simplex tableau 

4. Choose the non basic variable with the largest entry in the net evaluation row to 

bring into the basis. This identifies the pivot column; the column associated with 

the incoming variable. 

5. Choose as the pivot row that row with the smallest ratio of bi/ aij for aij > 0 where j 

is the pivot column 
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6. Perform the necessary elementary row operations to convert the column for the 

incoming variable to a unit column with a 1 in the pivot row. 

7. Test for optimally. If cj – zj ≤ 0 for all columns, we have the optimal solution. If 

not, return to Step 4. 

Problems 

1. Suppose a manufacturer produces to liquids, X and Y. Because of the past sales 

experience the market researcher estimates that at least twice as much Y as X is 

needed. The manufacturing capacity of the plant allows for a total of 9 units to be 

manufactured. If each unit of liquid X results in a profit of N2 and the profit for 

each unit of Y is N1, how much of each should be produced to maximize the 

profit? 

2. Solve the following LP using the Simplex method. 

Max 4x1 + 6x2 + 3x3 + x1 

s.t 

 3/2x1 + 2x2 + 4x3 + 3x4 ≤ 550 

 4x1 + x2 + 2x3 + x4 ≤ 700 

 2x1 + 3x2 + x3 + 2x4 ≤ 200 

 x1, x2, x3, x4 ≥ 0. 

3. The following partial initial simplex tableau is given: 

  x1 x2 x3 s1 s2 s3   

Basis CB 5 20 25 0 0 0   

  2 1 0 1 0 0 40  

   0 2 1 0 1 0 30  

  3 0 -1/2 0 0 1 15  

zj 

cj – zj 

        

        

(a) Complete the initial tableau 

(b) Write the problem in tableau form 

(c) What is the initial basis, does this correspond to the origin? Explain. 
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(d) What is the value of the objective function at this initial solution? 

(e) For the next iteration, what variable should enter the basis, and what variable 

should leave the basis? 

2.5 Tableau Form: The General Case 

(a)  Grater – Than or – Equal – to Constraints 

 Suppose that in the Lowtech industry problem, management wanted to ensure that 

the combined total production for both models would be at least 25 units. That enables us 

to add another constraint to the constraint equation i.e. total production constraint. 1x1 + 

1x2  ≥ 25 

 Max 50x1 + 40x2 

 s.t 

  3x1 + 5x2 ≤ 150 

  1x2 ≤ 20 

  8x1 + 5x2 ≤ 300 

  1x1 + 1x2 ≥ 25 

  x1, x2 ≥ 0. 

Standard Form: 

Max 50x1 + 40x2 + 0s1 + 0s2 + 0s3 + 0s4 

 s.t 

  3x1 + 5x2 + s1  = 150 

  1x2 + s2 = 20 

  8x1 + 5x2 + s3 = 300 

  x1, x2, s1, s2, s3, s4 ≥ 0 

Tableau form: 

  3x1 + 5x2 + s1   = 150 

  1x2 + s2 = 20 

  8x1 + 5x2 + s3 = 300 

  1x1 + 1x2 – 1s4 + 1a4 = 25 

We can write the objective function for the tableau form of the problem as follows: 
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Max 50x1 + 40x2 + 0s1 + 0s2 + 0s3 + 0s4 – Ma4 

Exercise: Prepare the initial simplex tableau for the problem. Hence obtain the optimal 

solution 

(b) Equality Constraints 

 When an equality constraints occurs in a LPP, we need to add an artificial variable 

to obtain tableau form and an initial basic feasible solution for example, if the equality 

constraint is 6x1 + 4x2 – 5x3 = 30 

With the artificial variable, the above equation becomes 

  6x1 + 4x2 – 5x3 + 1a1= 30 

(c) Negative Right-Hand Sides 

Case 1: Equality constraints: 6x1 + 3x2 – 4x3 = -20 

    6x1 – 3x2 + 4x3 = 20 

Case 2: ≥ Constraints:  6x1 + 3x2 – 4x3 ≥ -20 

    6x1 – 3x2 + 4x3 ≤ 20 

Case 3: ≤ Constraints:  6x1 + 3x2 – 4x3 ≤ -20 

    6x1 – 3x2 + 4x3 ≥ 20 

Example: Convert the following example problem into tableau form and then set up the 

initial simplex tableau: 

  Max 6x1 + 3x2 + 4x3 + 1x4 

  s.t 

   -2x1 – 1/2x2 + 1x3 – 6x4 = -60 

   1x1 + 1x3 + 2/3x4 ≤ 20 

   -1x2 – 5x3 ≤ - 50 

   x1, x2, x3, x4 ≥ 0 

We later obtain the tableau form: 

  Max 6x1 + 3x2 + 4x3 + 1x4 + 0s2 + 0s3 – Ma1 – Ma3 

  s.t. 

   2x1 + 1/2x2 – 1x3 + 6x4  1a1 = 60 

   1x1 + 1x3 + 2/3x4 + 1s2 ≤ 20 
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   1x2 + 5x3 – 1s3 + 1a3 ≥ 50 

   x1, x2, x3, x4, s2, s3, a1, a3 ≥ 0 

The initial simplex tableau corresponding to this tableau form is: 

Table 10 
  x1 x2 x3 x4 s2 s3 a1 a3  
Basis CB 6 3 4 1 0 0 -M -M  
a1 -M 2 ½ -1 6 0 0 1 0 60 
s2 0 1 0 1 2/3 1 0 0 0 20 
a3 -M 0 1 5 0 0 -1 0 1 50 
zj  -2M -3/2M -4M -6M 0 M -M -M -110M 
cj – zj  6+2M 3 + 3/2M 4 + 4M 1 + 6M 0 -M 0 0  

Note that the squared element is the pivot element indicating that x4 will enter and a1 will 

leave the basis at the first iteration. 

2.6 Solving a Minimization Problem 

 There are two different ways of solving a minimization problem 

(1) Reverse the maximization rule i.e. select the variable with the most negative cj – zj 

as the one to introduce into solution. In this case, optimal solution is reached when 

every value in the cj – zj row is non-negative 

(2) Minimize z subject to a set of constraints should be changed to maximize (-z) 

subject to a set of the same constraints. 

i.e. min z = max (-z). 

Example: Solve the LPP: 

  Min 2x1 + 3x2 

  s.t. 

   1x1 ≥125 

   1x1 + 1x2 ≥ 350 

   2x1 + 1x2 ≤ 600 

   x1, x2 ≥ 0. 

Solution: 

Convert to an equivalent maximization problem: 

  Max –2x1 – 3x2 

  s.t 
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  1x1 ≥ 125 

  1x1 + 1x2 ≥ 250 

  2x1 + 1x2 ≤ 600 

  x1, x2 ≥ 0. 

The tableau form for this problem is as follows: 

 Max -2x1 – 3x2 + 0s1 + 0s2 + 0s3 – Ma1 – Ma2 

 s.t 

  1x1 – 1s1 + 1a1 = 125 

  1x1 + 1x2 – 1s2 + 1a2 = 350 

  2x1 + 1x2 + 1s3 = 600 

  x1, x2, s1, s2, s3, a1, a2 ≥ 0 

The initial simplex tableau is shown below: 

Table 11 

  x1 x2 s1 s2 s3 a1 a2  
Basis CB -2 -3 0 0 0 -M -M  
a1 -M 1 0 -1 0 0 1 0 125 
s2 -M 1 1 0 -1 0 0 1 350 
a3 0 2 1 0 0 1 0 0 600 
zj  -2M -M M M 0 -M -M -475M 
cj – zj  -2+2M -3+M -M -M 0 0 0  
At the first iteration, x1 is brought into the basis and a1 is eliminated. After dropping the 

a1 column from the tableau, the result of the first iteration is as follows: 

Table 12 

  x1 x2 s1 s2 s3 a2  
Basis CB -2 -3 0 0 0 -M  
X1 -2 1 0 -1 0 0 0 125 
a2 -M 0 1 1 -1 0 1 225 
s3 0 0 1 2 0 1 0 350 
zj  -2 -M 2 – M M 0 -M  
cj – zj  0 -3 + M -2+M -M 0 0 -250 – 225M 
Continuing with two more iterations of the simplex method provides the final simplex 

tableau shown below: 
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Table 13 

  x1 x2 s1 s2 s3  
Basis CB -2 -3 0 0 0  
x1 -2 1 0 0 1 1 250 
x2 -3 0 1 0 -2 -1 100 
s1 0 0 0 1 1 1 125 
zj  -2 -M 2 – M M 0  
cj – zj  0 -3 + M -2+M -M 0 -800 
The simplex method provides the optimal solution with x1 = 250, x2 = 100, s1 = 125, s2 = 

0, and s3 = 0. Note however that the value of the objective function is -800 in the final 

simplex tableau. We must now multiply this value by -1 to obtain the value of the 

objective function to the original minimization problem (total cost = 800). 

2.7 Special Class 

1. Infeasibility: This occurs when an optimal solution is reach but one or more 

artificial variables remained in the solution with a positive value. Degeneracy occurs 

whenever there is no solution to the linear program that satisfies all the constraints, 

including the non negativity constraints. 

2. Unboundedness: Occurs if the value of the solution may be made infinitely large 

without violating any constraints. Unboundness indicates error in the problem 

formulation. In this case, the simplex rule for determining the variable to be removed 

from the solution will not work. 

3. Alternate Optimal Solutions: Exercise of two or more optimal solutions. This 

occurs whenever the objective function line is parallel to one of the constraint lines. If the 

linear programming problem has alternate optimal solution, cj – zj will equal zero for one 

or more of the variables nor in solution. 

4. Degeneracy: Occurs when one or more of the variables in the basic solution has a 

value of zero. This does not create problem when it occurs at optimal solution. But if the 

situation occurs at the early stage of iterations, an optimal solution may never be obtained 

since each successive iteration will alternative between the same set of non optimal 

points. 
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DUALITY THEORY AND SENSITIVITY ANALYSIS 

 Duality is an important concept in LP problem. Every LP problem has and 

associated LP problem called the Dual. If the original problem known as the primal 

problem, is a maximizing one then the dual formation is a minimizing one and vice versa. 

A fundamental property of the primal-dual relationship is that the optimal solution to 

either the primal or dual problem also provides that optimal solution to the other. In case 

where the primal and dual problems differ in terms of computational difficulty, we can 

choose the easier problem to solve. 

Formulation of the Dual Problem 

Consider the high tech industries problem described above: 

Max 50x1 + 40x2 

s.t. 

3x1 + 5x2 ≤ 150 assembly time 

1x2 ≤ 20 portable display 

8x1 + 5x2 ≤ 300 warehouse space 

x1, x2 ≥ 0 

The High Tech dual problem is as follows: 

Min 150u1 + 20u2 + 300u3 

s.t. 

3u1 + 8u3 ≥ 50 

5u1 + 1u2 + 5u3 ≥ 40 

u1, u2 ≥ 0 

 The following general statements can be borne in mind about the dual problem. 

1. The dual is a minimization problem 

2. When the primal has n decision variables, the dual will have n constraints. The 

first constraint of the dual is associated with variable x1 in the primal and so on. 

3. When the primal has m constraints, the dual will have m decision variables. Dual 

variable u is associated with the first primal constraint and soon. 
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4. The r.h.s of the primal constraints becomes the objective function co-efficient in 

the dual. 

5. The objective function co-efficient of the primal become the r.h.s. of the dual 

constraints. 

6. The constraint co-efficient of the ith primal variable becomes the co-efficient in the 

ith constraint of the dual. 

The Optimal Dual Solution 

Obtain the standard and tableau form as follows: 

Max (-150u1 – 20u2 – 300u3 + 0s1 + 0s2 – Ma1 – Ma2) 

s.t. 

3u1 + 8u2 – s1 + a1 ≤ 50 

5u1 + u2 + 5u3 – s2 + a2 ≤ 40 

u1, u2, u3, s1, s2, a1, a2 ≥ 0 

The Initial Simplex Tableau is: 

Table 14 

  U1 U2 U3 S1 S2 a1 a2  
Basis CB -150 -20 -300 0 0 -M -M  
a1 -M 3 0 8 -1 0 1 0 50 
a2 -M 5 1 5 -1 -1 0 1 40 

Zj 
cj – zj 

-8M -M -13M M M -M -M  
-150 + M -20 + M -300 + 13M -M -M 0 0 -90M 

 

At the first iteration, u3 is brought into the basis of a1 is removed. 

The second tableau, with the a1 column dropped, is shown below. 

Table 15 
  U1 U2 U3 S1 S2 a2  
Basis CB -150 -20 -300 0 0 -M  
u3 300 3/8 0 8 -1/8 0 0 50/8 
a2 -M 25/8 1 0 5/8 -1 1 70/8 
  (-900 – 25m) 

           8 
-M -300 300 – 5M 

        8 
M -M -15,000 – 70M 

            8 
Zj 

cj – zj 
(-300+25M) 
           8 

-20+M 0 -300+5M 
         8 

-M 0  
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At the second iteration u1 is brought into the basis, and a2 is removed. The third tableau, 

with the a2 column removed is: 

Table 16 
  U1 U2 U3 S1 S2  
Basis CB -150 -20 -300 0 0  
u3 -300 0 -3/25 1 5/25 3/25 26/5 = 5.20 
u1 -150 1 8/25 0 5/25 -8/25 14/5 = 2.80 

Zj 
cj – zj 

-150 -12 -300 30 12 -1980 
0 -8 0 30 -12  

 

 The optimal solution has been reached with u1 = 14/5, u2 = 0, u3 = 26/5, s1 = 0, s2 = 

0. The value of the objective function for the optimal dual solution be – (-1980) = 1980. 

 Observe that the original High Tech Industries problem yield also the same value 

of the objective function. Thus, the optimal value of the objective function is the same for 

both. This relationship is true for all optimal and dual LP problems. 

Interpretation of Dual Prices 

 The dual price of a binding constraint provides valuable guidance because it 

indicates to management, the extra contribution they would gain from increasing by one 

unit the amount of scarce resource. As an example, the dual price of Assembly time is 

N2.8 i.e. each unit of first resources contributes N2.80 in the objective function, while 

each unit of 3rd resource contributes N5.20 in the objective function. This conclusion is of 

course true so long as the current primal (dual) solution is optimal and feasible. 

Using the dual to identify the primal solution 

 Recall the fundamental property of the primal-dual property, stated in the 

preamble, also observe that when the primal problem is solve by the simplex method, the 

optimal values of the primal variables appear in the right-most column of the final tableau 

and the dual prices (values of the dual variables) are found in the zj row. Since the final 

simplex tableau of the dial problem provides the optimal values of the dual variables, the 

values of the primal variable should be found in the zj row of the optimal dual tableau. 

This is infact the case and is formally stated as follows: Given the simplex tableau 

corresponding to the optimal dual solution, the optimal values of the primal decision 

variable are given by the Zj entries for the surplus variables; furthermore, the 
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optimal values of the primal slack variables are given by the negative of the Cj – Zj 

entries for the Uj variables. 

 This property enables us to use the final simplex tableau for the dual of the High 

Tech problem to determine the optimal solution of x1 = 30 units of the Deskpro and x2 = 

12 units of the portable. These optimal values of x1 and x2 as well as the values for all 

primal slack variables are given in the Zj and Cj – Zj rows of the final simplex tableau of 

the dual problem, which are shown again below. 

Table 17 
  U1 U2 U3 S1 S2  
Basis CB -150 -20 -300 0 0  
u3 -300 0 -3/25 1 5/25 3/25 26/5 
u1 -150 1 8/25 0 5/25 -8/25 14/5 

Zj 
cj – zj 

-150 -12 -300 30 12  
0 -8 0 30 -12 -1980 

 

Post-Optimal Analysis (Sensitivity Analysis) 

 After the optimal solution of a LPP has been reached, it is desired to study the 

effect of discrete changes in the different co-efficient of the problem on the current 

optimal solution. This study is referred to as sensitivity analysis. The usual sensitivity 

analysis for LP programs involving computing ranges for the objective function co-

efficient and the right-hand-side value, as well as the dual prices. 

 In general, these changes may result in one of these cases: 

1. The optimal solution remains unchanged i.e. the basic variable and their value 

remains essentially unchanged. 

2. The basic variables remain the same but their values are changed 

3. The basic solution changes completely. 

Next, we illustrate sensitivity analysis with the objective function co-efficient. 

Changes in the co-efficient of the Objective Function 

Changes in the coefficients of the objective function can only affect the net 

evaluation row cj – zj equation and hence the optimality of the problem. In order to carry 

out the sensitivity analysis, a range is placed on the coefficients value called the range of 

optimality. 
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Recall the High Tech industries problem, the LPP is restarted below 

 Max 50x1 + 40x2 

s.t. 

