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UNIT 1 

NUMERICAL ANALYSIS 

Numerical Analysis is the study of algorithms for the problems of continuous mathematics (as 
distinguished from discrete mathematics).  

It is concerned with the mathematical derivation, description and analysis of methods of 
obtaining numerical solution of mathematical problems. It is an area of mathematics and 
computer science that creates, analyzes and implements algorithms for obtaining numerical 
solutions to problems involving continuous variables. 

Numerical Method 
Numerical method is a set of rules for solving a problem or problems of a particular type, 
involving only the operations of arithmetic. 
 

 

COMPUTER ARITHMETIC 

The decimal number system has the base 10. The decimal integer number 4987 actually means  
(4987)10  = 4 x 103 + 9 x 10 2 + 8 x 10 1 + 7 x 100       ----------    (1) 

which represents a polynomial in the base 10. Similarly, a fractional decimal number 0.6251 
means (0.6251)10  = 6 x 10-1 + 2 x 10-2 + 5 x 10-3 + 1x 10-4     --------                   (2) 

which is a polynomial in 10-1.  

Combining (1) and (2), we may write the number 4987.6251 in decimal system as: 

4987.6251 = 4 x 103 + 9 x 102 + 8 x 101 + 7 x 100 + 6 x 10-1 + 2 x 10-2 + 5 x 10-3 + 1 x 10-4     (3) 

  

Binary Number System  

Binary number system has base 2 with digits 0 and 1 called bits. 

Example 1: Find the decimal number corresponding to the binary number (111.011)2  

111.0112 = 1 x 22 + 1x 21 +1 x 20 + 0 x 2-1 + 1 x 2-2 +1 x 2-3  

                 = 7. 37510  

 

READING LIST: 



  http://www.unaab.edu.ng 

4 

 

 

Example 2: Convert 5810  

          2    58 

        2    29 r 0 

        2    14 r 1 

        2    7 r 0 

        2    3 r 1 

        2    1 r 1 

        2     0 r 1 

58 10  = 1110102 

Example 3: Convert 0.85937510 to the corresponding binary fraction. 

0 0.859375 
     x            2  
1 0.718750 

x          2 
1    0.437500 

x          2 
0 0.875000 

x          2 
1 0.750000 

x          2 
     1      0.500000 

x           2 
     1     0000000 

 
The required binary fraction becomes; 0.85937510 = 0.1101112 
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Example 4: Convert 0.710 to the corresponding binary fraction: 

          0.7 
       x    2 

1    0.4 
    x   2   
0    0.8 
     x   2  
 1   0.6 
      x 2  
 1   0.2 

         x 2  
    0   0.4 

    x  2   
0   0.8 
     x  2  
 1   0.6 
      x 2  
 1   0.2 

         x 2  
0 0.4  

 

Thus we obtain (0.7)10  = (.101100110...)2 which is a never ending sequence. If only 7 bits are 
retained in the binary fraction then the corresponding decimal number becomes  

0.10110012 = 1 x 2-1 + 0 x 2-2 + 1 x 2-3 + 1 x 2-4 + 0 x 2-5 + 0 x 2-6 + 1 x 2-7  

                   = 0.6953125 

which is not exactly the same as the given number.  

The difference 

0.7 – 0.6953125 = 0.0046875 

is the round-off error. 
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Octal System 

The Octal system has base 8 and uses the digits 0, 1, 2, 3, 4, 5, 6, 7. A binary number can be 
converted to an Octal number by grouping the bits in groups of  three to the right and left of the 
binary point by adding sufficient zeros to complete the groups and replacing each group of three 
bits by its Octal equivalent. 

Example: Convert the binary number 1101001.1110011 to the octal system. We have  

                001| 101 | 001 . 111 | 001 | 100 

                 1        5      1  .    7       1         4 

1101001.1110011 = 151.7148 

 

Hexadecimal System 

The hexadecimal system has base 16 and the digits 0 to 9 and A, B, C, D, E, F to represent  10, 
11, 12, 13, 14, 15 respectively. To convert a binary number to a hexadecimal number, we form 
groups of four of the binary bits and replace it by the corresponding digit in the hexadecimal 
system. 

Example: Convert the binary number 1101001.1110011 to the hexadecimal system. 

                0110    1001 1110    0110 

                    6        9        E          6 

           

   1101001.1110011 = 69E616 
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UNIT 2 

FLOATING POINT ARITHMETIC 
In computing, floating point describes a system for representing real numbers which supports a 
wide range of values. Numbers are in general represented approximately to a fixed number of 
significant digits and scaled using an exponent. The base for the scaling is normally 2, 10 or 16. 
The typical number that can be represented exactly is of the form: 

 
Significant digits × baseexponent 

 
 
Definition 1:  A floating point number is a number represented in the form 

. d1d2..............dt  X βe      ----------------    (1) 
where d1, d2, .. , dt are integers and satisfy 0 ≤ di < β and the exponent e is such that m ≤ e  ≤ M. 

 The fractional part d1d2..................dt is called the mantissa and it has between +1 and -1. The 
number 0 is written as  

+ 0.0000 X βe  

Definition 2: A non–zero floating point number as defined in (1) is in normal form if the value 
of the mantissa lies in the interval (-1, 1/ β ] or in the interval [1/ β ,1). 