3x1 + 5x2 ≤ 150 assembly time 

1x2 ≤ 20 portable display 

8x1 + 5x2 ≤ 300 warehouse space 

x1, x2 ≥ 0 

The final simplex tableau of the above LPP is reproduced below. 

Table 18 

  X1 X2 S1 S2 S3  

Basis CB 50 40 0 0 0  

X2 40 0 1 8/25 0 -3/25 12 

S2 0 0 0 -8/25 1 3/25 8 

X1 50 1 0 -5/25 0 5/25 30 

Zj  50 40 14/5 0 26/5 1980 

Cj – zj  0 0 -14/5 0 -26/5  

The range of optimality for an objective function coefficient, then, is determined by those 

coefficient values that maintain  

  Cj – zj ≤ 0 for every j    … (*) 

Thus, to determine the range of optimality for an objective function coefficient, say, ck, 

we complete the value of the left-hand-side of inequality (*), using ck as the objective 

function coefficient for xk. 

 Let us compute the range of quantity for c1, the profit contribution per unit of the 

Deskpro using c1 (instead of 50) as the objective function coefficient of x1, the revisd 

final simplex tableau is as follows. 
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Table 19 

  X1 X2 S1 S2 S3  

Basis CB 50 40 0 0 0  

X2 40 0 1 8/25 0 -3/25 12 

S2 0 0 0 -8/25 1 3/25 8 

X1 50 1 0 -5/25 0 5/25 30 

Zj C1 40 64 – c1 
     5 

0 C1 – 24 
     5 

480 + 30c1 

Cj – zj  0 0 C1 – 64 
     5 

0 24 – c1 
     5 

 

 

The current solution will remain optimal as long as the value of c1 results in Cj – zj ≤ 0 

for the two non-basic variables s1 and s3. 

 Hence we must have 

c1 – 64 / 5 ≤ 0 and 24 – c1 / 5 ≤ 0. Using these inequalities, 

We obtain c1 ≤ 64 or 24 ≤ c1        … (**) 

Since c1 must satisfy (**), the range of optimality for c1 is given by 24 ≤ c1 ≤ 64. 

To verify this range, we recomputed the final simplex tableau after reducing the valueo f 

c1 to 30. 

Table 20 

  X1 X2 S1 S2 S3  

Basis CB 30 40 0 0 0  

X2 40 0 1 8/25 0 -3/25 12 

S2 0 0 0 -8/25 1 3/25 8 

X1 50 1 0 -5/25 0 5/25 30 

Zj 30 40 34/5 0 6/5 1380 

Cj – zj 0 0 -34/5 0 -6/5  
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Since cj – zj ≤ 0 for all variable, the original solution is still optimal i.e. the optimal 

solution with c1 = 30 is the same as the optimal solution with c1 = 50. Note, however, the 

decrease in total profit from N1980 to N1380. 

Exercise: 

Try and investigate the range of optimality for c1 if the profit contribution per unit were 

reduced even further say to N20 

LINEAR PROGRAMMING: TRANSPORTATION PROBLEM 

 This section presents the transportation model and its variants. In the obvious 

sense, the model deals with the determination of a minimum-cost plan for transporting a 

single commodity from a number of sources (e.g. factories) to a number of destinations 

(e.g. warehouses). The model can be applied to a wide variety of problems including 

inventory control, employment scheduling, personnel assignment, scheduling dam 

reservoir and many others. 

 It is basically a special type of linear programming problem that can as well be 

solved by the regular simplex method. However, its special structure allows the 

development of a solution procedure called the transportation technique i.e. 

computationally more efficient. The model also can be modified to account for multiple 

commodities. 

The Transportation Model (definition and application) 

 The transportation model is formulated for a class problem with the following 

unique characteristics: 

1. A product is transported from a number of sources to a number of destinations at 

the minimum possible cost, and  

2. Each source is able to supply a fixed number of units of the product to each 

destination, which has a fixed demand for the product. 

Since there is only one commodity a destination can receive its demand from one 

or more sources. The objective of the model is to determine the amount to be shipped 

from each source to each destination such that the total transportation cost is minimized. 
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Let xij represents the amount transported from source i to destination j: then the LP 

model representing the transportation problem is given generally as 

  Minimize z = ∑∑ cijxij 

 s.t. 

  ∑xij ≤ ai  i = 1, 2, …, m   Supply 

  ∑xij ≤ bj  j = 1, 2, …, n    Demand 

  Xij ≥ 0 for all i and j. 

We use the following notations in the above LPM of the transportation problem: 

i = index for origins: i = 1, 2, …, m. 

j = index for destinations: j = 1, 2, …, n. 

cij = cost per unit of shipping from origin i to destination j. 

aij = supply or capacity in units at origin i. 

bj = demand in units at destination j. 

 The first set of constraints stipulates that the sum of the shipments from a source 

cannot exceed its supply; similarly, the second set requires that the sum of the shipments 

to a destination must satisfy its demand. 

 The model described above implies that the total supply ∑ai must at least equal 

total demand ∑bj. When the total supply equals total demand (∑ai = ∑bj) the resulting 

formulation is called a balanced transportation model. The model will be used to 

demonstrate the solution of a transportation problem. 

Solution of the Transportation Problem 

 In this section, we introduce the details for solving the transportation model. The 

method uses the steps of the simplex method directly and differs only in the details of 

implementing the optimal and feasibility conditions. 

The Transportation Technique 

 The basic steps of the TT are: 

Step 1: Determine a starting feasible solution 
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Step 2: Determine an entering variable from among the non basic variables. If all such 

variables satisfy the optimality condition (of the simplex method), stop; otherwise go to 

Step 3. 

Step 3: Determine the leaving variable of the current basic solution; then find the new 

basic solution. Return to Step 2. 

Determination of the Starting Solution 

 Transportation model are solved within the context of a tableau. When the 

transportation tableau is used an initial solution can be found by several alternative 

methods, including the North West corner method, the minimum cell cost method (least 

cost) and Vogel’s approximation method. 

The steps of the North West corner method can be summarized as: 

1. Allocate as much as possible to the cell in the upper left – hand corner subject to 

the supply and demand constraints. 

2. Allocate as much as possible to the next adjacent feasible cell. 
3. Repeat step 2 until all rim requirement are met. 
Also the steps of the least cost method can be summarized as 

1. Allocate as much as possible to the feasible cell with the minimum transportation 

cost. 

2. Repeat step 1 until all rim requirements are met. 
For the Vogel’s approximation method, the steps are: 

1. Determine the penalty cost for each row and column by subtracting the lowest cell 

cost in the row or column from the next lowest cell cost in the same row or 

column. 

2. Select the row or column with the highest penalty cost. 

3. Allocate as much as possible to the feasible cell with the lowest transportation cost 

in the row or column having the highest penalty cost. 

4. Repeat steps 1, 2, and 3 until all rim requirements have been met. 

Once the initial basic feasible solution has been determined by any of the previous 

three methods, the next step is to solve the model for the optimal (i.e. minimum cost) 
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solution. There are two basic solution methods: the stepping stone method and the 

modified distribution method (MODI) or method of multipliers. We will illustrate with 

the following example. 

Example 9 

 Wheat is harvested in the Midwest and stored in grain elevators in the three cities 

– Kansas City, Omaha and Desmonies. These grains elevators supply three mills that 

produce flour, Chicago, St. Louis and Cincinnati. Grain is shipped to the mills in railroad 

can such capable of holding one ton of wheat. Each grain elevator is able to supply the 

following number of tons (i.e. railroad cars) of wheat to the mill on the monthly basis. 

 

Table 21 

(a) 

Grain Warehouse Supply 

1. Kansas City 

2. Omaha 

3. Desmoines 

100 

175 

275 

 600 tons 

Each mill demands the following tons of wheat per month: 

  (b) 

Mill Demand 

A. Kansas City 

B. Omaha 

C. Desmoines 

  

200 

100 

300 

 600 tons 

The cost of transporting one ton of wheat from each grain elevator (source) to each mill 

(destination) differs according to the distance and rail system. These costs are: 
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Table 22 

 Mill 

Grain Elevator Chicago 
A 

St. Louis 
B 

Cincinnati 
C 

1. Kansas City 

2. Omaha 

3. Desmoins 

6 

7 

4 

8 

11 

5 

10 

11 

12 

 

Determine how many tons of wheat to transport from each grain elevator to each mill on 

a monthly basis in order to minimize the total cost of transportation. 

Solution: 

The linear programming model for the problem is formulated as follows 

Minimize Z = 6x1A + 8x1B + 10x1C + 7x2A + 11x2B + 11x2C + 4x3A + 5x3B 

+ 12x3C 

s.t. 

 x1A + x1B + x1C = 150 

 x2A + x2B + x2C = 175    supply constraints 

 x3A + x3B + x3C = 275 

 x1A + x1B + x1C = 200 

 x2A + x2B + x2C = 100    demand constraints 

 x3A + x3B + x3C = 200 

  xij ≥ 0 

In this model, the decision variables, xij represent the number of tons of wheat 

transported from each grain elevator, i (where i = 1, 2, 3) to each mill j (where j = A, B, 

C). 
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Table 23 

 A B C Supply 

1                       6 

X1A 

                       8 

X1B 

                      10 

X1C 150

2                       7 

X2A 

                      11

X2B 

                     11 

X2C 

175

3                      4 

X3A 

                      5 

X3B 

                     12 

X3C 

275

Demand 200 100 300 600

Determine a feasible solution: Using the northwest corner method 

Table 24 

The Initial NW corner allocation 

 A B C Supply 

 

1 

                      6 

150 

                       8                       10 

 

 

150 

 

2 

                      7                       11

 

                     11 

 

175 

 

3 

                     4 

 

                      5 

 

                     12 

 

275 

Demand 200 100 300 600 
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Table 25 

The Second NW corner allocation 

 A B C Supply 

 

1 

                      6 

150 

                       8                       10 

 

 

150 

 

2 

                      7 

50 

                      11

 

                     11 

 

175 

 

3 

                     4 

 

                      5 

 

                     12 

 

275 

Demand 200 100 300 600 

 

 

Table 26 

The Third NW corner allocation 

 A B C Supply 

 

1 

                      6 

15 

                       8                       10 

 

 

150 

 

2 

                      7 

50 

                      11

100 

                     11 

 

175 

 

3 

                     4 

 

                      5 

 

                     12 

 

275 

Demand 200 100 300 600 
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Table 27 

The Initial Solution from NWC is: 

 A B C Supply 

 

1 

                      6 

150 

                       8                       10 

 

 

150 

 

2 

                      7 

50 

                      11

100 

                     11 

25 

175 

 

3 

                     4 

 

                      5 

 

                     12 

275 

275 

Demand 200 100 300 600 

 

The transportation cost of the solution is computed by substituting the cell allocations 
(i.e. the amounts transported) 
x1A = 150, x2C = 25, x2A = 50, x3C = 275, x2B = 100 
Z = 6x1A + 8x1B + 10x1C + 7x2A + 11x2B + 11x2C + 4x3A + 5x3B + 12x3C 
Z = 6 (150) + 8 (0) + 10 (0) + 7 (50) + 11 (100) + 11 (25) + 4 (0) + 5 (0) + 12 (275). 
= N5,925 
Using the minimum cell cost method (least cost rule) and following the steps highlighted 
above strictly. 

Table 28 

The Initial Solution minimum cell cost allocation 

 A B C Supply 

 

1 

                      6 

150 

                       8                       10 

 

 

150 

 

2 

                      7 

50 

                      11

100 

                     11 

25 

175 

 

3 

                     4 

200 

                      5 

 

                     12 

 

275 

Demand 200 100 300 600 
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Table 29 

The second minimum cell cost allocation 

 A B C Supply 

 

1 

                      6                        8                       10 

 

 

150 

 

2 

                      7                       11

 

                     11 175 

 

3 

                     4 

200 

                      5 

75 

                     12 

 

275 

Demand 200 100 300 600 

 

Table 30 

The initial Solution from MCC 

 A B C Supply 

 

1 

                      6 

 

                       8 

25 

                      10 

 

 

150 

 

2 

                      7 

 

                      11

 

                     11 

175 

175 

 

3 

                     4 

200 

                      5 

75 

                     12 

 

275 

Demand 200 100 300 600 

x3A = 200, x3C = 75, x2C = 175, x1B = 25, x1C = 125. 

 The total cost of this initial solution is N4,550 as compared to the N5,925 total 

cost of the NW corner initial solution. 

 The third method for determining an initial solution, Vogel’s approximation 

method (also called VAM), is based on the concept of penalty cost or regret. 
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Table 31 

The VAM penalty cost 

 A B C Supply 

 

1 

                      6 

 

                       8                       10 

 

 

150 

 

2 

                      7                       11

 

                     11 

 

 

175 

 

3 

                     4 

 

                      5 

 

                     12 

 

 

275 

Demand 200 100 300 600 

   2   3   1 

Table 32 

The Initial VAM allocations 

 A B C Supply 

 

1 

                      6 

 

                       8                       10 

 

 

150 

 

2 

                      7 

175 

                      11

 

                     11 

 

 

175 

 

3 

                     4 

 

                      5 

 

                     12 

 

 

275 

Demand 200 100 300 600 

   2   3   2 
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Table 33 

The Second VAM allocation 

 A B C Supply 

 

1 

                      6 

 

                       8                       10 

 

 

150 

 

2 

                      7 

175 

                      11

 

                     11 

 

 

175 

 

3 

                     4 

 

                      5 

 

                     12 

 

 

275 

Demand 200 100 300 600 

   2      2 

Table 34: 

The third VAM allocation 

 A B C Supply 

 

1 

                      6 

 

                       8                       10 

 

 

150 

 

2 

                      7 

175 

                      11

 

                     11 

 

 

175 

 

3 

                     4 

25 

                      5 

100 

                     12 

 

 

275 

Demand 200 100 300 600 

         2 
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Table 35 

The Initial VAM solution 

 A B C Supply 

 

1 

                      6 

 

                       8                       10 

150 

 

150 

 

2 

                      7 

175 

                      11

 

                     11 

 

 

175 

 

3 

                     4 

25 

                      5 

100 

                     12 

150 

 

275 

Demand 200 100 300 600 

x1C = 150, x2A = 175, x3A = 25, x3B = 100, x3C = 150 

 The total cost of this initial solution is N5,125 which is not high as the N5,925 
obtained by the NWC initial solution or as low as the MCC solution of N4,550. Like the 
MCC method, VAM typically results in a lower cost for the initial solution than the NWC 
method. 
Step 2: Determination of Optimal Solution (Modified Distribution Method [MODI] 
or Method of Multipliers) 
 In order to demonstrate MODI, we will again use the initial solution obtained by 
the minimum cell cost method.    

Table 36 

The minimum cell cost initial solution 

VA = VB = VC = 

From A B C Supply 

To 

U1                             1 

                      6 

 

                       8                       10 

 

 

150 

 

U2                             2 

                      7 

175 

                      11

 

                     11 

175 

 

175 

 

U3                             3 

                     4 

200 

                      5 

75 

                     12 

 

 

275 

Demand 200 100 300 600 
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The extra left – hand column with the u1 symbols and the extra row with the vj symbols 

represents column and row values that must be computed in MODI. These values are 

computed for all cells with allocation by using the following formula: ui + vj = cij 

The value of cij is the transportation cost for cell ij. For example, the formula for cell 1B 

is u1 + vB = C1B and since CIB = 8 

u1 + vB = 8 

The formulas for the remaining presently allocated cells are: 

x1C: u1 + vc = 10 

x2C: u2 + vc = 11 

x3A: u3 + vA = 4 

x3B: u3 + vB = 5 

 Thus, if we let u1 = 0, then we can solve for all remaining ui and vj values 
    vB = 8 
x1C: u1 + vc = 10  vc = 10 
x2C: u2 + vc = 11  u2 = 1 
x3A: u3 + vA = 4  vA = 7 
x3B: u3 + vB = 5  u3 = -3 

 Now, all the ui and vj values can be substituted into our table as shown in Table 2 

 

Table 37 

The Initial Solution with all ui and vj values 

VA = 7  VB = 8  VC = 10 

From A B C Supply 

To 

U1  = 0                   1 

                      6 

 

    -                  8 

25 

                      10 

125 

 

150 

 

U2  = 1                   2 

                      7 

175 

                      11

 

                     11 

175 

 

175 

 

U3  = -3                 3 

          -           4 

200 

           +          5 

75 

                     12 

 

 

275 

Demand 200 100 300 600 
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Next we use the following formula to evaluate all empty cells (non – basic variables) cij – 

ui – vj = kij 

Where kij equals the cost increase or decrease that would occur by allocating to a cell. 

For the empty cells in (Table 2) 

x1A : k1A = c1A  u1 – vA = 6 – 0 – 7 = -1 

x2A : k2A = c2A  u2 – vA = 7 – 1 – 7 = -1 

x2B : k2B = c2B  u2 – vB = 11 – 1 – 8 = +2 

x3C : k3C = c3C  u3 – vC = 12 – (-3 – 10) = + 5 

 This indicates that either cell 1A or 2A will decrease cost by N1 per allocated ton. 

We can select either cell 1A or 2A to allocate since they are tied at -1. If cell 1A is 

selected as the entering non basic variable, then the stepping stone path (loop) for the cell 

must be determine so that we know how much to reallocate. 

 

Table 38 

The second iteration of the MOD solution method 

VA = VB = VC = 

From A B C Supply 

To 

U1   =                        1 

    +                 6 

25 

                       8                       10 

125 

 

150 

 

U2   =                        2 

                      7 

175 

                      11

 

                     11 

175 

 

175 

 

U3   =                       3 

 -                    4 

175 

+                     5 

100 

                     12 

 

 

275 

Demand 200 100 300 600 

The ui and vj values for (table 3) must now be recomputed using our formula for the 

allocated cells 

Let u1 = 0 

x1A : u1 + vA = 6  vA = 6 

x1C: u1 + vC = 10  vC = 10 
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x2C : u2 + vC = 11  u2 = 1 

x3A : u3 + vA = 4  u3 = -2 

x3b : u3 + vB = 4  vB = 7 

 

Table 39 

The new ui and vj values for second iteration 

VA = 6  VB = 7  VC = 10 

From A B C Supply 

To 

U1   =  0                  1 

    +                 6 

25 

                       8                       10 

125 

 

150 

 

U2   =   1                 2 

                      7 

175 

                      11

 

                     11 

175 

 

175 

 

U3   =   2                 3 

                     4 

175 

+                     5 

100 

                     12 

 

 

275 

Demand 200 100 300 600 

The cost changes for the empty cells are not computed using the formula  

cij – ui – vj = kij 

x1B : k1B = c1B  u1 – vB = 8 – 0 – 7 = -1 

x2A : k2A = c2A  u2 – vA = 7 – 1 – 6 = 0 

x2B : k2B = c2B  u2 – vB = 11 – 1 – 7 = +3 

x3C : k3C = c3C  u3 – vC = 12 – (-2) – 10 = + 4 

Since none of these values is negative, the solution shown above in (table 39) is optimal. 

Thus the optimal solution is calculated as: 6 (25) + 10 (125) + 11 (175) + 4 (175) + 5 

(100) = N4,525 

Steps of MODI (Methods of Multipliers) 

(1) Develop an initial solution using one of the three methods available 

(2) Compute u1 and vj values for each row and column by applying the formula ui – vj 

= cij to each cell that has an allocation 
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(3) Compute the cost change, kij, for each allocated cell using the formula cij – ui – vj 

= kij. 

(4) Allocate as much as possible to the empty cell that will result in the greatest net 

decrease in cost (kij). Allocate according to the stepping stone path or the selected 

cell. 

(5) Repeat steps 2 through 4 until all kij values are positive or zero. 

DEGENERACY 

 In the entire tableau showing solution to our wheat transportation problem, the 

following condition was met. m row + n columns – 1 = no of cells with allocation. 

 For example, in any of the balanced tableau for wheat transportation, the no of 

rows are 2 (i.e. m = 3) and the no of columns are 3 (i.e. n = 3), thus: 

 3 + 3 – 1 = 5 cells with allocations. 

 Five cells with allocation always existed for these tableaus thus our condition for 

normal solution was met. When this condition is not met and less then m + n – 1 cells 

have allocations, the tableau is said to be degenerate. 

THE ASSIGNMENT MODEL 

 Consider the situation of assigning m jobs (or workers) to n machines. A job i (= 

1, 2, …, m) when assigned to machine j (= 1, 2, …, n) incurs a cost cij. The objective is to 

assign the jobs to the machines (one job per machine) at the least total cost. The situation 

is known as the assignment problem. 

Table 40 

machine 

  1 2 . . . n 

 1 c11 c12 . . . c1n 1 

 2 c21 c22 . . . c2n 1 

 . . . . . . . . 

 . . . . . . . .  

 . . . . . . . . 

 m cm1 cm2 . . . cmn 1 
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 The formulation of this problem may be regarded as a special case of the 

transportation model. Here jobs represents “sources” and machines represent 

“destinations”. The supply available at each sources is 1; i.e. ai = 1 for all i, similarly, the 

demand required at each destination is 1; i.e. bi = 1 for all j. the cost of (assigning) job i 

to machine j is cij. 

 The mode is thus given by: 

  Minimize z: ∑∑cijxij 

Subject to 

  ∑xij = 1,  i = 1, 2, …, m 

  ∑xij = 1,  j = 1, 2, …, n 

  xij = 0 or 1 

  0 if the jth job is not assigned to the ith machine 

xij =   

  1 otherwise 

The Steps of the assignments solution method can be summarized as: 

(1) Perform row reduction by subtracting the minimum value in each row from all 

other row values. 

(2) Person column reductions by subtracting the minimum value in each column from 

all other column values 

(3) In the completed opportunity cost table, cross out all zeros using the minimum 

number of horizontal and/or vertical lines 

(4) If less than m lines are required (where m = the no of rows or columns), subtract 

the minimum uncrossed value from all other uncrossed values, and add this same 

minimum value to all cells where two lines intersect. All other values are 

unchanged. 

(5) If m lines are required, the optimal solution exists and m unique assignments are 

made. If less m lines are required, repeat step 4. 

Example 1: Court Scheduling 
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 A court administrator is in the process of scheduling four court dockets. Four 

judges are available to be assigned, one judge to each docket. The court administrator has 

information regarding the types of cases on the dockets as well as data indicating the 

relative efficiency of each of the judges in processing different types of court cases. 

Based on this information, the court administrator has compiled the data in the Table 

below: 

Table 41 

 Docket 

Judge 1 2 3 4 

1 14 13 17 14 

2 16 15 16 15 

3 18 14 20 17 

4 20 13 15 18 

 The table shows the estimates of the no of court days each judge would require in 

order to completely process each court docket. The court administrator would like to 

assign the four judges so as to minimize the total no of court – days needed to process all 

four dockets 

Table 42 

 Docket 

Judge 1 2 3 4 

1 1 0 4 1 

2 1 0 1 0 

3 4 0 6 3 

4 7 0 2 5 
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Table 43 

 Docket 

Judge 1 2 3 4 

1 0 0 3 1 

2 0 0 0 0 

3 3 0 5 3 

4 6 0 1 5 

 

Table 44 

 Docket 

Judge 1 2 3 4 

1 0 0 3 1 

2 0 0 0 0 

3 2 0 4 2 

4 5 0 0 4 

 

Table 45 

 Docket 

Judge 1 2 3 4 

1 0 0 3 1 

2 0 0 0 0 

3 2 0 4 2 

4 5 0 0 4 

 

Final Assignment 

Judge 1 to Docket 1  14 

Judge 2 to Docket 4  15 

Judge 3 to Docket 2  14 

Judge 4 to Docket 3  15 
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Total days   58 

 

Thus the optimal assignment of the four judges results in 58 judges – days to clear the 

four dockets. 

 

The Assignment Technique for Maximizing 

 A maximizing assignment problem typically involves making assignments so as to 

maximize contribution. To maximize only step 1 from the above differs, the column are 

reduced by the largest number of each column. From then on the same rules apply that 

are used for minimizing. 

Example: Suppose the figures below relate to contribution and that it is required to 

maximize contribution. 

Table 46 

 W X Y Z 

A 25 18 23 14 

B 38 15 53 23 

C 15 17 41 30 

D 26 28 36 29 

 

Table 47 

Column 

 W X Y Z 

A 13 10 30 16 

B 0 13 0 7 

C 23 11 12 0 

D 12 0 17 1 
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Table 46 

~ Row 

 W X Y Z 

A 3 0 20 6 

B 0 13 0 7 

C 23 11 12 0 

D 12 0 17 1 

 

Table 49 

~ 

 W X Y Z 

A 3 0 20 6 

B 0 13 0 7 

C 23 11 12 0 

D 12 0 17 1 

 

Table 50 

~ 

 W X Y Z 

A 0 0 17 6 

B 0 16 0 10 

C 20 11 9 0 

D 9 0 14 1 
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Table 51 

~ 

 W X Y Z 

A 0 0 17 6 

B 0 16 0 10 

C 20 11 9 0 

D 9 0 14 1 

 

 

Table 52 

~ 

 W X Y Z 

A 0 0 17 6 

B 0 16 0 10 

C 20 11 9 0 

D 9 0 14 1 

 

The assignments 

C to Z   20 

D to X   28 

A to W  25 

B to Y   53 

   136 

Unequal sources and destinations 

 To solve assignment problems in the manner described the matrix must be square 

i.e. the supply must equal requirement. Where the supply and requirements are not equal, 

an artificial source or destination must be created to square the matrix. The costs/mileage 

/ contribution etc. for the fictitious row or column will be zero throughout. 
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 Solution method, having mad the sources equal to the destination, the solution 

method will be as normal, treating the fictitious elements as though they are real. The 

solution method will automatically assign a source or destination to the fictitious row or 

column and the resulting assignment will incur zero or gain zero contribution. 

Example: 

 A foreman has four fitters and has been asked to deal with five jobs. The times or 

each job are estimated as follows: 

Table 53 

 Fitters 

Job Alf Bill Charlie Dave 

1 6 12 20 12 

2 22 18 15 20 

3 12 16 18 15 

4 16 8 12 20 

5 18 14 10 17 

Dummy fitter inserted to square the matrix 

Table 54 

 A B C D Dummy 

1 6 12 20 12 0 

2 22 18 15 20 0 

3 12 16 18 15 0 

4 16 8 12 20 0 

5 18 14 10 17 0 
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Table 55 

 A B C D Dummy 

1 0 15 10 0 0 

2 16 10 5 8 0 

3 16 8 8 3 0 

4 10 0 2 8 0 

5 12 6 0 5 0 

 

Table 56 

 A B C D Dummy 

1 0 4 10 0 3 

2 13 7 2 5 0 

3 3 5 5 0 0 

4 10 0 2 8 3 

5 12 6 0 5 3 

 

Table 57 

 A B C D Dummy 

1 0 4 10 0 3 

2 13 7 2 5 0 

3 13 5 5 0 0 

4 10 0 2 8 3 

5 12 6 0 5 3 

 

5 lines so optimum assignments: 
B to 4 
C to 5 
A to 2 
Dummy to 2 
D to 3 
Hence Job 2 is not done 
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NETWORK ANALYSIS/PROJECT MANAGEMENT 

1. INTRODUCTION TO NETWORK ANALYSIS 

Definition 

 Network analysis is a generic term for a family or group of related techniques 

developed to aid management to plan and control project. 

 

Why Network Analysis? 

 It is most valuable when project are complex, large and restricted i.e. completed 

within stipulated or cost limits. It illustrates the way in which parts of the project are 

organized and determine the time duration of these projects. It also aids planning and 

scheduling of projects. 

 

Background 

 In the 1950’s, a basic form of Network analysis was being used in the UK and 

USA in order to reduce project times i.e. the amount of time spent to complete a project. 

 In 1950, the US Naval Special Projects Office set up a team to devise a means of 

controlling the planning of complex projects. The team came up with a network 

technique known as PERT i.e. Programme Evaluation and Review Technique. This 

technique was used in planning and controlling the development of the Polaris missile 

and credited with saving two years in the development of missiles. 

 Since 1958, the technique has been improved upon and nowadays many variants 

exist which handle, in addition to basic time, costs, resources, probabilities and 

combination of these factors. Variety of names exists and among the commonly used are: 

CPP (Critical Path Planning), CPA (Critical Path Analysis), CPM (Critical Path Method), 

PERT etc. 

 

Network Techniques (CPM/PERT) 

 The network techniques that are used for project analysis are CPM (Critical Path 

Method) and PERT (Programme Evaluation Review Techniques). They were developed 
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at approximately the same time, although independently during the late 1950’s. The fact 

that they have been frequently and widely used in such a short of period of time attests to 

their value as management science techniques. 

 The basic difference between them is that CPM is a deterministic technique while 

PERT is a probabilistic technique. 

2. BASIC NETWORK TERMINOLOGY 

i. Activity: This is a task or job which takes time and resources e.g. Building of 

house, construction of bridges etc. It represented in a network by an arrow (→) in 

which the head indicates the end of an activity and the tail indicates the beginning 

of an activities. 

ii. Event: It is a point in time and it indicates the start and finish of an activity. It is 

represented in a network by a circle or nodes (O). Note that the establishment of 

activities automatically determines the event. 

iii. Dummy Activities: This is an activity which does not take time or resources. It is 

used merely to show logical dependences or sequences between activities so as not 

violate the rules of drawing network. It is represented in a network by a dotted 

arrow (       ) 

iv. Predessor Activity/Successor Activity: This is an activity that precedes/succeeds 

an activity in a network or an activity that must be completed before the next 

activity can start (predecessor activity). 

An activity that can start after the one before it has been completed (successor 

activity). 

E.g  

  

From example, “design a house” is a predecessor activity for “obtain finance” 

while “building house” is a successor activity for “obtain finance”. 

v. Network: This is the combination of activities, events, dummy activities in a 

logical sequence according to the rules of drawing network. 

 

Design a house Obtain a finance Build House 
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Example of a network; 

 

 

 

3. RULES OF NETWORK CONSTRUCTION 

1. A complete network must have only one point of entry (start event) and only one 

point of exit (finish event). 

2. Every activities must have one preceeding event (tail event) and one succeeding 

event (head event). 

Note: Many activities may use the same tail event or the same head event. E.g. 

 

 

 

 

 

Tail event     Head Event 

 

i.e. they can’t use the same tail and head event. 

3. No activity can start until its tail event is reached 

4. An Event is not complete until all activities leading into it are complete 

5. Loops are not allowed i.e. series of activities which leads back to the same event  

e.g 

  

 

 

 

6. All activities must be tied into a network i.e. danglers is not allowed 
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Note: Danglers are the activities that do not link into the overall network. e.g 

 

 

 

 

 

4.  CONVENTION FOR DRAWING NETWORKS 

1. Networks proceeds from left to right. 

2. Networks are not drawn to scale but must be drawn neatly. 

3. Arrows need to be drawn in the horizontal plane unless totally unavoidable, they 

must proceed from left to right. 

4.  Events should be progressively numbered from left to right. 

 

Activity Identification 

 Activities can be identified in several ways, typical of the method to be found 

includes: 

1. Shortened description of jobs e.g order materials 

2. Alphabetic or numeric code e.g A,B,C or 100,130 etc. 

Dummy Activities  

 Dummy activities are the one that does not consume time or resources but shoe 

logical relationship in a network. It is shown on a network by a dotted arrow. 

Example: Assume that a car arrive at a service station during which two independent 

activities takes place, filling with petrol (A) and topping up with oil (B). 

This could be 

 

 

 

 

Dangling activities

Car 
Ready 

Car 
Arrived 
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Which is incorrect because it contradicts the rule that says two or more activities can’t 

have the same head and tail event? 

The correct network is: 

 

 

 

 

 

 

Example 1: Draw the network of the following problem: 

Activity    Preceding Activities 

1 - 

2, 3, 4     1 

5      2 

6      3 

7      5 

8      6 and 2 

9      7 and 8 

10      3 

11      4 

12      9, 10, 11 

 

Solution: 

 

 

 

 

 

 

Filled 
with 

Petrol 

Car  
Ready 

Car  
Arrived 

A A 

B 

1 

2 

5 
7 

9 

12 

11 4 

3 
6 

8 

10 
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Summary  

1. Network analysis is used for the planning and controlling of large complex 

projects. 

2. Network comprises activities which consumes time and resources and also event 

which is point in time. Activities is represented by an arrow ( →) while event by a 

circle (O) in a network. 

3. Network has one start and one head event. An event is not complete if the activity 

leading to it is not complete. 

4. Two or more activities can’t have the same head and tail event. 

5. The length of the arrows representing the activities is not important because 

networks are not drawn to scale. 

6. Dummy activities (represented by        ) are necessary to show logical relationship. 

They do not consume time or resources. They become necessary as the network is 

drawn. 

EXERCISE: 

1. Draw the network of the following: 

  1→2  2→3  4→6  7→8 

  1→3  3→6  5→7  8→0 

  2→5  4→5  5→8 

  2→4  4→7  6→7 

 

2.  