Example: 
Subtract the floating point number 0.36143447 x 107  and 0.36132346 x 107 .  
 
Solution 
    0.36143447 x 107  

-0.36132346 x 10 7  

  0.00011101 x 107 

The result is a floating point number, but not a normalized floating point number due to the 
presence of three leading zeros. Shifting the fractional part three places to the left, we get result 
0.11101 X 104 which is normalized floating point number. 

Definition 3: 
A non-zero floating point number as defined in (1) is in t-digit– mantissa standard form if it is 
normalized and its mantissa consists of exactly t-digits. If a number x has the representation in 
the form 

 x  =   . d1d2... dt  dt+1... x  βe              ---------------                           (2). 
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then the floating point number fl(x) in t- digit mantissa standard form can be obtained in the 
following two ways: 

(i) Chopping: We neglect dt+1, dt+2  ....  in    (2)    and obtain  
      fl(x) =  . d1d2  ... dt   x   βe                              --------------                                   (3). 
 

(ii) Rounding: The fractional part in (2) is written as  

                      β
2
1 dd ...dd . 1tt21 ++     --------------       (4). 

 and the first t- digit are taken to write the floating point number. 
 
Example : 
Find the sum of .123 x 103 and  .456 x 102 and write the result in three digit mantissa form. 
Solution 
 
The number of the smaller magnitude is adjusted so that its exponent is the same as that of the 
number of larger magnitude. We have 
  

      .1230 x 103  

  .0456 x 103  

  .1686 x 103  =    . 168 x 103 , for chopping  

                                  . 169 x 103 , for rounding 

 

Exercise 

Evaluate :  ƒ(x) = x3 – (6.1)x2 + (3.2)x-(1.5) 

Find the value of ƒ(x) at x=4.72 using 3 digit arithmetic 

 x x2 x3 6.1 x2 3.2x 

Exact 4.72 22.2784 105.154048 135.89824 15.104 

Chopping 4.72 22.2 105 135 15.1 

Rounding 4.72 22.3 105  136 15.1 

 

Chopping → ƒ(x) = ? 
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Rounding →ƒ(x) = ? 

 
Range of floating-point numbers 
By allowing the radix point to be adjustable, floating-point notation allows calculations over a 
wide range of magnitudes, using a fixed number of digits, while maintaining good precision. For 
example, in a decimal floating-point system with three digits, the multiplication that human 
would write as 

 
0.12 × 0.12 = 0.0144 
 

would be expressed as 
 
(1.2×10−1) × (1.2×10−1) = (1.44×10−2). 

 
In a fixed-point system with the decimal point at the left, it would be 

0.120 × 0.120 = 0.014. 
 
A digit of the result was lost because of the inability of the digits and decimal point to 'float' 
relative to each other within the digit string. 
 

Floating-point arithmetic operations 
For ease of presentation and understanding, decimal radix with 7 digit precision will be used in 
the examples, as in the IEEE 754 decimal32 format. The fundamental principles are the same in 
any radix or precision, except that normalization is optional (it does not affect the numerical 
value of the result). Here, s denotes the significant and e denotes the exponent. 
 
Addition and subtraction 
A simple method to add floating-point numbers is to first represent them with the same exponent. 
In the example below, the second number is shifted right by three digits and we then proceed 
with the usual addition method: 
  123456.7 = 1.234567 × 105 
  101.7654 = 1.017654 × 102 = 0.001017654 × 105 
  Hence: 
  123456.7 + 101.7654 = (1.234567 × 105) + (1.017654 × 102) 
                      = (1.234567 × 105) + (0.001017654 × 105) 
                      = (1.234567 + 0.001017654) × 105 
                      =  1.235584654 × 105 

In detail: 

  e=5;  s=1.234567     (123456.7) 
+ e=2;  s=1.017654     (101.7654) 
  
   e=5;  s=1.234567 
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+ e=5;  s=0.001017654  (after shifting) 
   --------------------------- 
  e=5;  s=1.235584654  (true sum: 123558.4654) 

This is the true result, the exact sum of the operands. It will be rounded to seven digits and then 
normalised if necessary. The final result is 

  e=5;  s=1.235585    (final sum: 123558.5) 

Note that the low 3 digits of the second operand (654) are essentially lost. This is round-off error. 
In extreme cases, the sum of two non-zero numbers may be equal to one of them: 

   e =  5;   s=1.234567 
+ e= −3;  s=9.876543 
 
   e=5;  s=1.234567 
+ e=5;  s=0.00000009876543 (after shifting) 
---------------------- 
  e=5;  s=1.23456709876543 (true sum) 
  e=5;  s=1.234567         (after rounding/normalization) 

Another problem of loss of significance occurs when two close numbers are subtracted. In the 
following example e = 5; s = 1.234571 and e = 5; s = 1.234567 are representations of the 
rationals 123457.1467 and 123456.659. 

   e=5;  s=1.234571 
− e=5;  s=1.234567 
------------------------- 
   e=5;  s=0.000004 
   
e=−1; s=4.000000 (after rounding/normalization) 

The best representation of this difference is e = −1; s = 4.877000, which differs more than 20% 
from e = −1; s = 4.000000. In extreme cases, the final result may be zero even though an exact 
calculation may be several million.  