  1→2  4→5  7→9 

  1→3  4→8 

  1→4  5→7 

  2→5  5→8 

  2→6  8→7 

  3→5  6→9  
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Solution to Exercise 

1. 

 

 

 

 

 

 

2. 

 

 

 

 

 

 

5. TIME ANALYSIS IN PROJECT SCHEDULING 

Critical Path Calculations 

 The critical path of network gives the shortest time in which the whole project can 

be completed. It is the chain of activities with the longest duration time. 

 It can be calculated using Inspection/Tree diagram method or Forward/Backward 

pass method. 

Inspection/Tree Diagram Method 

 This is done by writing out all the paths in a network then the path with the longest 

duration time is the critical path. 

Example 2 

 

 

 

 

1 

2 5 8 9 

6 

7 4 

3 

 

1 3 5 7 9 

6 2 

4 8 

Design 
house 

3 1 2 4 6 7 

3 

5 

Lay 
Foundation 

Order 
Material 

Select 
Paint 

Select 
Carpet 

Finish 
Work 

Build 
House 

Dummy 
2 0

1 

3

1 1

1
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The paths are: 

1. 1→2→3→4→6→7 

Duration times 3 + 2 + 0 + 3 + 1 = 9 

2. 1→2→3→4→5→6→7 

Duration times: 3 + 2 + 0 + 1 + 1 + 1 = 8 

3. 1→2→4→5→6→7 

Duration times: 3 + 1 + 1 + 1 + 1 = 7 

4. 1→2→4→6→7 

Duration times: 3 + 1 + 3 + 1 = 8 

The longest duration is 9 months 

Therefore, the critical path is 1→2 →3→4→6→7 

5.2 Forward/Backward Pass Method 

1. Earliest Start Time, which is also the forward pass. This is the earliest possible 

time at which a succeeding activity can start. The Formula is 

ETj = max (ETi + tij) where i is the starting node number of all activities ending at node j. 

    tij is the time for activity i → j 

2. Latest Start Time, which is also the backward pass. This is the latest possible 

time at which a preceding activities can be completed without delaying beyond project 

duration time. The formula is: 

LTi = max (LTi – tij) where j is the ending node number of activities starting at i tij is the 

time for activity i→ j. 

 

CRITICAL ACTIVITIES 

 This is the activities that have the same earliest start time and latest start time. 

 

 

3      2      0     3     1 

3      2      0     1      1     1 

3      1     3     1    

3      1      1     1      1  
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Critical Path (Estimation of project completion time) 

 The path that has the same earliest start time and latest start time is called the 

critical path which also corresponds to the chain of activities with the longest duration 

time. It is indicated in a network by double line or different colour in the network. 

Example 3: Use backward/forward method to calculate critical path of example 2 

 

 

 

 

 

 

For the earliest start time: ETj = max (ETi + tij) 

ET1 = 0,  ET2 = ET1 + t12 = 0 + 3 = 3 

    ET3 = (ET2 + t23) = 3 + 2 = 5 

    ET4 = max (ET2 + t24, ET3 + t34) = max (3 + 1, 5 + 0) = 5 

    ET5 = ET4 + t45 = 5 + 1 = 6 

    ET6 = max (ET4 + t46, ET5 + t56) = max (5 + 3, 6 + 1) = 8 

    ET7 = ET6 + t67 = 8 + 1 = 0 

For latest start time: LTi = min (LTj – tij) 

    LT7 = 9, LT6 = LT7 + t67 = 9 – 1 = 8 

    LT5 = LT6 – t56 = 8 – 1 = 7 

    LT4 = min (LT5 – t45, LT6 – t46) = min (7 – 1, 8 – 3) = 5 

    LT3 = LT4 – t34 = 5 – 0 = 5 

    LT2 = min (LT3 – t23, LT4 – t24) = min (5 – 2, 5 – 1) = 3 

    LT1 = LT2 – t12 = 3 – 3 = 0 

Therefore, the critical path is 1→2→3→4→6→7 and the project duration time = 9 

months. 

 

 

ET = 0 
LT = 0 

3 1 2 4 6 7 

3 

5 

ET = 3 
LT = 3 

ET = 5 
LT = 5 

ET = 6 
LT = 7 

ET = 8 
LT = 8 

ET = 5 
LT = 5 

2 0

1 

3

1 1

1
ET = 9 
LT = 9 Project 

duration time 
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Slack of an Activity 

 This is the time an activity can be delayed without affecting the overall project 

duration i.e. extra time available for completing an activities 

Slack for activity i – j = LTj – ETj – tij 

Where LTj = Latest start time for activity j 

ETi = Earliest start time for activity i 

tij = Activity time between i and j  

Slack of an event 

This is difference between the earliest start time and the latest start time of each event. 

Note: The activities or event on the critical path does not have activity slack or event 

slack. 

From the example above, the slack activity for 2→4 = 5 – 3 – 1 = 1 months i.e. there is 

extra one month. The slack event for (5); = LT5 – ET5 = 7 – 6 = 1 month 

Note: Events is the only event not on the critical path. 

 

6. PROBABILITY CONSIDERATIONS IN PROJECT SCHEDULING 

PERT Analysis 

 In CPM, all the activities time estimate has a single value i.e. we are assuming that 

the activity time estimate is known with certainty, but in reality, it is rare that activity 

time estimate can be known with certainty. This is true since projects that are networked 

tends to be unique as such there is little historical evidence to be used as basis to predict 

future occurrence. As an alternative to CPM, PERT (Project Evaluation and Review 

Technique) uses probabilistic activity times. 

Example 4 

Using the example below to demonstrate PERT 

 A Southern Textile Company has decided to install a new computerized order-

processing system. In the past, order for the cloth the company produce were processed 

manually, which contributes to delay in delivering orders and as a result, lost sales. The 
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company wants to know how long it will take to install the new system. The network is 

given below: 

 

 

 

 

 

 

 

 All this state in CPM network, we should assign a single-time estimate to each 

network activity. However, in PERT networks we will determine three time estimates for 

each activity which will enable us to estimate the mean and variance for a beta 

distribution of the activity times. 

 We assume that the activity time estimate can be described by beta distribution for 

several reasons: 

1. The beta distribution mean and variance can be approximated by three estimates 

2. The beta distribution is continuous and has no predetermined shape it will take on 

the shape that is indicated by the time estimate given. 

3. It has become traditional to use beta distribution for PERT analysis 

The three estimates are (1) most likely time (m) (2) optimistic time (a) (3) pessimistic 

time (b) 

1. Most Likely Time (m): Is the time would most frequently occur if the activities 

were repeated many times 

2. Optimistic Time (a): Is the shortest possible time that an activity could be 

completed assuming everything went right 

3. Pessimistic Time (b): Is the longest possible time required for an activity to 

complete if everything went wrong. 

These 3 estimates will be determined the mean and variance of beta distribution: 

Equipment resting and changes 

Company Orientation 

System Training 
System 

Changeover 

System  
Development 

Manual Testing 
1 

2 6 

9 7 5 

4 

3 

8 
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Mean (Expected time) =  

Variance =   

The three estimates mean and variance of the southern textile network is given below: 

   Time estimate (week)  mean time   
Activities  a m b   t   Variance 
1 – 2   6 8 10   8   4/9 
1 – 3   3  6 9   6   1 
1 – 4   1  3 5   3   4/9 
2 – 5   0 0 0   0   0 
2 – 6   2 4 12   5   25/9 
3 – 5   2 3 4   3   1/9 
4 – 5   3 4 5   4   1/9 
4 – 8   2 2 2   2   0 
5 – 7   3 7 11   7   16/9 
5 – 8   2 4 6   4   4/9 
8 – 7   0 0 0   0   0 
6 – 9   1 4 7   4   1 
7 – 9   1 10 13   9   1 

To calculate the mean for activity 1 → 2, a = 6, m = 8, b = 10 

t = =  =  = 8 

Variance =    =       =    

 

Calculate the critical path using EST and LST 

 

 

 

 

 
2 

 
2 

 
2 

ET = 9 
LT = 9 

t = 2 

ET = 25 
LT = 25 

1 

2 6 

9 7 5 

4 

3 

8 

ET = 0 
LT = 0 

t = 3 

ET = 13 
LT = 21 

ET = 3 
LT = 5 

ET = 6 
LT = 6 

ET = 13 
LT = 16 

ET = 16 
LT = 16 

t = 0 t = 4 t = 4 

t = 4 

t = 9 t = 6 

ET = 9 
LT = 9 

t = 8 

t = 5 

t = 0 

t = 7 
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ETj = max (ETi + tij) 

LTi = min (LTj – tij) 

 The critical path is 1→3→5→7→9 and the project duration = 25 weeks 

 The project duration or expected time and the variance can be computed by 

summing the, expected time and variance for each activities in the critical path because 

PERT method assumes that activities are statistically independent 

Variance activities   Variance 

1 – 3     1 

3 – 5     1/9   1 + 1/9 + 16/9 + 4   = 62/9 weeks 

5 – 7     16/9      = 6.9 weeks 

7 – 9     4 

PERT also assumes that mean and variance of the network is normally distributed 

7. ESTIMATION ON PROJECT COMPLETION TIME USING STANDARD 

NORMAL VARIANCE VALUE 

We can interpret the expected time and variance as mean and variance as mean and 

variable of normal distribution. 

From above, mean µ = 25 weeks 

  Variance σ2 = 6.9 weeks 

Normal Distribution 

 

 

 

 

z =  where σ is standard deviation 

  x – proposed project completion time 

Example 5: Suppose the textile company manager told customers the new order-

processing system would be completely installed in 30 weeks. What is the probability 

that it will in fact be ready by that time? 

z

µ
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Solution: 

x = 30 weeks, µ = 25 weeks, σ2 = 6.9 weeks ⇒ σ = 2.63 

 

 

 

 

        z =  = 1.90 

 The z value 1.90 corresponds to 0.4713 on the normal distribution table, this 

means there is a possibility 0.5 + 0.4713 = 0.9713 of completing the project in 30 weeks. 

Alternatively, suppose one customer is so frustrated with delay order has told the textile 

company that if she does not have the new ordering system working in 22 weeks, she will 

trade elsewhere. 

Solution: 

 

 

z =   

 The value on the normal table corresponds to 0.3729. This mean the probability of 

completing the work in 22 weeks is 0.5 – 0.3729. 0.1271. 

Summary 

1. Basic time analysis is the calculation of critical path which is the shortest time 

which the project is completed. 

2. To determine the critical path, calculate the EST and LST for each event and 

compare them. The chain activities in which the LST and EST are the same is the 

critical path. 

3. The event or activities on the critical path has zero slack 

4. Given the 3 time estimates: Optimistic, most likely time, pessimistic the project 

time and variance can be computed. 

5. The probability of the project time is calculated using =  

µ = 25 x = 30

x = 22 µ
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Exercises 

a. Find the critical path of the following network using the EST/LST. 

 Activity   Preceeding Activity   Duration (Days) 

 1 - 4 

 2 7 7 

 3 1 5 

 4 1 6 

 5 2 2 

 6 3 3 

 7 5 5 

 8 2,6 11 

 9 7.8 7 

 10 3 4 

 11 4 3 

 12 9, 10, 11 4 

b. Find the activity slack and event slack in the network 

2. Assuming the variance of the activities on the critical path in question 1 are 1, 4, 

2.25, 9, 6.25, 9 respectively. Based on this value calculated the responsibility of 

achieving a schedule time of 40 days for the project duration 
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1
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ET = 16 
LT = 11 
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7

9

ET = 18 
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LT = 23

ET = 12 
LT = 12
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75 
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3 

8

ET = 9 
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The double line indicates he critical path 

b. Activity slack: LTj – ETi – tij 

   B → C = LTC – ETB – tBC = 16 – 4 – 7 = 5 days 

   C → E = LTE – ETC - tCE = 18 – 11 – 2 = 5 days 

   E → G = 23 – 13 – 5 = 5 days 

   D → I = 30 – 9 – 4 = 17 days 

   B → H = 27 – 4 – 6 = 17 days 

   H → I = 30 – 10 – 3 = 17 days 

Slack Event: 

  Event C = 16 – 11 = 5 days 

  Event E = 18 – 13 = 5 days 

  Event H = 22 – 10 = 17 days 

Variance = 1 + 4 + 2.25 + 9 + 6.25 + 9 

 σ2 = 31.5 
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INTEGER PROGRAMMING  

In this section, we focus on a class of problems that are modeled as linear 

programs with the additional requirement that some requirement that some or all of the 

decision variable must be integer. Such problems are called Integer Linear 

Programming Problems. The use of integer variables provides additional modeling 

flexibility. As a result, the number of practical applications that can be addressed with LP 

methodology is enlarged and includes capital budgeting, distribution system Design, 

Location problems etc.  

 

Types of integer Linear Programming Models 

Formally, the general integer programming problem is  

             Maximize f(x) 

             s.t 

             gj (x) = 0,  j = 1, 2, …, m 

             hi (x)  ≤ 0,  i = 1, 2, …, k 

                  X = (x1, x2, …, xq, xq+1 , …, xn) 

Where x1, x2, …, xq are integers for a given q. As problem remains essentially 

unsolved in the general case we confine our attentive to a useful simplification. We 

assume f and the hi’s are linear, these are no gj’s and all the variables in X must be non-

negative. Then the formulation can be expressed in matrix notation as  

Maximize  CX       … (1) 

           s.t 

AX ≤ b        … (2) 

X ≥ 0        … (3) 

x1, x 2, …, xq , integers     … (4) 

Where X = (x1, x2 , …, xq +1, …, xn)T, C is a 1 x n real vector, b is an m x 1 real vector, A 

is an m x n real matrix. 

 If q = n, the problem is termed an all- integer linear programming problem  
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If 1 < q < n, the problem is termed a mixed- integer linear programming problem. If 

(x1, x2, …, xq)  is replaced by xj = 0 or 1, i =1, 2…..n problem is termed a zero-one 

programmed problem.  

 

Rounding (Graphical Solution) 

One obvious approach to (1) – (4) is to neglect (4) and solve the resulting problem 

graphically. If the solution produced satisfies (4) then it must be optimal. If it does not 

then there are a number of options available. One straight forward strategy is to round the 

values of non integer values either up or down to achieve n integer solution. 

Let us explore this idea on the following integer – programming problem: 

(1)  Max z = 2x1 + 3x2 

 s.t 

           195x1 + 273x2 ≤ 1365 

            4x1 + 40x2 ≤ 140 

x1 ≤ 4 

 x1 x2 ≥ 0 and integer 

The Linear programming version of this problem has been solved graphically in (fig 1.0) 

it can be been that the optimal solution is  

(x1, x2) = (2.44, 3.26)  Z = 14.66 

 Rounding the decision variable to the nearest integer value yields a solution of x1 =2 and 

x2 = 3 for an objective function value of 13 or #13,000 annual cash flow. In fig 1, we 

shows the feasible solution points that provide integer values for x1 and x2. Is the rounded 

solution (x1, x2) = (2, 3) the optimal solution? The answer is no! as can be seen that the 

optimal integer solution is x1 = 4 and x2 = 2, with object function value of 14.00 or 

#14,000 annual cash flow. 
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Methods of Integer Programming  

The section unveils the methods that guarantees to find an optimal solution (if one 

exists) to any integer – programming problem. The two broad approaches Branch and 

Bound Technique and Cutting plane method. The earlier technique starts with the 

continuous optimum; but systematically “partitions” the solution space into sub problems 

by deleting parts that contain no feasible integer points. The cutting methods 

systematically adding special “secondary” constraints, which essentially represent 

necessary conditions for integrality, the continuous solution space is gradually modified 

until its continuous optimum extreme points satisfies the integer conditions.  

1 2 3 4 5

1 

2 

3 

5 

4 

X

X

Graphical Solution to the LP Relaxation 
Fig (1.0) 

Feasible 
region for the 
LP relaxation 

(2, 2) 

(3, 2) 

Rounded LP 
Solution (2, 

3) 

Opt. LP Relaxation 
Solution (2.44, 

3.26) 

Opt. Integer 
Solution (4, 2) 
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The branch and bound algorithm was originally developed by A.H. Larid and A. 

G. Doig. However, R.J. Dakin’s modification offers greater computational advantage and 

his version will be presented here.      