Multiplication and division 
To multiply, the significant are multiplied while the exponents are added and the result is 
rounded and normalized. 
   e=3;  s = 4.734612 
× e=5;  s =5.417242 
----------------------- 
  e=8;  s=25.648538980104 (true product) 
  e=8;  s=25.64854        (after rounding) 
  e=9;  s=2.564854        (after normalization) 



  http://www.unaab.edu.ng 

11 

 

Division is done similarly, but is more complicated 

While floating-point addition and multiplication are both commutative (a + b = b + a and        
a×b = b×a), they are not necessarily associative. That is, (a + b) + c is not necessarily equal to a 
+ (b + c). Using 7-digit decimal arithmetic: 

a = 1234.567, b = 45.67834, c = 0.0004  
 
(a + b) + c: 
 
    1234.567     (a) 
   +   45.67834 (b) 
   ____________ 
     1280.24534   rounds to   1280.245 
     
   1280.245  (a + b) 
   +    0.0004 (c) 
   1280.2454   rounds to   1280.245  <--- (a + b) + c 
 
  
a + (b + c): 
 
   45.67834 (b) 
 +  0.0004  (c) 
   45.67874 
    
        45.67874 (b + c) 
 + 1234.567     (a) 
    1280.24574   rounds to   1280.246 <--- a + (b + c) 

They are also not necessarily distributive. That is, (a + b) ×c may not be the same as a×c + b×c: 

 1234.567 × 3.333333 = 4115.223 
 1.234567 × 3.333333 = 4.115223 
                       4115.223 + 4.115223 = 4119.338 
 but 
 1234.567 + 1.234567 = 1235.802 
                       1235.802 × 3.333333 = 4119.340 

In addition to loss of significance, inability to represent numbers such as π and 0.1 exactly 
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UNIT 3 

ERROR ANALYSIS 
Errors come in a variety of ways; some are avoidable while some are not. How errors occur and 
how they affect the accuracy of calculation is very essential in understanding numerical methods. 
In applied mathematics, error is the difference between a true value and an estimate or 
approximation of that value. 

E = True value – Approximate value 
 
Source of Error 
• Modeling Error: a wrong or inappropriate choice of model 
• Measurement Error: incorrect or poor measurements 
• Implementation Error: incorrect or poor choice of algorithms 
• Simulation Error: error accumulated due to the execution of our model 
 

Example 
The value of π is 3.14159265…. 
The commonly used approximation to π is 22/7, what is the error in this approximation? 
 
Solution 
We must convert 22/7 to decimal form and find the difference. 

True value of π is 3.14159265…. 
Approximated value of π is 3.14285714 
Error =  3.14159265 - 3.14285714 
           =  0.00126449 

 

Generally speaking, error can be introduced into numerical work by the following 
• Mistake due to human error 
• Error due to given data 
• Round off (premature approximation) 
• Error due to method employed 
 

Types of Error 
(1) Inherent error: is that quantity which is already present in the statement of the problem before it 

solution. The inherent error arises either due to the simplified assumption in the mathematical 
formulation of the problem or due to the errors in the physical measurements of the parameters 
of the problem. 
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(2) Round off Error: Rounding means to round by raising the last figure by 1 if the next figure 

would have been greater or less than 5.  

Round-off Error is the quantity R which must be added to the finite representation of a computed 

number in order to make it the true representation of that number.   It is due to representation of a 

number by a finite number of decimal digits e.g. approximation due to nearest whole number and 

also approximation to a certain decimal places. 

A round-off error, also called rounding error, is the difference between the calculated 
approximation of a number and its exact mathematical value. Roundoff error is the difference 
between an approximation of a number used in computation and its exact (correct) value. 
Numerical analysis specifically tries to estimate this error when using approximation equations 
and/or algorithms, especially when using finitely many digits to represent real numbers (which in 
theory have infinitely many digits). This is a form of quantization error. 
When a sequence of calculations subject to rounding error are made, errors may accumulate in 
certain cases known as ill-conditioned, sometimes to such an extent as to dominate the 
calculation and make the result meaningless. 
 
Example 
The approximation of 9.345 to the nearest whole number is 9 
The approximation of 9.345 to 2 decimal points is 9.35 
2/3 = 0.6666 rounded to three decimals places is 0.667 

Round (17.5) = 18 

 
Representation error 

The error introduced by attempting to represent a number on the computer is called representation 
error. Some examples: 

Notation Represent Approximate Error 
1/7 0.142 857 0.142 857 0.000 000 142 857 
ln 2 0.693 147 180 559 945 309 41... 

  
0.693 147 0.000 000 180 559 945 309 41... 

log10 2 0.301 029 995 663 981 195 21... 
  

0.3010 0.000 029 995 663 981 195 21... 

 ...76 164 873 894 049 921 1.259  2 ם
  

1.25992 0.000 001 049 894 873 164 76... 

√ 2  1.414 213 562 373 095 048 80... 
  

1.41421 0.000 003 562 373 095 048 80... 

e 2.718 281 828 459 045 235 36... 
  

2.718 281 828 459 045 
  

0.000 000 000 000 000 235 36… 

π 3.141 592 653 589 793 238 46... 3.141 592 653 589 793 0.000 000 000 000 000 238 46... 
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(3) Truncation Error: This is the quantity T which must be added to the true representation of the 
quantity in order for the result to be exactly equal to the quantity we are seeking to generate. 

Truncate means to cut off and truncation error happen when a fraction is cut off a certain number 
of decimal or binary places. 
 
In mathematics and computer science, truncation is the term for limiting the number of digits 
right of the decimal point, by discarding the least significant ones. 
For example, consider the real numbers 

  5.6341432543653654 
32.438191288 

            −6.3444444444444 

To truncate these numbers to 4 decimal digits, we only consider the 4 digits to the right of the 
decimal point. 

The result would be: 

5.6341 
32.4381 
−6.3444 

Note that in some cases, truncating would yield the same result as rounding, but truncation does 
not round up or round down the digits; it merely cuts off at the specified digit. The truncation 
error can be twice the maximum error in rounding. 

Whenever a finite, y = f(x) is represented by an infinite series. Truncation error is defined on the 
error caused by truncating a mathematical procedure. The error in the value of f(x) due to 
deleting of the series after a finite number of terms is called truncation Error. 

Example 2: 

Y = f(x) = x + x2 + x3 + x4 x5 + … + xn  + xn+1 

The magnitude of truncation error equal the sum of all the discarded term represented by x4 x5 + 
… + xn  + xn+1 + … may be large and it may even exceed the sum of the term required. 

Example 3:  

The Maclaurin series for ex is given as  

  ...
!32!

x x + 1 = e
32

x +++
x   
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The series has infinite number of terms but when using this series to calculate ex, only a finite 
number of terms can be used. For example, if one uses three terms to calculate ex, then 

  ,
2!
x x + 1   e

2
x +≈  

The truncation error for such an approximation is  

 Truncation error = ,
2!
x x + 1 - e

2
x

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+  

     ....
!4!3

43

++=
xx  

Causes of Truncation 
With computers, truncation can occur when a decimal number is typecast as an integer; it is 
truncated to zero decimal digits because integers cannot store real numbers (that are not 
themselves integers). Truncation may also occur when a number cannot be fully represented due 
to memory limitations. 
 
Trunction errors in numerical integration are of two kinds: 
• local truncation errors – the error caused by one iteration, and 
• global truncation errors – the cumulative error cause by many iterations. 
 
Local truncation error 
The local truncation error is the error that the increment function, A, causes during a given 
iteration, assuming perfect knowledge of the true solution at the previous iteration. 
More formally, the local truncation error, τn, at step n is defined by: 

 
 
Global truncation error 
The global truncation error is the accumulation of the local truncation error over all of the 
iterations, assuming perfect knowledge of the true solution at the initial time step. 
More formally, the global truncation error, en, after N steps is defined by: 
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Techniques for Measuring Error 

The quantity, true value – Approximation value is called the error. 

In order to determine the accuracy in an approximate solution to a problem, either we find the 
bound of the  

 
valueTrue

valueionApproximatValueTrue
ValueTrue

Error
Errorlative

−
==Re     

or of the  

                Absolute error =  |Error| 

 

Example: 

Define the error of an approximation. The traditional definition is  

   True value = approximation + error 

e.g. √2 = 1.414214 + Error 

1.414213562373095 = 1.414214 + error 

Error =  1.414213562373095 - 1.414214 =  - 4.376269049512545e-7 

    = 3.1415926536 + Error 

Error  = True value  -  approximation 

e.g if  36.75 is the exact value of a number and if 37 is the  approximated value then the error 
introduced is 

|e | = 36.75 – 37 = |-0.25| 

e = 0.25 

Relative Error 

This is error measure relative to the true value. 

valueTrue
valueionApproximatValueTrue

ValueTrue
Error

Errorlative
−

==Re  

Example: 
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A resistor labeled as 240Ω is actually 243.32753Ω. What are the absolute and relative errors of 
the labeled value? 

Solution 

Absolute error =  |True value – Approximation value| 

                        =  243.32753 – 240 

                        = 3.32753 

ValueTrue
Error

Errorlative =Re = 
32753.243

32753.3 = 0.0136751069638524 014.0≈  
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UNIT 4 

SYNTHETIC DIVISION 

Definition 1: 

Synthetic division is a method of division in which you perform division on the coefficients, 
removing the variables and exponents. It allows you to add throughout the process rather than 
subtract (long division). 

How to divide Polynomials using Synthetic Division 

1. For the purposes of this work 

(x3 + 2x2 - 4x + 8) ÷ (x + 2) 
is the example for all steps. 

2. Reverse the sign of the constant in the divisor.  

(x + 2) is the divisor. The 2 (two) becomes a negative. 