Branch and Bond Solution 

 BB is currently the most efficient general-purpose solution procedure or integer 

linear programs. The BB procedure begins by solving the LP Relaxation of the integer 

linear program. The LP Relaxation of the above problem is stated below, 

Max 2x1 + 3x2    x1 = blocks of town houses purchased 

s.t      x2 = apartment building 

195x1 + 273x2 ≤ 1365   funds available 

4x1 + 40x2 ≤ 140    Manager’s time 

x1 ≤ 4      Town house availability 

x1, x2 ≥ 0 

 

 

 
 

1 
LPR Value 

=14.66 
X1 = 2.44  
X2 = 3.26 

 
2 

LPR Value 
=13.90 
X1 = 2  

X2 = 3.30 

 
3 

LPR Value 
=14.58 
X1 = 3  

X2 = 2.86 

 
4 

LPR Value 
=14.00 
X1 = 4 
X2 = 2 

 
5 
 

Infeasible 

Complete BB Solution 

Max 2x1 + 3x2  
s.t 
195x1 + 273x2 ≤ 1365 
4x1 + 40x2 ≤ 140 
x1 ≤ 4 x1 ≤ 2 
x1, x2, ≥ 0 

x1 ≤ 2 

Max 2x1 + 3x2  
s.t 
195x1 + 273x2 ≤ 1365 
4x1 + 40x2 ≤ 140 
x1 ≤ 4 x1 ≥ 3 
x1, x2, ≥ 0 

x1 ≥ 3 

UB = 14.66  (X1 = 2, X2 = 
3 
LB = 13.00   Value = 13) 

Max 2x1 + 3x2  
s.t 
195x1 + 273x2 ≤ 1365 
4x1 + 40x2 ≤ 140 
x1 ≤ 4 x1 ≥ 3 
x1, x2, ≥ 0 

x2 ≥ 3 

x2 ≤ 2 
Max 2x1 + 3x2  
s.t 
195x1 + 273x2 ≤ 1365 
4x1 + 40x2 ≤ 140 
x1 ≤ 4 x1 ≤ 2 
x1, x2, ≥ 0 

 Best feasible integer solution 
found: x1 = 4, x2 = 2; value = 
14 see node 4, 

Note:   UB = 14.00 
LB = 14.00 
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The Branch and bound solution procedure could be summarized as follows 

1. Solve the LP Relaxation of the IP at node 1 set UB value equal to the value of the 

LP Solution 

2. Find n feasible  integer solution. Set LB equal to the valueo f the feasible  integer 

solution 

3. Is UB = LB? If yes, the optimal solution is the feasible solution with value = LB 

4. Otherwise branch  from  the node with  the  greatest  LP  value.  Find  the  variable 

(call  it  xj)  that  is  furthest  from  being  integral.  Create  two  branches  and  two 

descendant nodes; one with xj ≤ (xj) and one with xj ≥ (kj) + 1. 

5. Solve the LP Relaxation at each of the descendant nodes, and record its LP value 

6. Re compute the upper bound by  finding the maximum over all nod  from which 

there are no branches 

7. Re  compute  the  lower  bound  as  the max  value  of  all  feasible  integer  solution 

found to date. Test for 93) and treat the decision arrive at accordingly. 

 

Extension to Mixed-Integer Integer Programs 

 One of the advantage of BB Solution procedure for integer programming is that it 

is applicable to both all-integer and mixed-integer linear programs. To see how the BB 

solution approach can be applied to a mixed-integer linear program, let us return to 

problem (1) and suppose that x2 was not required to be integer i.e.  

Max 2x1 + 3x2  

s.t 

195x1 + 273x2 ≤ 1365 

4x1 + 40x2 ≤ 140 

x1 ≤ 4 

x1, x2, ≥ 0 and x1 integer 

The BB solution procedure is illustrated using the decision tree below: 
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From the above, since the upper and lower bound are equal, the optimal solution to 

the problem (original) with only x1 required to be integer has been found. It is given by x1 

= 3 and x2 = 2.86, with an objective function value of 14.58 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1 

LPR Value 
=14.66 

X1 = 2.44  
X2 = 3.26 

 
2 

LPR Value 
=13.90 
X1 = 2  

X2 = 3.30 

 
3 

LPR Value 
=14.58 
X1 = 3  

X2 = 2.86 

Max 2x1 + 3x2  
s.t 
195x1 + 273x2 ≤ 1365 
4x1 + 40x2 ≤ 140 
x1 ≤ 4 x1 ≤ 2 
x1, x2, ≥ 0 and x1 integer 

x1 ≤ 2 

Max 2x1 + 3x2  
s.t 
195x1 + 273x2 ≤ 1365 
4x1 + 40x2 ≤ 140 
x1 ≤ 4 x1 ≥ 3 
x1, x2, ≥ 0 

x1 ≥ 3 

 Best feasible integer solution 
found: x1 = 3, x2 = 2.86; 
value = 14.58 

Note:   UB = 14.58 
LB = 14.58 

Compare 
∴UB = 14.58 
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INVENTORY PROBLEMS 
INTRODUCTION 

 An inventory can be defined as any idle resource of an enterprise. An inventory 

problem exists when it is necessary to stock physical goods or commodities for the 

purpose of satisfying demand over a specified time horizon (finite or infinite). Almost 

every business must stock goods to ensure smooth and efficient running of its operation. 

Decisions regarding how much and when to order are typical of every inventory problem. 

The required demand maybe satisfied by stocking once for the entire time horizon or by 

stocking separately for every time unit of the horizon. The two extreme situations 

(overstocking and under-stocking) are costly. Decisions may thus be based on the 

minimization of an appropriate cost function that balances the total costs resulting from 

over-stocking and under-stocking. 

A GENERALIZED INVENTORY MODEL 

 The ultimate objective of an inventory model is to answer two questions. 

1. How much to order? 

2. When to order 

The answer to the first question is expressed in terms of what we call the order 

quantity and the when-to-order decision is the inventory level at which a new order 

should be placed usually expressed in terms of re-order point. 

 The order quantity and re-order pint are normally determined by minimizing the 

total inventory cost that can be expressed as a function of these two variables. We can 

summarize the total cost of a general inventory model as a function of its principal 

components in the following manner: 

(Total inventory cost) =  (purchasing cost) + (setup cost) + (holding cost)  

+ (shortage cost) 

TYPES OF INVENTORY MODELS 

In general, inventory models are classified into two categories: 

1. Deterministic model and 

2. Stochastic model 
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Definitions: 

1. Delivery lags or lead times is the time between the placement of an order and its 

receipt and may be deterministic or stochastic. 

2. Time Horizon defined the period over which the inventory level will be controlled. 

This horizon may be finite or infinite depending on the time period which demand can 

be forecast reliably. 

3. Stock replacement: Although an inventory system may operate with delivery lags. 

The actual replenishment of stock may occur instantaneously or uniformly. 

Instantaneous replenishment can occur when the stock is purchased from outside 

sources. Uniform replenishment may occur when the product is manufactured locally 

within the organization. 

DETERMINISTIC MODEL (Single item static model) 

 The simplest type of inventory model occurs when demand is constant over time 

with instantaneous replenishment and no shortages. Typical situations to which this 

model may apply are: 

1. The use of light bulbs in a building 

2. The use of clerical supplies, such as paper, pads and pencil in a large company 

3. The consumption of staple food items, such as bread and milk 

Fig (1) illustrates the variation of the inventory level. It is assumed that demand occurs at 

the rate β (per unit time). The highest level of inventory occurs when the inventory level 

reaches zero level y/β time units after the order quantity y is received. 
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Fig. 1 

The smaller the order quantity y, the more frequent will be the placement of new 

orders. However, the average level of inventory hold in stock will be reduced. On the 

other hand, larger order quantities indicate larger inventory level but less frequent 

placement of order (see fig. 2). 

Average Inventory y/2 

Points in time at which orders are received 

x time t0 – y/β 

Inventory 
Level 

y 

x time Fig.  2 

Inventory 
Level 

y 

High 
Ordering 

F

Low 
Ordering 

F
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 Because there are costs associated with placing orders and holding inventory in 

stock, the quantity y is selected to allow a compromise between the two types of costs. 

This is the basis for formulating the inventory model. 

 Let K be the set up cost incurred every time an order is placed and assume that the 

holding cost per unit inventory per unit time is k. Hence, the total cost per unit time TCU 

as a function of y may be written as  

TCU (y) = Setup cost/unit time + holding cost/unit time 

TCU (y) =    + h (y/2) 

As seen from fig. (1), the length of each inventory cycle is to = y / β and the 

average inventory in stock is y/2 

 The optimum value of y is obtained by minimizing TCU (y) with respect to y. 

Thus, assuming that y is a continuous variable, we have 

   = kβ/y + h/2 = 0 

Which yields the optimum order quantity as 

y =    

(It can be proved that y minimizes TCU(y) by showing that the 2nd derivates at y is 

strictly positive). The order quantity above is usually referred to as Wilson’s economic lot 

size. 

 The optimum policy of the model calls for ordering units every to    time units. 

The optimum cost TCU (y) obtained by direct substitution is √2k/β. 

EXAMPLE 1: 

 The daily demand for a commodity is approximately 100 units. Every time an 

order dared, fixed cost is N100 is incurred. The daily holding cost per unit inventory if 

N0.02. If the lead time is 12 days. Determine the economic lot size and the re-order point 

SOLUTION: 

From the earlier formula the economic lot size is 

y =    
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= √2* 100*/0.02 = 1000 units 

The associated optimum cycle length is this given as 

b0* =    = 1000/100 = 10 days 

Since the lead time is 12 days add the cycle length is 10 days re-ordering occurs when the 

level of inventory is sufficient to satisfy the demand for two (- 12, 10) days. Thus the 

quantity y* = 1000 is ordered when the level of inventory reaches 2 * 100 = 200 units. 

 Notice that the “effective” lead time is taken equal to 2 days rather than 12 days. 

This result occurs because the lead time is longer than t0*. 

EXAMPLE 12: 

 A manufacturer has to supply his customer’ with 600 units of his product per year. 

Shortages are not allowed and the shortage cost amounts to N0.60 per and per year. The 

setup cost per run is N80.00. Find the optimum run size and minimum average yearly 

cost. 

Solution: 

Since β = 600 units/year 

 K = N80.00 

 h = N0.06 

 

y =    

√2 * 80 * 600 / 0.06 = 400 units opt. run time 

And the minimum average yearly cost = √2kβh 

= √2 * 80 * 60 * 0.60 

= N240.00 

EXERCISES 

1.  XYZ Company purchases a component used in the manufacturing automobile 

generators directly from the suppliers. XYZ’s generator production which is 

operated at a constant rate will required 1000 components per month throughout 

the year (12,000 units annually). If ordering cost is N25 per order, unit cost is 
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N200 per component and annual inventory holding costs are charged at 20%. 

Answer the following inventory policy question for XYZ 

a. What is the economic order quantity (EOQ) for this component? 

b. What is the length of cycle time in months? 

c. What are the total annual inventory building and ordering cost associated with 

your recommended EOQ? 

2.  The demand for a particular item is 18,000 units per year. The holding cost per 

unit is N1.20 per year, and the cost of the replenishment rate is instantaneous. 

Determine 

a. Optimum order quantity 

b. Number of orders per year 

c. Time between orders and 

d. Total cost per year when the cost of 1 unit is N1.00 
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GAME THEORY 

 A game is defined to be a contest between opponents in which each has a no 

(finite of infinite) of courses of action, strategies and the outcome of any combination of 

strategies is known beforehand. 

Definitions: 

1. A two – person zero – sum game is one played by 2 persons or groups where the 

gain of one person will be exactly equal to the loss of the other so that the sum total of 

gains and losses will be equal to zero. A 2 – person zero-sum game can be formulated in 

the form of a matrix payoff matrix shown below: 

Player C Strategies 

 

 

Player R 

Strategy 

The player R controls the rows R1, R2, …, Rm which represents his strategies while player 

C controls the columns C1, C2, … Cn which represents his strategies. If player R chooses 

be ith strategy and player C the jth strategy then the element aij is assumed to represent 

the payoff from player C to player R i.e. if aij is a +ve no, it represents payment of C to R 

and if –ve it denotes the payment of R to C. 

2. The element aij of the payoff matrix (of order mx n) of a game is called a saddled 

point if it is minimum along the ith row elements and the maximum along the jth column 

elements. Thus a game is said to be strictly determined, if an only if it has a saddled 

value. The value of the game is equal to the saddle point. The optimal strategies for the 2 

players are given by the row that contains the saddled point for the player R, and the 

column that contains the saddle point for the Player C. 

Determination of Saddle Point – Minimax (Maximum) Principle 

 C1 C2 C3 . . .  C1 

R1 a11 a12 a13 . . . a1n 

R2 a21 a22 a23 . . .  a2n 

R3 a31 a32 a33 . . . A3n 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

. . . . 
. 
. 

Rm am1 am2 am3 . . . amn 
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 In any game problem, each player is interest in determining his own optimal 

strategy. However, because of the lack of information regarding the specific strategies 

selected by the other players, optimality has to be based on a conservative principle so, 

each player selects his strategy which guarantees a payoff that can never be worse by the 

selection of his opponents, this idea is called the Minimax (or Maximum) principle and 

is illustrated below. 

Example: 

 Let the payoff matrix of a 2-person zero-sum game be as in the matrix below. Find 

the optimal strategies of the players. 

Player C Strategies 

   C1 C2 C3 C4 

 

Row 

Minimum

Player R 

strategy 

R1 7 1 8 4 1 

R2 5 4 6 7 4 

R3 6 2 -3 6 -3 

 Column 

Maximum 

7 4 8 7  

If player R selects his strategy R1, he may gain 7, 1, 8, 4 depending on the strategy 

selected by player C. However, player R is guaranteed a gain of at least 1 = (7, 1, 8, 4) 

irrespective of the strategy of C. Similarly R is guaranteed a gain of at least 42min (5, 4, 

6 7) if he choose strategy R2 and at least -3 = min (6, 2, -3, 6) if strategy R3 is selected. 

Thus if player R wants to maximize his gain irrespective of strategy selected by C, he has 

to maximize the minimum gain i.e. max (1, 4, -3) = 4. Thus the strategy R2 is to be 

chosen by R based on the maximum principle with 4 as the maximum value of the game. 

 On the othe hand, if player C chooses strategy C, he loses 7, 5, 6 depending on the 

strategy selected by player R. however he can lose no more than 7 = max (7, 5, 6) 

regardless of R’s strategies. In similar manner, player C loses no more than 4 = max (1, 4, 

2), 8 = max (8, 6, -3) and 7 = max (4, 7, 6) by choosing strategies C2, C3 and C4 

respectively regardless of the strategies selected by R. Thus C selects the particular 
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strategy which minimizes his maximum losses irrespective of the strategies of R, i.e. min 

(7, 4, 8, 7). The minimum of maximum loss is given by strategy C2 based on minimax 

principle. 

 A game as in the e.g. above, where the minimax value = maximin value the 

corresponding pure strategies are called optimal strategies and the game is said to have a 

saddle point. 

 As illustrated below, it is possible to have a situation where there is no saddle 

point and hence one cannot find a pure strategy solution consider a game for which the 

pay off matrix is as below: 

Player C Strategies 

   C1 C2 C3 

 

Row Minimum 

Player R 

strategy 

R1 6 2 7 2 

R2 3 4 8 3 

R3 5 4 1 1 

 Column 

Maximum 

7 4 8  

So, in general maximin ≤ value of game ≤ minimax value. (3. 27) 

 As in the last example above, mixed strategies in which both players will search 

for a correct strategy mixture to find equilibrium, has to be used. The value of the game 

at equilibrium is uniquely determined by the right strategy mixture and satisfies the 

inequality (3.27). 

 The correct strategy mixture for each player is determined by assigning to each 

strategy its probability of being chosen. Let r1, r2, ……….. rn represents the probabilities 

with which player C selects the pure strategies R1, R2 …………. Rm respectively and let 

C1, C2 ………. Cm be the probabilities with which player C selects the pure strategies 

respectively. The sum of the probabilities for the strategies of each player may be equal 

to one i.e. 
m 
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∑ ri = 1,   ri ≥ 0 i = 1, 2, …, m 
i=1 

and           (3.28) 
m 

∑ ci = 1,   ci ≥ 0 j = 1, 2, …, n 
j =1 

 The solution of mixed strategy problems is also based on the minimax principle in 

the sense that R selects the values of ri so as to maximize the smallest expected value of 

pay off in a column, where as C chooses the values of cj so as to minimize the largest 

expected value of pay off in a row. 