3. Place this new number by itself and place a "backwards L" on its right side.  

-2| 

4. To the right of this, write all of the coefficients (in standard form).  

-2| 1  2  -4  8 

5. Bring down the first coefficient.  

-2|1  2  -4  8 

     ↓ 

      1 

6. Multiply this by the new divisor and place it under the second coefficient.  



  http://www.unaab.edu.ng 

19 

 

             -2|1  2  -4  8 

              -2 

                 1 

 
 
 
7.  Combine the second coefficient and the product.  

 -2|1  2  -4  8 
        -2 
    1   0 

8. Multiply this sum by the new divisor and place under the third coefficient.  

-2|1  2  -4  8 
        -2   0 
    1   0 

9. Combine these.  

-2|1  2  -4  8 
       -2   0 
    1  0  -4 

10. Continue in the same fashion until you have found the final sum. This sum is the remainder.  

-2|1  2  -4  8 
      -2   0   8 
    1 0  -4 |16 
 
To write the answer, place each of the sums next to a variable of one less power than the 
original it is lined up with. In this case, the first sum is placed next to an x to the second power 
(one less than three), the second sum is zero, so it isn't part of the answer, and the negative four 
is not next to an x.  

-2|1  2  -4  8 
        -2  0 8 
    1   0 -4 16 
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 x2+0x -4R16 
 
x2 - 4 R16 

If your remainder is 0, the original divisor was a factor of the polynomial. 

 

• To check your answer, multiply the quotient by the divisor and add the remainder. It 
should be the same as the original polynomial.  

(divisor)(quotient)+(remainder) 
(x + 2)(x2 - 4) + 16 
 
Using FOIL method, multiply. 
(x3 - 4x + 2x2 - 8) + 16 
x3 + 2x2 - 4x - 8 + 16 
x3 + 2x2 - 4x + 8 

 

Definition 2: 

Synthetic division is a shorthand method of dividing a polynomial by a binomial of the form          
x - a. For example, if 3x4 + 2x3 + 2x2 - x - 6 is to be divided by x - 1, the long form would be as 
follows: 

 

Notice that every alternate line of work in this example contains a term which duplicates the one 
above it. Furthermore, when the subtraction is completed in each step, these duplicated terms 
cancel each other and thus have no effect on the final result. Another unnecessary duplication 
results when terms from the dividend are brought down and rewritten prior to subtraction. By 
omitting these duplications, the work may be condensed as follows: 
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The coefficients of the dividend and the constant term of the divisor determine the results of each 
successive step of multiplication and subtraction. Therefore, we may condense still further by 
writing only the nonliteral factors, as follows: 

 

Notice that if the coefficient of the first term in the dividend is brought down to the last line, then 
the numbers in the last line are the same as the coefficients of the terms in the quotient. Thus we 
do not really need to write a separate line of coefficients to represent the quotient. Instead, we 
bring down the first coefficient of the dividend and make the subtraction "subtotals" serve as 
coefficients for the rest of the quotient, as follows: 

 

The unnecessary writing of plus signs is also eliminated here. 

The use of synthetic division is limited to divisors of the form x - a, in which the degree of x is 1. 
Thus the degree of each term in the quotient is 1 less than the degree of the corresponding term 
in the dividend. The quotient in this example is as follows: 

3x3 + 5x2 + 7x + 6 

The sequence of operations in synthetic division may be summarized as follows, using as an 
example the division of 3x - 4x2 + x4 - 3 by x + 2: 

 

First, rearrange the terms of the dividend in descending powers of x. The dividend then becomes 
x4 - 4x2 + 3x - 3, with 1 understood as the coefficient of the first term. No x3 term appears in the 
polynomial, but we supply a zero as a place holder for the x3 position. 

Second, bring down the 1 and multiply it by the +2 of the divisor. Place the result under the zero, 
and subtract. Multiply the result (-2) by the +2 of the divisor, place the product under the -4 of 
the dividend, and subtract. Continue this process, finally obtaining x3 - 2x2 + 3 as the quotient. 
The remainder is -9. 
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Practice problems. In the following problems, perform the indicated operations. In 4, 5, and 6, 
first use synthetic division and then check your work by long division: 

1. (a3 - 3a2 + a) ÷ a 

2.  
3. (10x3 - 7x2y - 16xy2 + 12y3) ÷ (2x2 + xy - 2y2) 
4. (x2 + 11x + 30) ÷ (x + 6) 
5. (12 + x2 - 7x) ÷ (x - 3) 
6. (a2 - 11a + 30) ÷ (a - 5) 

Answers: 

1. a3 - 3a + 1  
2. x4 - 7x3 + 4x2  
3. 5x - 6y  
4. x + 5 
5. x - 4 
6. a - 6 
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UNIT 5 

HORNER SCHEME 

In numerical analysis, the Horner scheme (also known as Horner algorithm), named after 
William George Horner, is an algorithm for the efficient evaluation of polynomials in monomial 
form. Horner's method describes a manual process by which one may approximate the roots of a 
polynomial equation. The Horner scheme can also be viewed as a fast algorithm for dividing a 
polynomial by a linear polynomial with Ruffini's rule. 

Using Horner to evaluate Polynomial functions 
 
In a computer program it is sometimes necessary to evaluate polynomial functions. The basic 
method to evaluate the polynomial function is to "plug in" the value of x into the polynomial. 
Horner's method however results in fewer multiplications and additions and is faster and more 
precise when using float variables. 

Univariate Polynomial function definition 

A univariate polynomial function  has the following form : 

 ( ) nk

n n xaxf ∑ =
=

0
 

 
For example if k = 4 the order of the polynomial is 4 and the function has the following form : 

 ( ) 01
2

2
3

3
4

4 axaxaxaxaxf ++++=   

 

Description of the algorithm 

Given the polynomial 

 

where  are real numbers, we will evaluate the polynomial at a specific value of x, 
say x0. 

To accomplish this, we define a new sequence of constants as follows: 
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Then b0 is the value of p(x0). 

To see why this works, note that the polynomial can be written in the form 

 

Thus, by iteratively substituting the bi into the expression, 

 

Horner  

Horner's method is commonly used to find the roots of a polynomial function. However it can 
also be used to evaluate the polynomial function for a given value of x. 
 
The main goal of the Horner scheme is to reduce the number of multiplications needed by 
isolating the variable (in this case x). 
 
A concrete example : 

( ) ( ) oaxaxaxaxaxf ++++= *12
2

3
3

4  
( ) ( ( ) ) 012

1
3

2
4 ** axaxaxaxaxf ++++=  

( ) (( ) )( ) oaxaxaxaxaxf ++++= *** 1234  

The main advantage here is that when using Horner's method it is not necessary to use a power 
function to evaluate the variable x.  
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Examples  

1. An example of the evaluation of a polynomial function with pen and paper is given below. The 
polynomial is  ( ) 23475 234 +++−= xxxxxf    and the function is evaluated for x = 3. 

 

Finally, the right bottom number is the result of evaluation of the polynomial function for x = 3, 
which is 263. 

2. Evaluate 

  for . 

We use synthetic division as follows: 

 x₀│   x³    x²    x¹    x⁰ 
 3 │   2    -6     2    -1 
   │         6     0     6     
   └──────────────────────── 
       2     0     2     5 
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The entries in the third row are the sum of those in the first two. Each entry in the second row is 
the product of the x-value (3 in this example) with the third-row entry immediately to the left. 
The entries in the first row are the coefficients of the polynomial to be evaluated. Then the 
remainder of f(x) on division by x − 3 is 5. 

But by the remainder theorem, we know that the remainder is f(3). Thus f(3) = 5 

In this example, if a3 = 2,a2 = − 6,a1 = 2,a0 = − 1 we can see that b3 = 2,b2 = 0,b1 = 2,b0 = 5, the 
entries in the third row. So, synthetic division is based on Horner Scheme. 

As a consequence of the polynomial remainder theorem, the entries in the third row are the 
coefficients of the second-degree polynomial, the quotient of f(x) on division by x − 3. The 
remainder is 5. This makes Horner's method useful for polynomial long division. 

 

3. Divide   by : 

 2 │   1    -6    11    -6 
   │         2    -8     6     
   └──────────────────────── 
       1    -4     3     0 

The quotient is  . 

 

4. Let  and .  Divide   by    
using Horner's scheme. 

  1 │  4    -6    0    3   │   -5 
────┼──────────────────────┼─────── 
  2 │        2   -2   -1   │    1 
    │                      │   
    └──────────────────────┼─────── 
       2    -2    -1   1   │   -4     

The third row is the sum of the first two rows, divided by 2. Each entry in the second row is the 
product of 1 with the third-row entry to the left. The answer is 
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Java implementation 
 
The Java implementation is very straight forward : 
package javaimpl; 
 
public class Main { 
    public static void main(String[] args) { 
        // 2 + 3*x + 4*x^2 - 7*x^3 + 5*x^4 
        Polynomial p = new Polynomial(2,3,4,-7,5); 
        float result = p.evaluate(3); 
        System.out.println(result); 
    } 
} 
 
class Polynomial{ 
    float[] a; 
    int order; 
 
    Polynomial( float ... coefficients ){ 
        a = coefficients; 
        order = coefficients.length - 1; 
    } 
 
    float evaluate(float x){ 
        float result = a[order]; 
        for (int i = order - 1 ; i >= 0 ; --i ){ 
            result = result * x + a[i]; 
        } 
        return result; 
    } 
} 
 

C++ Implementation 
#include <iostream> 
#include <vector> 
using namespace std; 
 
class Polynomial{ 
public: 
    Polynomial(const vector<float> & coefficients)  
    : m_a(coefficients.begin(),coefficients.end()) 
    { 
        m_Order = m_a.size() - 1; 
    } 
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    float evaluate( float x) { 
        float result = m_a[m_Order]; 
        for ( int i = m_Order -1 ; i >= 0 ; --i ){ 
            result = result * x + m_a[i]; 
        } 
        return result; 
    } 
private: 
    vector<float> m_a; 
    int m_Order; 
}; 
 
int main() 
{ 
    vector<float> cs; 
    cs.push_back(2); 
    cs.push_back(3); 
    cs.push_back(4); 
    cs.push_back(-7); 
    cs.push_back(5); 
    Polynomial p (cs); 
    float result  = p.evaluate(3); 
    cout << "Result is : " << result << endl;  
} 

 

C# implementation 
using System; 
 
namespace csharpimpl 
{ 
    class Polynomial 
    { 
        private float[] a; 
        private int order; 
 
        public Polynomial ( params float[] coefficients){ 
            a = coefficients; 
            order = coefficients.Length - 1; 
        } 
 
        public float Evaluate ( float x) 
        { 
            float result = a[order]; 
            for (int i = order - 1; i >= 0; --i) 
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            { 
                result = result * x + a[i]; 
            } 
            return result; 
        } 
    } 
    class Program 
    { 
        static void Main(string[] args) 
        { 
            Polynomial p = new Polynomial( 2, 3, 4, -7, 5 ); 
            float result = p.Evaluate(3); 
            Console.WriteLine("The result is : " + result); 
        } 
    } 
} 
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UNIT 6 

POLYNOMIALS AND THEIR ZEROES (FOR AT MOST DEGREE 4) 

  

Imagine a general equation of the form 

   ( ) ∑
=

=
n

i

i
i xaxP

0
 

            n
n xaxaxaa ++++= .....2

210  

where all the a(s) are (constant) arbitrary real numbers. 