 Thus, the player R finds ri which will 
            m              m                           m 
maximize    minimize of  ∑ ai1 ri, ∑ ai1 ri, … ∑ ain ri, 

           i=1              i=1              i=1 
w.r.t ri with r, ≥ 0  
            m 
and ∑ ri = 1          (3.29) 
          i=1 

and the player C selects cj which will 
            n              n                            n 
maximize    minimize of  ∑ aij cj, ∑ a2j cj, … ∑ amj cj, 

           i=1              i=1              i=1 
w.r.t ci with r, ≥ 0  
            m 
and ∑ ri = 1          (3.30) 
         j=1 

Let ri (i = 1, 2, …, m) and cj (j = 1, 2, …, n) denote the optimal solution, since each pay 
off element aij is associated with a probability combination (ri, cj) the optimal expected 
value of the game is given optimum expected value of the game =         m      n 

and ∑ ∑ = aijr ic          (3.31) 
         i=1  j=1 
 
Solution of a Game Problem 

Equation (3.29) can be transformed to a LPP as follows 
           m                 m  
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Let v = min ∑ ai1 ri, … ∑ ain ri, 
           i=1        i=1 
Then (3.29) becomes 
Maximize f (r1, r2, … rm) = v subject to 
 m 

∑ ai1 ri, ≥ v 
i =1  
  m  

∑ ai2 ri, ≥ v          (3.32) 
i=1 
 

. 

. 

. 
  m  

∑ ain ri, ≥ v 
i=1 

And ri ≥ 0, i = 1, 2, … m 

Clearly, (3.32) is a LPP, whose solution gives the value of the game. The simplex method 

is used to solve the game problem below 

Example 

 There are 2 competing departmental stores R and C in a city. Both the stores 

customers are equally divided between the two. Both the store, plan to run annual 

discount sales in the last week of December for this they want to attract more number of 

customers by using advertisement through newspaper, radio and television. By seeing the 

market trend, the store R constructed the following pay off matrix below, where the 

number in the matrix includes a gain or loss of customer. 

 

 

 

 

Strategies of Store C 

  

   C1 C2 C3 

 

Row Minimum 
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Strategies 

Store C 

R1 40 50 -70 -70 

R2 10 25 -10 -10 

R3 100 30 60 30 

 Column 

Maximum 

100 50 60  

 

Assuming that a gain of customers to store R means a loss to C, find the optimal 

strategies for both the store along with the value of the gains. 

Solution 

The minimax and maximin values for this pay off matrix are 50 and 30 respectively and 

hence the game does not have saddle point. Now, dividing the constraint in (3.32) by v 

we have 

Maximize f (r1, r2, … rm) = v 
  m 

∑ ai1 ri, ≥ 1 
i =1          v 
 
  m  

∑ ai2 ri, ≥ 1          (3.33) 
i=1            v 

. 

. 

. 
  m  

∑ ain ri, ≥ v 
i=1           v 

And ri ≥ 0, i = 1, 2, … m 

Defining new variables xi as 

xi = ri   i = 1, 2, … m 
       v 

Note that 

Maximum of v = minimum of 1 = minimum of    m  
          v        ∑ xi 

              i=1  

The LPP (3.32) can be restated as  
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Maximize f(x1, x2, … xm) = v    m  

         ∑ xi subject to 
                      i=1  

  m 

∑ ai1 xi, ≥ 1 
i =1           
  
 m  

∑ ai2 xi, ≥ 1          (3.33) 
i=1            v 

. 

. 

. 
  m  

∑ ain xi, ≥ v 
i=1           

And xi ≥ 0, i = 1, 2, … m 

Respectively from (3.30) we have the LPP 

Maximize g(y1, y2, … ym) =  n  

∑ yj   subject to 
j =1           

 
  m 

∑ a1j yj, ≤ 1 
i =1           
  
 m  

∑ a2j yj, ≤1          (3.34) 
i=1            v 

. 

. 

. 
  m  

∑ a1j yj, ≤ 1 
i=1           

And yi ≥ 0, j = 1, 2, … n 

Where g =   1   , yj  =   cj    ,   j = 1, 2, … n 
          v              v 

For this example, the problem of store C can state as LPP as follows: 

Maximize g = y1 + y2 + y3 subject to 
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  a11y1 + a12y2 + a12y3 ≤ 1 

  a21y1 + a22y2 + a23y3 ≤ 1 

  a31y1 + a32y2 + a33y3 ≤ 1 

And   y1 ≥ 0, i = 1, 2, 3 

This is restated as 

Maximize f = y1 + y2 + y3 subject to 

  40y1 + 50y2 – 70y3 + y4 = 1 

  10y1 + 25y2 – 10y3 + y5 = 1 

  100y1 + 30y2 + 60y3 + y6 = 1 

And  y1 ≥ 0, i = 1, 2, 3 

Basis CB y1 
+1 

y2 
+1 

y3 
+1 

y4 
0 

y5 
0 

y6 
0 

Ratios 

y4 0 40 50 -70 1 0 0 1 1 
40 

y5 0 10 25 -10 0 1 0 1 1 
10 

y6 0 100 30 60 0 0 1 1   1     smallest value
100 

zj 0 0 0 0 0 0 0  
cj - zj +1 +1 +1 0 0 0   

 

 

 

 

Basis CB y1 
+1 

y2 
+1 

y3 
+1 

y4 
0 

y5 
0 

y6 
0 

Ratios 

y4 0 0 38 -94 1 0 4 
10 

6 
10 

6      smallest value
380 

y5 0 0 22 -16 0 1 1 
10 

9 
10 

9 
220 
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y1 1 1 3 
10 

3 
5 0 0 1 

100 
1 

100
1 
30 

zj 0 3 
10 

3 
5 0 0 1 

100 
1 

100  

cj - zj 0 7 
10 

2 
5 

0 0 -1 
100 

  

 

 

Basis CB y1 
+1 

y2 
+1 

y3 
+1 

y4 
0 

y5 
0 

y6 
0 

Ratios 

y2 1 0 1 -47 
19 

1 
38 0 -1 

95 
3 

190  

y5 0 0 0 730 
19 

-11 
19 1 5 

38 
21 
38 

21 
1460 

y1 1 1 0 51 
38 

-3 
360 0 1 

76 
1 

190
    1 
255  smallest value

zj 1 1 43 
38 

7 
380 0 1 

380 
2 
95  

cj - zj 0 0 81 
38 

-7 
380 

0 -1 
380 

  

 
 
 
Basis CB y1 

+1 
y2 
+1 

y3 
+1 

y4 
0 

y5 
0 

y6 
0 

Ratios 

y4 0 94 
51 1 0 1 

85 0 7 
510 

13 
510  

y5 0 -1460 
51 0 0 -114 

323 1 -25 
102 

41 
102  

y6 1 38 
51 0 1 -1 

170 0 1 
102 

1 
255  

zj 132 
51 1 1 1 

170 0 2 
85 

1 
34  

cj - zj -81 
51 0 0 -1 

170 
0 -12 

510 
  

v* = 1 = 34 
       g 

Thus, the optimum solution for C 

v* = - 1 = 34, 
          g 
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c2
* = y2

* v* = 13   * 34 = 13 
           510             15 

c3
* = y3

* v* =   1    * 34 = 2 
           510             15 

c1
* = 0 

The optimal strategy for R is given by 

v* = 34, 

r1
* = x1 *v* =   1   *34 = 1 

            170           5, 

r2
* = x2 *v* = 0, 

r3
* = 2    *34 = 4 

        85            5 

Thus, store R will gain 34 customers from C when both apply the optimal advertising 

strategies during the annual reduction sale period. 

 

Exercises 

1. Find the optimal strategies and the value of the 2 games whose payoff matrices are 

given below: 

 

 

 

 

 

 

2. An m x n matrix is called a Latin square if each row and column contains each of 

the integers from 1 to m. Show that a game which has this as its payoff matrix has 

the value ½ (1 + m) 

3. Two players fight a duel, they face other 2n paces apart and each has a single 

bullet in his gun. At a signal each may-fire, if either is hit or if both fire the game 

ends. Otherwise both advance one pace and may again fire. The game of course 

 C1 C2 C3 C4 

R1 1 9 6 0 

R2 2 3 8 4 

R3 -5 -2 10 -3 

R4 7 4 -2 -5 

P1/P2 T1 T2 T3 T4 

S1 7 8 12 14 

S2 5 6 -10 -12 

S3 4 -4 -3 4 

S4 7 9 13 12 
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ends anyway by the time n paces has been taken. The probability of either hitting 

his target if he fires after the ith pace forward is 1/n. The payoff is +1 to a player 

who survives after his opponent is hit, and 0 if neither or both are hit; the guns are 

silent so that neither knows whether or not his opponent has fired. 

 Show that if n = 4, the strategy shoot after taking two steps is optimal for both but 

that if n = 4, a mixed strategy is optimal. 
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DECISION THEORY 

 The ultimate purpose of any operations research analysis is to enable operations to 

be run efficiently and effectively, and this in turn involves selecting the best of the 

alternative ways and means of conducting operations. Fundamental, then, to any 

operations research exercise is the final step of making a decision between alternatives, 

and the principles underlying such decision making are referred to as Decision Theory 

Structuring the Decision Problem 

 To illustrate the decision analysis approach, let us consider the case of Political 

Systems, Inc (PSI), a newly formed computer service from specializing in information 

services such as surveys and data analysis for individuals running for political office. The 

firm is in the final stages of selecting a computer system for its Midwest branch, located 

in Lagos. While PSI has decided on a computer manufacturer, it is currently attempting to 

determine the size of the computer system that would be most economical. We will use 

decision theory to help PSI make its computer decision. 

 The first step is to identify the alternatives considered by the decision maker. For 

PSI, the final decision will be to select one of the three computer systems, which differ in 

size and capacity. The three decision alternatives denoted by D1, D2, and D3 are as 

follows: 

 D1 – large computer system 

 D2 – Medium computer system 

 D3 – Small computer system 

The second step is to identify the future events that might occur. There events, 

which are not under the control of the decision maker, are referred to as the States of 

nature. Thus, the PSI states of nature denoted S1 and S2 are as follows: 

 S1 – high customer acceptance of PSI services 

 S2 – low customer acceptance of PSI services 

Given the three decision alternatives and the two states of nature, which 

computer system should PSI select? To answer this question, we will need information 
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on the profit associated with each combination of a decision alternative and a state of 

nature. 

Payoff Tables 

 We denote the decision alternatives by D1, D2, …, Dm, the states of nature by S1, 

S2, … Sn; and the return associated with decision Di and state  Sj by Vij (I = 1, 2, …, m i 

j = 1, 2, …, n). A process requiring the implementation of just one decision is defined 

completely by Table 1. A table of this form is referred as a payoff table. In general, 

entries in (a) can be stated in terms of profits, costs etc. Using the best information 

available, management has estimated the payoffs or profits for the PSI problem. There 

estimates are presented in Table 2 

Table 1: States of Nature    

 S1 S2 … Sn 

D1 V11 V12 … V1n 

D2 V21 V22 … V2n 

… …. … … … 

Dm Vm1 Vm2 … Vmn 

 

Table 2: 

Decision alternatives High Acceptance S1  Low Acceptance S2 

Large system  D1  200,000  20,000 

Medium system D2  150,000  20,000 

Small system  D3  100,000  60,000 

Decision Trees 

 A decision tree provides a graphical presentation of the decision-making process. 

Figure 1 shows a decision tree for the PSI problem. Note that the three shows the natural 

or logical progress that will occur overtime. 

 

Figure 1 

    High (S2) 
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      200,000 
 Large (D1)  
   2 
    Low (S2)  
      -20,000 
    High (S1)  
      150,000 
  Medium (D2)  
1   3 
    Low (S2)  
      20,000 
    High (S1)  
      100,000 

Small (D3)  
   4 
    Low (S2)  
      60,000 
Using the general terminology associated with decision trees, we will refer to the 

intersection or junction points of the tree as nodes and the arcs or connectors between the 

nodes as branches. Fig 1 shows the PSI decision tree with the nodes numbered 1 to 4. 

When the branches leaving a given node are decision branches, we refer to the nodes as 

decision node. Decision nodes are denoted by squares. Similarly, when the branches 

leaving a given node are state-of-nature branches, we refer to the node as a state-of-

nature node. State-of-nature nodes are denoted by circles. Using the node-labelling 

procedure, node 1 is a decision node, where as nodes 2, 3 and 4 are states of nature nodes. 

Decision Making without Probabilities 

 This section consider approaches to decision making that do not require 

knowledge of the probabilities of the states of nature 

Optimistic Approach 

The (~) evaluates each decision alternative in terms of the best payoff that can occur. The 

decision alternative that is recommended is the one that provides the best possible payoff. 

For a problem in which maximum profit is desired, as it is in the PSI problem, the 

optimistic approach would lead the decision maker to choose the alternative 

corresponding to the largest profit. For problems involving minimization, this approach 
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leads to choosing the alternative with the smallest payoff. To illustrate the use of the ~, 

we will show how it can be used to develop a recommendation for the PSI problem. 

Table 3 

 Decision alternatives  Maximum Payoff 

 Large system  D1  200,000    ←Maximum of the maximum 

 Medium system D2  150,000 payoff values 

 Small system  D3  100,000 

Conservative Approach 

 The conservative approach evaluates each decision alternatives in terms of the 

most payoff that can occur. The decision alternative recommended is the one that 

provides the best of the worst possible payoffs. For a problem in which the output 

measure is profit, as it is in PSI problems. The (~) would lead the decision maker to 

chose the alternative that maximizes the minimum possible profit that could be obtained. 

For problems involving minimization, this approach identifies the alternative that will 

minimize the maximum payoff. 

Table 4 

Decision alternatives  Maximum Payoff 

 Large system  D1  -20,000     

 Medium system D2  20,000  

 Small system  D3  60,000 ← Maximum of the maximum 

payoff values 

Minimax Regret Approach 

 (~) is another approach to decision making with certainty. This approach is neither 

purely optimistic nor purely conservative. We illustrate the (~) for the PSI problem. In 

maximization problem, the general expression for opportunity loss or regret is given by 

the formula: 

Opportunity loss or Regret 

Rij = Vj – Vij  ---  (*) 

Where 



http://www.unaab.edu.ng 
 

Rij = reject associated with decision alternative Di and state of nature Sj 

Vj = best payoff value under state of nature Sj 

Vij = payoff associated with decision alternative D1 and state of nature Sj 

Using eq (*) and the payoff in Table 2, we can compute the regret associated with all 

combinations of decision alternatives Di and States of nature Sj 

Table 5 

Regret or opportunity loss for   States of Nature 
the PSI problem 

Decision Alternatives   High Acceptance Low Acceptance 
       S1   S2 

Large System  D1    0   80,000 

Medium System D2    50,000   40,000 

Small System  D3    100,00 0  0 

 

Table 6 

Decision Alternatives  Maximum Regret or Opportunity Loss 

Large system  D1   80,000 

Medium system D2   50,000 ← Minimum of the maximum  

Small system  D3   100,000     regret 

 

For the PSI problem, the decision to select a medium-computer system, with a 

corresponding regret of N50,000, is the recommended minimax regret decision. 

Rank: In cost minimization problems, Vj will be the smallest entry in column j, and 

equation (*) must be changed to 

  Rij = Vij – Vj 

 

Decision Making with Probabilities 

 In many decision-making situations, it is possible to obtain probability estimates 

for each of the states of nature. When such probabilities are available, the expected value 
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approach can be used to identify the best decision alternative. The expect value approach 

evaluates each decision alternative in terms of its expected value. The recommended 

decision alternative is the one that provides the best expected value. 

Let 

  N = the number of states of nature 

  P (Sj) = the probability of state of nature Sj 

  P (Sj) ≥ 0 for all states of nature 

  P (Sj) = P (S1) + P (S2) + … + P (SN) = 1 

Expected Value of Decision Alternative Di 

 

 
 

Using the payoff values Vij shown in Tale 1 and supposes that PSI management believes 

that S1, the high acceptance state of nature, has a 0.3 probability of occurrence and that 

S2, the low-acceptance state of nature, has a 0.7 probability. Thus, P (S1) = 0.3 and P (S2) 

= 0.7 and equation (**), expected values for the three decision alternatives can be 

calculated: 

 EV (D1) = 0.3 (200,000) + 0.7 (-20,000) = N46,000 

 EV (D2) = 0.3 (150,000) + 0.7 (20,000) = N59,000 

 EV (D3) = 0.3 (100,000) + 0.7 (60,000) = N72,000 

 Thus, according to the expected value approach, D3 is the recommended decision 

since D3 has the highest expected value (N72,000) 
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Using Decision Tree 

Figure 2 
    High (S2) 
      200,000 
    P (S1) = 0.3 
 

2 
 

Low (S2)  
      -20,000 
    P (S2) = 0.7 

High (S1)  
      150,000 
     P (S1) = 0.3 
1   3 
     

Low (S2)  
      20,000 
    P (S2) = 0.7 

High (S1)  
      100,000 

   P (S1) = 0.3 
   4 
     

Low (S2)  
      60,000 
    P (S2) = 0.7 
PSI Decision Tree with State-of-Nature Branch Probabilities 
 
 

Large (D1) 
2 EV = 0.3 (200,000) + 0.7 (-20,000) = N46,000 

 
 
 
 Medium (D2) 

1   3 EV = 0.3 (150,000) + 0.7 (20,000) = N59,000 

 

 

 

   4 EV = 0.3 (100,000) + 0.7 (60,000)= N72,000 

Applying the Expected Value Approach Using Decision Trees 
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Sensitivity Analysis 

 In this section, we consider how changes in the probability estimates for the states 

of nature affect or utter the recommended decision. The study of the effect of such 

changes is referred to as ~. One approach to ~ is to consider different probabilities for the 

states of nature and then recompute the expected value for each decision alternative. 