The above equation is referred to as Polynomial equation of degree n. The highest power of a 
variable is called the degree of that particular variable.  

Names of polynomials by degree 
The following names are assigned to polynomials according to their degree:[1] 
• Degree 0 – constant 
• Degree 1 – linear 
• Degree 2 – quadratic 
• Degree 3 – cubic 
• Degree 4 – quartic (or, less commonly, biquadratic) (or, a little more common,  

Fourth     degree) 
• Degree 5 – quintic 
• Degree 6 – sextic (or, less commonly, hexic) 
• Degree 7 – septic (or, less commonly, heptic) 
• Degree 8 – octic 
• Degree 9 – nonic 
• Degree 10 – decic 
• Degree 100 - hectic 
The degree of the zero polynomial is either left explicitly undefined, or is defined to be negative 
(usually −1 or −∞). 
 

To be able to get the solution to a particular problem, certain assumption must be taken: 

(i) P(x) may be algebraic or transcendental 

(ii) P(x) may be continuous with an interval of interest (domain) 

(iii) P(x) is differentiable once or twice at least or more depending on the system of equation 
required. 

There is a great problem in determining the roots of an equation of the form f(x) = 0. 
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The function f(x) may be given explicitly, for example 

    
( ) ( )

0... 0,1
1

10 ≠++++=

=

−
− aaxaxaxa

xPxf

nn
nn

n  

A polynomial of degree n in x or f(x) may be known only implicitly as a transcendental function. 

Definition 1: A number ξ  is a solution of f(x) = 0 if ( ) .0≡ξf  Such a solution ξ  is a root or a 
zero of f(x) = 0 

Geometrically, a root of the equation f(x) = 0 is the value of x at which the graph of y = f(x) 
intersects the x-axis. 

Definition 2: If we can write f(x) = 0 as 

     ( ) ( ) ( ) 0=−= xgxxf mξ  

Where g(x) is bounded and ( ) ,0≠ξg then ξ  is called a multiple root of multiplicity m. 

In this case, ( ) ( ) ( ) ( ) ( ) ( ) .0,0... 1' ≠==== − ξξξξ mm ffff  

For m = 1, the number ξ  is said to be a simple root. 

There are generally two types of methods used to find the roots of the equation f(x) = 0.  They 
are: 

Direct Methods: These methods give the exact value of the roots in a finite number of steps. 
Further, the methods give all the roots at the same time. For example, a direct method gives the 
root of a linear or first degree equation  

     0,0 010 ≠=+ aaxa  

as  ./ 01 aax −=  

Similarly, the roots of the quadratic equation 

     0,0 021
2

0 ≠=++ aaxaxa  

are given by  

     
( )

0

20
2
11

2
4

a
aaaa

x
−±−

=  
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Iterative Methods: These methods are based on the idea of successive approximations, i.e., 
starting with one or more initial approximations to the root, we obtain a sequence of 
approximations or iterates }{ kx , which in the limit converges to the root. The methods give only 
one root at a time. 

 

 Part 1: The Roots or Zeroes of a Polynomial 

1.  What is a polynomial equation? 

It is a polynomial set equal to 0.  P(x) = 0. 

Example.  P(x) = 5x³ − 4x² + 7x − 8 = 0 
 

2.  What do we mean by a root, or zero, of a polynomial? 
It is a solution to the polynomial equation, P(x) = 0.  
It is that value of x that makes the polynomial equal to 0. 

In other words, the number r is a root of a polynomial P(x) if and only if  P(r) = 0.  
 
Example 1.   Let P(x) = 5x³ − 4x² + 7x − 8.  Then a root of that polynomial is 1, because  

  P(1) = 5· 1³ − 4· 1² + 7· 1 − 8
  
   = 5 − 4 + 7 − 8 
  
   = 0 

It is traditional to speak of a root of a polynomial.  Of a function in general, we speak of a 
zero. 
 
Example 2.   The roots of this quadratic 

x² −x − 6 = (x + 2)(x − 3) 
are −2 and 3.  Those are the values of x that will make the polynomial equal to 0. 

3.  What are the x-intercept and y-intercept of a graph? 

 
The x-intercept is that value of x where the graph crosses or touches the x-axis.  At 
the x-intercept -- on the x-axis -- y = 0. 
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The y-intercept is that value of y where the graph crosses the y-axis.  At the y-
intercept, x = 0. 

 
4.  What is the relationship between the root of a polynomial and the x-intercepts of its graph? 

The roots are the x-intercepts! 