Repeating this several times, we can begin to learn how changes in the probabilities for 

the states of nature affect the recommended decision. For example, suppose that we 

consider a change in the probabilities for the states of nature such that P (S1) = 0.6 and P 

(S2) = 0.4. Using these probabilities and repeating the expected value computations, we 

find the following: 

EV (D1) = 0.6 (200,000) + 0.4 (-20,000) = N112,000 

 EV (D2) = 0.6 (150,000) + 0.4 (20,000) = N98,000 

 EV (D3) = 0.6 (100,000) + 0.4 (60,000) = N84,000 

 Thus, with these probabilities, the recommended decision alternative is D1, with an 

expected value of N112,000. 

 The only drawback to this approach is the numerous calculations required to 

evaluate the effect of several possible changes in the state-of-nature probabilities. 
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DYNAMIC PROGRAMMING AND MULTISTAGE OPTIMIZATION 

 Optimization problems consist in selecting from among the feasible alternatives 

one which is economically optimal. A problem of this nature is solved by formulating a 

mathematical model of the problem, typically a maximization model in which a 

preference function is to be maximized subject to a number of side conditions, and 

applying a method of solution tailored to the particular kind of problem. The variables of 

the model, interdependent through the side relations, are determined simultaneously in 

the solution. 

 Consider, for example, the linear programming problem 

  f =  8x1 + 10x2 = max 

   4x1 + 2x2 ≤ 12      (1) 

   x1, x2 ≥ 0 

to be interpreted as a problem of optimal capacity utilization. x1 and x2 are quantities 

produced per period of two commodities which require 4 and 2 machine hours per unit, 

and the right-hand side of the side condition is maximum available machine time per 

period, the coefficients in the preference function are unit profits. Solving by the simples 

method (or, what is simpler in such a trivial case, geometrically or by numerical 

inspection) we get. 

 x1 =0, x2 =, f = 60 

 The optimal value of the two decision variables is found simultatiously in the 

solution procedure. 

 An alternative approach is to determine the variable one at a time (sequentially), 

decomposing the problem into a series of stages each corresponding to a sub problem in 

only one variable, and solving the two  single-variable  problem (1). This is the basic idea 

underlying dynamic programming (DP).  



http://www.unaab.edu.ng 
 

The decomposition of the problem (1) can be illustrated as shown in fig. 8. Let us 

assume for convenience that commodity no. 1 is produced “first” (stage 1). We might as 

well have started with the second commodity; the order in which they are arranged is 

purely formal in a case like this where the decomposition into stages does not reflect a 

sequence in time. 

 Now, for the production of the first commodity, 12 units of the capacity 

factor (machine hours) are available as shown in the flow diagram. If x1 units are 

produced, 12 – 4x1 machine hours are available as input for the second stage. After 

producing x2 units of commodity 

 

 

 

 

 

 

 

Figure 8 

 

No 2, we are left with 12 – 4x1 – 2x2 machine hours, corresponding to the slack variable 

in (1) which represents unutilized capacity. The two stages contribute 8x1 and 10x2 

respectively to total profit. 

 We can now solve the problem backwards, treating x1 as a parameter and 

optimizing stage 2 with respect to the variable x2. For parametric x1 = x2 the maximal 

capacity left to stage 2 is 12 – 4x1 machine hours so that the (parametric) subproblem of 

stage 2 is 

 

f1 = 10x2 = max 

2x2 ≤ 12 – 4x1 

x2 ≥ 0      (3) 

12 
Stage 1 Stage 2 12 – 4x1 

x1 x2 

12 – 4x1 – 2x2 

8x1 10x2 
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which is a linear programming problem like the total problem (1), only it is single-

variable problem. The solution is obviously. 

   x2 = 6 – 2x1; f1
max = 60 – 20x1    (4) 

where x1 is a parameter. 

 Next we optimize stage 1 with respect to its decision variable, x1. The capacity 

available is 12 machine hours. Production of x1 units contributes 8x1 to total profit, but 

against this we have to consider that machine hours left over and used by stage 2 also 

affect total profit, contributing f1
max = 60 – 20x1 which also depends on x1. The 

optimization problem of stage 1 becomes 

  f2 = 8x1 + f1
max = 60 – 12x1 = max 

   4x1 ≤ 12       (5) 

   x1 ≥ 0 

which is also a linear problem. Because f2 – which expresses profit contributed by the 

first stage plus the (parametric) maximum profit earned by the second – is a decreasing 

function of x1, the solution obviously is 

  x1 = 0; f2
max = 60       (6) 

Having thus found the optimal value of x1, which is also a parameter in the solution for 

x2, we substitute it into (4) to get 

  x2 = 6 – 2x1 = 60       (7) 

The solutions which we have found for the two variables are seen to agree with (2), and 

total profit f = 60 is seen to be equal to f2
max – as it should be seen f2

max was calculated as 

the total of stage contributions to profit. What we did in solving (5) was to maximize the 

profit of stage 1 – a function of x1 – plus the maximum profit earned by stage 2 for any 

given value of x1. 

 In this way we have solved an optimization problem in two variables by 

transforming it into a series, or sequence, or two single-variable problems. This is an 

example of dynamic programming. The subproblems corresponding to the individual 

stage are of the same type as the total problem (1) – in the present case, a linear 

programming problem – and they are solved by the same method as that applied in the 
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simultaneous solving of the total problem (e.g. the simplex method). In other words, 

“dynamic programming” does not refer to a particular class of optimization problems 

(e.g. linear programming problems) or to a specific method of solution (like the simplex 

method); rather, it indicates a general procedure for decomposing a problem into a series 

of subproblems involving fewer variables, and combining their solutions to get the 

solution of the original problem. 

 3. When an optimization problem is formulated as a multistage problem to be 

solved by dynamic programming, it is convenient to introduce state variables yn 

associated with the individual stages (numbered n = 1, 2, .., n). The production process of 

Figure 8 may be thought of as starting in a (given) initial state where y0 = 12 machine 

hours are available; this is the input state of stage 1. Producing x1 units of the first 

commodity, each of which requires 4 machine hours, changes the state of the system: 

available capacity is reduced by 4x1 machine hours so that the output state of stage 1 – 

which is also the input state to stage 2 – becomes y1 = y0 – 4x1 = 12 – 4x1. Producing x2 

units of the second product, available capacity is further reduced to y2 = y1 – 2x2 = y0 – 

4x1 – 2x2, which in this case represents the final state. (y2 ≥ 0 by definition but otherwise 

unknown). 

 Thus, the input state of stage no. n, yn-1, is transformed into an output state yn, the 

change being brought about by the decision variable 

 

 

 

 

 

 

Figure 9 

of the stage, xn. The successive changes of the state of the system can formally be 

described by transformation equations of the form 

  yn = tn (yn-1, xn) (n = 1, 2, …, n). 

y0 = 12 
Stage 1 Stage 2 y1 = y0 - 4x1 

x1 x2 

y2 = y1 – 2x2 

f1 = 8x1 f2 = 10x2 
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In the example they have the form 

  y1 = y0 – 4x1 

  y2 = y1 – 2x2       (8) 

together with the nonnegativity requirement x1, x2, y1, y2 ≥ 0 they are equivalent to the 

restrictions of the original problem (1), y0 being = 12 and y2 representing the slack 

variable. 

 The stage returns, i.e. the contributions of the individual stages to the preference 

function f, will in the general case depend on the input state and the decision variable: 

  rn = rn (yn – 1, xn) (n = 1, 2, …, n); 

in the present example these return functions are of the simple form 

   r1 = 8x1 

   r2 = 10x2       (9) 

 Introducing these symbols into Fig. 8, the flow diagram of the two-stage problem 

has the form of Fig. 9. The backward solution now proceeds as follows. 

 At the first stage of the calculations – corresponding to the last stage in the 

production system, n = N = 2 – the input style y1 is considered as a parameter, “inherited” 

from the previous stage of the system. The stage is optimized by maximizing its decision 

function, f1 – here equal to the stage return, r2 (x2) – subject to the parametric capacity 

restriction 2x2 ≤ y11: 

   f1 = r2 (x2) = 10x2 = max 

   2x2 ≤ y1 

   x2 ≥ 0        (10) 

The solution to this parametric single-variable LP problem is 

   x2 (y1) = 0.5y1 

   f1 (y1) = 5y1       (11) 

where f1 denotes the maximum value of the stage decision function, F1 = f1
max 

 At the second stage of the computations (production stage 1) we maximize the 

decision function f2 = r1 (x1) + f1 (y1) subject to the capacity limitation 4x1 ≤ y0 (i.e., y1 = 
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y0 – 4x1 ≥ 0); substituting the stage transformation y1 = y0 – 4x1, f2 becomes a function of 

x1 and y0 so that we have the LP problem. 

f2 =  r1 (r1) + F1 (y1) = 8x1 + 5y1 

=  8x1 + 5 (y0 – 4x1) = 5y0 – 12x1 = max  (12) 

 4x1 ≤ y0 

 x1 ≥ 0. 

The solution is 

    x1 (y0) = 0 

    f2 (y0) = 5y0      (13) 

when F2 = f2
max. 

 The solution to the complete problem (1) – called the optimal policy – can now be 

determined by solving the recursive equation system formed by the parametric optimum 

solutions (11) and (13) and the transformation equations (8), starting from the initial state 

y0 = 12: 

 
Transformation  Parametric Optimal  Maximum of decision 
Equations   solutions   function 
yn = tn (yn-1, xn)  xn = xn (yn-1) 

y0 = 12 

y1 = y0 – 4x1 = 12  x1 (y0) = 0   f2 (y0) = 5y0 = 60 

y2 = y1 – 2x2 = 0  x2 (y1) = 0.5y1 = 6  f1 (y1) = 5y1 = 60 

where the direction of the computations is the opposite of that followed above in the 

optimization of stages. The optimal policy emerges as x1 = 0, x2 = 6 and total profit is f = 

F2 = 60. If y0 had been a parameter, the solution – now parametric – would have been x1 = 

0, x2 = 0.5y0, f = 5y0
1. 

 The decomposition by which we solved problem (1) can be described as follows. 

Replacing the side conditions by the equivalent formulation 

   y1 = y0 – 4x1, y1 ≥ 0 

   y2 = y1 – 2x1, y2 ≥ 0, 

this together with the nonnegativity requirements implies 
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   0 ≤ x1 ≤ ¼ y0       (14) 

   0 ≤ x2 ≤ ½ y1       (15) 

Then we can write (1) in the form 

 Fmax = max (8x1 + 10x2) = max (8x1 + max 10x2)   x1, x2   x1              x2 

subject to (14) – (15); clearly this maximization problem can be decomposed into two 

single-value problems, corresponding to (10) and (12): 

 F1 (y1) = max 10x2 (0 ≤ x2 ≤ ½ y1) 

 F2 (y0) = max {8x1 + F1 (y1)} 

= max {8x1 + F1 (y0 – 4x1)} (0 ≤ x1 ≤ ¼ y0), 

Where fmax = F2 (y0). In a more general formulation the decomposition of a two-stage 

problem 

  Fmax = max [r1 (y0, x1) + r2 (y1, x2)] 

can be expressed in the recursion equations 

  F1 (y1) = max [r2 (y1, x2)]      (16) 

  F2 (y0) = max [r1 (y0, x1) + F1 {t1 (y0, x1)}].   (17) 

 This procedure of solving a dynamic programming problem by backward 

recursion can be generalized to any number of variables. A flow diagram for an N-stage 

system is shown in Fig. 10. 

 

 

 

 

 

 

Figure 10 

The decision functions of stages N, N – 1, …, 2, 1 are respectively 

 f1 = rN (yN – 1, xN) 

f2 = rN -1 (yN-2, xN-1) + F1 (yN-1) where yN-1 = tN-1 (yN-2, xN-1)    (18) 

y0 
1 

x1 

y1 = t1 (y0, x1) 

x2 xn xN 

yN yN yn yN-1 yn-1 y2 

f1 = (y0, x1) f2 = (y1, x2) fn = (yn-1, xn) fN = (yN-1, xN) 

2 n N 
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… 

fN = r1 (y0, x1) + FN-1 (y1)  where y1 = t1 (y0, x1), 

Fj being the maximum of fj (j = 1, 2, …, N). Maximizing the decision function of each 

stage with respect to its decision variable, treating the input state as a parameter, we get 

the parametric stage solutions 

  xn = xn (yn – 1) (n = N, N – 1, …, 1)    (19) 

which can be “sewn together” by means of the transformation equations so that we get 

the parameters determined. y0 now determines x1 and together they determine y1; this 

gives x2 which with y1 determines y2; and so forth as illustrated by Fig. 11 

 

y0  y1 = t1 (y0, x1)  y2 = t2 (y1, x2)  … 

       x1 (y0)       x2 (y1)       x3 (y2) 

 

Figure 11 

 It follows from (18) that the maximum of fN represents the accumulated value of 

the stage returns, e.g. FN = fmax. 

 If the variables of a DP problem are allowed to take discrete values only, or if the 

stage returns and/or the transformation functions are given in tabular form for discrete 

values of the variables, the problem will have to be solved by tabular computations. 

 For example, the decision variables may be required to have integral values (xn = 

0, 1, 2, …) because the interpretation of the problem is such that fractional values would 

be meaningless. This is so in problem (1): strictly speaking it is impossible to produce a 

fractional number of units of a commodity, e.g. x1 = 2.6. Thus, although in this case the 

analytical shape of the return functions is known, r1 and r2 are defined only for integral 

values of x1 ( ≤ 3 ) and x2 ( ≤ 6): 

 x1    0 1 2 3 

 r1 (= 8x1)  0 8 16 24 

 

x2   0 1 2 3 4 5 6 
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r2 (= 10x2)  0 10 20 30 40 50 60 

The transformation functions in tabular form are as follows: 

  ____________________________________ 

         y1 (= y0 – 4x1)  

  y0\x1  0 1 2 3 

  12  12 8 4 0  

 

  ______________________________________________________ 

         y2 (= y1 – 2x2)      

  y1 \ x2  0 1 2 3 4 5 6 

  0  0 

  4  4 2 0 

  8  8 6 4 2 0 

  12  12 10 8 6 4 2 0 

where y1 is confined to the values 0, 4, 8, and 12 resulting from the first table. The black 

cells in the last table correspond to combinations of values of y1 and x2 which are not 

feasible because they would imply a negative value of y2 (cf. the sign restriction y2 = y1 – 

2x2 ≥ 0). 

 The solution procedure, using backward recursion, now proceeds as follows. For 

the last stage (n = N = 2) we have: 

Stage 2 f1 = r2 (x2) (= 10x2) 

y1 \ x2  0 1 2 3 4 5 6 F1 (y1) x2 (y1)  y2 (y1) 

0 0       0 0 0 

4 0 10 20     20 2 0 

8 0 10 20 30 40   40 4 0 

12 0 10 20 30 40 50 60 60 6 4 

where the maximal value of the decision function f1 for each of the possible input states 

(values of y1) is shown in bold-faced type. This parametric optima and the optimal values 

of the decision variable are listed in the F1 and x2 columns to the right. The last column 
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gives the resulting values of the output state y2, computed from the transformation 

function (or table). 

 For stage 1, we have the decision function f2 = r1 (x1) + F1 (y1) where the 

transformation gives y1 for each value of x1; for example, x1 = 2 implies y1 = y0 – 4x1 = 4, 

and the preceding table then gives F1 (y1) = 20. The stage computations are done in the 

following table: 

Stage 1 f2 = r1 (x1) + F1 (y1) 

  { = 8x1 + f1 (y1)} 

y0 \ x1  0 1 2 3  F2 (y0)  x1 (y0)  y1 (y0) 

12  0+60 8+40 16+20 24+0  60  0  12 

 These tables correspond to (10) – (11) and (12) – (13) respectively, and the 

optimal solution can be found similarly, starting with the last table. y0 = 12 gives x1 = 0 

(the optimal stage solution) which leads to y1 = 12 (by transformation equation). 

Proceeding to the first table, y1 = 12 (as just determined) gives the stage optimum x2 = 6 

and the output state y2 = 0. These values are indicated in italics. The maximal total return 

is f2 (y0) = 60. 

 It will now be clear why it was expedient to solve the decomposed version of 

problem (1) backwards, starting with the optimization of the last stage. The procedure led 

to a recursive system which has the initial state y0 as it starting point – as shown in Fig. 

11 – and it was y0 that was given (y0 = 12). This suggests that problems in which the final 

state yN is given may be solved in the opposite direction, proceeding forwards from the 

first stage. 

 To show how this is done, let us redefine the state variables yn in the example so 

that the final state y2 now represents total accumulated “use” of capacity, including idle 

capacity; the latter is put first as the input state y0 of the first stage of the production 

system. Then y1 represents the accumulated “use” of capacity, including capacity not 

utilized, after the first commodity has been produced. This leads to the transformations. 

  y1 = y0 – 4x1 

  y2 = y1 – 2x2        (20) 
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where y0 ≥ 0 and y2 = 12. The stage return functions are the same as above, (9). 

 This dynamic programming problem is another decomposed version of problem 

(1). To solve it by forward recursion we reverse the direction 

 

 

 

 

 

 

Figure 12 

of the system as shown in Fig. 12, where yn is now to be formally treated as the input 

state of stage n (n = 1, 2) whereas the yn-1 become output states; we therefore write the 

transformation functions (20) in the inverse form 

   y0 = y1 – 4x1 

   y1 = y2 – 2x2       (21) 

(more generally, 

   yn-1 = tn* (yn, xn) 

where tn* is the inverse transformation equation of stage n). 

 the procedure starts with the optimization of stage 1. The decision function f1 = r1 

(x1) is to be maximized subject to y0 = y1 – 4x1 ≥ 0, x1 ≥ 0, where y1 – now the input state 

of the stage – is a parameter: 

   f1 = r1 (x1) = 8x1 = max 

    4x1 ≤ y1      (22) 

    x1 ≥ 0; 

the solution depends on the parameter, 

    x1 (y1) = 0.25y1     (23) 

    F1 (y1) = 2y1 

where F1 = f1
max. At the second stage we have the decision function f2 = r2 (x2) + F1 (y1) 

where y1 = y2 – 2x2 ≥ 0, x2 ≥ 0 so that the stage optimization problem becomes 

y0 = y1 - 4x1 Stage 1 Stage 2 
y1 = y2 - 2x2 

x1 x2 

y2 = 12 

f1 = 8x1 r2 = 10x2 
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  f2 = 10x2 + 2y1 = 6x2 + 2y2 = max     (24) 

   2x2 ≤ y2 

   x2 ≥ 0. 

The solution is 

    x2 (y2) = 0.5y2 

    F2 (y2) = 5y2      (25) 

Working backwards from y2 (= 12) through the recursive system (21), (23), (25) we 

obtain the optimal solution: 

  y2 = 12 

  y1 = y2 – 2x2 = 0    x2 (y2) = 0.5y2 = 6 

  y0 = y1 – 4x1 = 0,    x1 (y1) = 0.25y1 = 0, 

and fmax = F2 (y2) = 5y2 = 60. 

 In the general case of N stages the decision functions are 

 f1 = r1 (y0, x1)     where y0 = t1* (y1, x1) 

 f2 = r2 (y1, x2) + F1 (y1)   where y1 = t2* (y2, x2) 

… 

fN = rN (yN-1, xN) + FN-1 (yN-1) where yN-1 = tN* (yN, xN). 

The parametric stage solutions 

   xn = xn (yn)  (n = 1, 2, …, N) 

and the inverse transformation equations determine the optimal policy for given yN as 

shown in Fig. 13 

 It is often possible to solve by forward recursion when the initial state y0 is given, 

or to apply backward recursion to DP problems with given final state yN, using a slightly 

modified procedure. However, when the order of the stages is arbitrary and the 

transformations can be inverted so that we are free to choose the direction, backward 

recursion is generally a more efficient procedure for given y0, and forward recursion for 

given yN, (which amounts to the same thing, the only difference being the numbering of 

stages and variables). 
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   yN  yN-1 = tN* (yN, xN)   …. 

         xN (yN)     xN-1 (yN-1) 

Figure 13 

In order for an optimization problem to be solvable by dynamic programming, the 

“technical” structure of the problem (as represented by the restrictions) must be such that 

it can be described by a series of successive changes of the state of the system, from the 

initial state y0 to the final state yN, each change being effected by a particular decision 

variable. The two-stage system of Fig. 9 above is an example of this; the transformation 

equations (8) together with x1, y1, x2, y2 ≥ 0 and y0 = 12 are an equivalent reformulation 

of the restriction in problem (1), i.e., 4x1 + 2x2 ≤ 12 and x1, x2 ≥ 0, so that the set of 

feasible solutions is preserved. In some cases the multistage structure represents a 

sequence in time – hence the name “dynamic” programming – where the stages 

correspond to actual processes and the direction indicates the order in which the 

transformations take place. This would be so in our example (1) if the two commodities 

were produced in separate processes and commodity no. 1 had to be made first. In many 

applications, however, the sequence of stages and the order in which the system passes 

through them are an artificial device, introduced in order make the problem solvable by 

DP methods. In either case we can choose between forward and backward recursion if the 

direction is mathematically arbitrary. 

Decomposition of a problem also requires that the objective function satisfies 

certain conditions. In general, the function to be maximized in some function of the stage 

returns rn, 

 f = ϕ {r1 (y0, x1), …, rN (yN-1, xN)}.     (26) 

It can be shown that two conditions on the function – separability and 

monotonicity – together are sufficient for decomposition, i.e., for solution by means of a 

system of recursive equations. These conditions are automatically satisfied by a class of 

functions including the case of additive returns, 

  f = r1 (y0, x1) + … + rN (yN-1, xN). 
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In this case, as we have seen above, the objective function is obviously 

decomposable and the recursion equations have the form (16) – (17) for a two-stage 

problem, readily generalized to any number of stages [cf. (18)]. 

The recursion equations can be thought of as a mathematical expression of an 

intuitive principle known as the “principle of optimality”. Consider the two-stage 

problem shown in Fig. 9, and let (x1, x2) = (x1, x2) be the optimal policy. The first 

decision, x1 = x1, changes the state of the system from the initial state y0 = 12 to y1 = y0 – 

4x1 = y1. The principle of optimally now says that the remaining decision, x2 = x2, must 

represent an optimal policy with respect to the state y1, i.e. it must be an optimal solution 

to the remaining one-step DP problem with the initial state y1. The proof is simple: if this 

were not so, (x1, x2) = (x1, x2) could not be an optimal policy. 

The backward recursive procedure, as expressed in (16) – (17), by which we 

solved the problem, is based directly on this principle. Starting by optimizing the last 

stage (n = 2), we do not know its input stage y1, but we do know that whatever it is – i.e., 

whatever the first decision is – r2 must be optimal with regard to y1. Hence we optimize f2 

= r2 (y1, x2) for parametric y1 as expressed in (16). Proceeding backwards to stage one, we 

optimize f2 = r1 (y0, x1) + F1 (y1), i.e. the return of stage 1 plus the parametric optimal 

return of stage 2, where y1 = t1 (y0, x1). 

The principle of optimality in its general form states that any part of an optimal 

policy must be optimal; specifically, the decisions remaining after stage no. n (i.e., xn+1, 

…, xN) constitute an optimal policy for the series of stages n + 1, …, N with regard to the 

state yn resulting from the first n decisions. 

The multistage structures dealt with above (cf. Fig. 10) are serial systems, i.e., 

ordered sequences of stages where the output state of stage no. n is the input state to stage 

no. n + 1. Moreover, they are special in that there is only one decision variable xn and 

only one (output) state variable yn for each stage. 

As an obvious generalization, the xn and the yn may be vectors so that there are 

several decision and state variables per stage. Cases of this kind are treated in Chapter 

VII below. 
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Nonserial multistage systems – important in the chemical industries – represent 

another generalization, characterized by branches or loops in the flow diagram. 

A third extension of the N-stage serial multistage structure is an infinite-stage 

system where N tends to infinity. This case, relevant to some applications, is treated 

below in Chapter VIII. 

The advantage of dynamic programming as a procedure for solving optimization 

problems is the simplification obtained by decomposition. It is often simpler and easier to 

solve a series of single-variable stage optimization problems, and in some cases this is the 

only possible procedure because “simultaneous” solution is mathematically or 

computationally difficult or downright impossible. Certain classes of optimization 

problems, however, such as linear programming problems are more efficiently solved by 

special algorithms without decomposition, e.g. the simplex method. 

Dynamic programming has been particularly successful in its discrete version. 

Tabular computations are well suited for computer solution and can be used to handle 

problems involving irregular functions, and maybe the only practicable way of solving a 

problem in which the variables are required to be integers. As a rough illustration of the 

computational advantages of DP, consider an optimization problem in N decision 

variables, each of which can assume m alternative discrete values (e.g. 0, 1, 2, …, m – 1). 

If, for lack of other methods of solution, we had to solve the problem by total 

enumeration, we would have to examine each of mN alternative solutions for feasibility 

and optimality, whereas in a dynamic programming procedure – assuming that 

decomposition is possible – the number of alternatives to be enumerated would be 

reduced to mN, namely m for each of the N stages. Thus, roughly speaking, the 

computational labour increases exponentially with the number of decision variables in the 

case of total exponentially with the number of decision variables in the case of total 

enumeration, but only proportionately if the problem is decomposed. For large values of 

m and N the computational advantages become enormous; for example, in a problem with 

20 variables each of which can assume integral values from 0 to 9 we have mN = 1020 – 



http://www.unaab.edu.ng 
 

an astronomic number – as against mN = 200 possible solutions if the problem is 

reformulated as a 20-stage DP problem. 

APPLICATIONS OF DYNAMIC PROGRAMMING 

The Shortest Path through a Network 

 Perhaps the simplest and most straightforward application of dynamic 

programming is the determination of the shortest path or whole through a network. 

 Consider the (stylized) road map shown in Fig. 144. A driver wants to find the 

shortest route from point P to point Q. There are six intermediate junctions A, B, …, F. 

The lengths of all existing road sections connecting two points in the area are indicated 

on the map. Any unbroken chain of road sections starting at P and ending at Q represents 

a possible route through this network of roads. 

 

 

 

 

 

Figure 14 

 Assuming that the direction of travel is always from left to right having arrived at, 

say, B the driver never travels back to A or D but proceeds to either C or F – the number 

of possible routes is finite. The problem can therefore be solved by enumerating the 

alternative routes and comparing their total lengths. 

 Any route from P to Q is the result of three successive decisions. Starting at point 

P, the driver must decide whether he will go to A or to D. If he chooses to drive to A, say, 

he can proceed from A to either B or E, each of which in turn leaves him with two 

alternatives, C and F. Having arrived at either C or F, he has no choice but no proceed to 

the destination, Q. Since each decision is a choice between two alternatives and there are 

three consecutive decisions to be made, there are 23 = 8 possible combinations, i.e. 8 

alternative routes. The alternative decisions and the resulting routes can be illustrated 

graphically by a decision tree as shown in Fig. 15, where the root represents the starting 
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10 
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point P and the branches are composed of road sections (with lengths indicated). 

Comparing the total lengths from root to top, it will be seen that PDBFQ is the shortest 

route, the total length being 12 + 2 + 3+ 4 = 21. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15 
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Figure 16 

This decision structure clearly represents a multistage decision system. The 

driver’s geographical position – the points on the map – represents the state of the 

system, which is to be changed from the given initial state P to the given final state Q 

through a sequence of stage decisions in such a way as to minimize the total “return”, i.e., 

the total distance covered. Starting from point P, i.e., the initial state y0 = P, the two 

alternatives open to the driver can be represented by two values of a decision variable x1 : 

x1 = A (i.e., drive to point A) and x1 = D (drive to D). If he chooses x1 = A, he will get to 

this point so that the output state of the first stage will be y1 = A and the corresponding 

“return” r1 (P, A) will be the distance PA = 10. Similarly, x1 D leads to y1 = D and the 

return will be r1 (P, D) = 12. Proceeding in this fashion, the problem can be represented 

by a four-stage decision structure as shown in Fig. 16. There is no choice at stage 4 since 

the destination – i.e., the final state y4 = Q = is given. 

The transformation functions are yn = xn (n = 1, 2, 3, 4). The return functions rn = 

rn (yn-1, xn) can be written in tabular form as follows 

 

r1 (y0, x1)  r2 (y1, x2)  r3 (y2, x3)  r4 (y3, x4) 

y0 \ x1 A D y1 \ x2 B E y2 \ x3 C F y3 \ x4 Q 
 
P 10 12 A 6 7 B 3 3 C 5 
   D 2 2 E 6 4 F 4 

Using backward recursion, the problem is solved by tabular computations as 

follows: 

 

y0 = p y1 = x1 

x1 = A or D 

y2 = x2 

x2 = B or E x3 = C or F 

y3 = x3 

x4 = Q 

y4 = Q 

r1 (y0, x1) r2 (y1, x2) r3 (y2, x3) r4 (y3, x4) 
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Stage 4 f1 = r4 (y3, r4)   F1 (y3)  x4 (y3)  y4 (y3) 
y3 \ x4  Q 
 
C  5 (= CQ)   5  Q  Q 
F  4 (= FQ)   4  Q  Q 
 
 
 
Stage 3 f2 = r3 (y2, x3) + F1 (y3) F2 (y2)  x3 (y2)  y3 (y2) 
y2 \ x3  C  F 
 
B  3 + 5  3 + 4  7  F  F 
E  6 + 5  4 + 4  8  F  F 
 
 
Stage 2 f3 = r2 (y1, x2) + F2 (y2) F3 (y1)  x2 (y1)  y2 (y1) 
y1 \ x2  B  E 
 
A  6 + 7  7 + 8  13  B  B 
D  2 + 7  2 + 8  9  B  B 
 
 
Stage 1 f4 = r1 (y0, x1) + F3 (y1) F4 (y0)  x1 (y0)  y1 (y0) 
y0 \ x1  A  D 
 
P  10 + 13 12 + 9  21  D  D 

 Starting with y0 = P, the solution is determined by the recursive equation system 

formed by the parametric stage solutions xn = xn (yn – 1) and the transformations yn = xn. 

The last table gives x1 (y0) = D and y1 = x1 = D; for y1 = D, the table for stage 2 gives x2 = 

B, y2 = B; and so on. The optimal values – italicized in the tables – are 

n  yn  xn 

0  P   

1  D  D 

2  B  B 

3  F  F 

4  Q  Q 
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 The optimal sequence of states y0, y1, …, y4 indicates that the shortest path 

through the network is PDBFQ; the total length of this route is F4 (y0) = 21. 

 This solution procedure can be translated into a graphical method, making use of a 

decision tree like that of Fig. 15. After making the three first decisions the driver finds 

himself at point C or F. No matter how he got there he will have to proceed to Q, so we 

draw the eight top branches of the tree; none of them can be eliminated at this stage since 

the preceding decisions have not yet been determined. 

 Going one stage back, the first two decisions have taken the driver to either B or 

E. If he has arrived at B, he can get to his destination Q either through C or F; the best 

course is to go to F since BFQ = 3 + 4 = 7 whereas BCQ = 3 + 5 = 8. Therefore, no 

matter which way he may have got to B, he will never proceed to C, so the branches from 

B to C can be eliminated and we need only draw the branches going from B to F. This is 

an application of Bellman’s principle of optimality: if the optimal route from P to Q 

passes through B, the remaining part of the route (from B to Q) must also be optimal; the 

optimal route from P to Q cannot contain BCQ because there is a shorter route from B to 

the destination. Similarly, if the driver is at point E after the first two decisions, he will 

proceed to F because EFQ = 4 + 4 + 8 < ECQ = 6 + 5 = 11, so ECQ can be eliminated. 

 Applying a similar reasoning to the state attained after the first decision, it is seen 

that the branches AE and DE need not be drawn; the shortest path from A to Q is ABFQ 

= 6 + 7 = 13 and the shortest path from D to Q is DBFQ = 2 + 7 = 9. Finally, at the 

starting point the choice between PA + ABFQ = 10 + 13 = 23 and PD + DBFQ = 12 + 9 

= 21; the latter alternative represents the shortest total route and there is no need to draw 

the branch PA. 

 
 
 