 
The roots of  x² −x − 6  are −2 and 3.  Therefore, the graph of  

y = x² −x − 6 

will have the value 0 -- it will cross the x-axis -- at −2 and 3. 

5.  How do we find the x-intercepts of the graph of any function  y = f(x)? 

Solve the equation, f(x) = 0. 
 

Examples  
1. Write the polynomial with integer coefficients that has the following roots:  −1, ¾.  

 Solution.   Since −1 is a root, then (x + 1) is a factor.  As for the root ¾, we would have the 
solution 

x = 34
   which implies 

4x = 3
  

4x − 3 = 0
The factors are  (4x − 3)(x + 1).  
The polynomial is  4x² + x − 3. 
 

2.  Determine the polynomial whose roots are −1, 1, 2 and sketch its graph. 

The factors are (x + 1)(x − 1)(x − 2).  On multiplying out, the polynomial is (x² − 1)(x − 2) = 
 x³ − 2x² − x + 2.  
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Here is the graph: 

 
 

The y-intercept is the constant term 2.  In every polynomial the y-intercept is the constant 
term, because the constant term is the value of y when x = 0. 

 

3.   Determine the polynomial with integer coefficients whose roots are −½, −2, −2, and sketch 
the graph. 

The factors are (2x + 1)(x + 2)².  On multiplying out, the polynomial is (2x + 1)(x² + 4x + 4) 
=  

2x³ + 9x² + 12x + 4. 

Here is the graph: 

 
 

−2 is a double root.  The graph does not cross the x-axis. 
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Question:   If r is a root of a polynomial p(x), then upon dividing p(x) by x − r, what remainder 
do you expect? 

0.  Because r being a root will mean that x − r is a factor 
of p(x). 

 

4. Is x = 2 a root of this polynomial: 
x6 − 3x5 + 3x4 − 3x³ + 3x² −3x + 2 ? 

Use synthetic division to divide the polynomial by x − 2, and look at the remainder. 

 
The remainder is 0.   2 is a root of the polynomial. 
 
 

5.   Find the three roots of  
P(x) = x³ − 2x² − 9x + 18, 

given that one root is 3.  
Solution.  Since 3 is a root of P(x), then according to the factor theorem, x − 3 is a factor. 
 Therefore, on dividing P(x) by x − 3, we can find the other, quadratic factor.  

 
We have 

x³ − 2x² − 9x + 18  = (x² + x − 6)(x − 3) 
  
   = (x − 2)(x + 3)(x − 3)

The three roots are:  2, −3, 3. 
Again, since x − 3 is a factor of P(x), the remainder is 0. 
 

6.   Sketch the graph of this polynomial, 
y = x³ − 2x² − 5x + 6, 

given that one root is −2. 
Since −2 is a root, then (x + 2) is a factor.  To find the other, quadratic factor, divide the 
polynomial by x + 2.  Note that the root −2 goes in the box: 
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We have 

x³ − 2x² − 5x + 6  = (x² − 4x + 3)(x + 2)
  
   = (x − 1)(x − 3)(x + 2)

The three roots are:  1, 3, −2.  Here is the graph: 
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Zeroes of Polynomial Functions: 
Rational Zero Theorem and Descartes's Rule of Signs 

Introduction 
In this unit, we will use the Rational Zero Theorem and Descartes's Rule of Signs to find
the zeroes of polynomial functions. Basically when you are finding a zero of a function,
you are looking for input values that cause your functional value to be equal to
zero. Sometimes the polynomial has a degree of 3 or higher, which makes it hard or
impossible to factor.  We have to break down higher degree polynomial functions into
workable factors.  Synthetic division will be use to help us out with this process. 
 
Rational Zero (or Root) Theorem  

If ,where   

are integer coefficients and the reduced fraction is a rational zero, then 

p is a factor of the constant term and q is a factor of the leading coefficient . 
 

We can use this theorem to help us find all of the POSSIBLE rational zeroes or roots of 
a polynomial function.  

Step 1: List all of the factors of the constant. 
In the Rational Zero Theorem, p represents factors of the constant term. 
Make sure that you include both the positive and negative factors. 
 
Step 2: List all of the factors of the leading coefficient. 
In the Rational Zero Theorem, q represents

factors of the leading coefficient. 

Make sure that you include both the 
positive and negative factors. 

  

        Step 3: List all the POSSIBLE rational zeros or roots. 

This list comes from taking all the factors of the constant (p) and writing them ove
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all the factors of the leading coefficient (q), to get a list of  
q
p .  Make sure that you

get ever possible combination of these factors, written as 
q
p . 

 
 

EXAMPLE 1:   
Use the Rational Zero Theorem to list all the possible rational zeros  

for . 
 
        Solution: 

Step 1: List all of the factors of the constant. 
The factors of the constant term 12 are . 
 
Step 2: List all of the factors of the leading coefficient. 
  The factors of the leading coefficient -1 are . 

   
Step 3: List all the POSSIBLE rational zeros or roots. 

Writing the possible factors as 
q
p  we get:   

 
   
 

EXAMPLE 2:   

Use the Rational Zero Theorem to list all the possible rational zeros 

for . 

Step 1: List all of the factors of the constant. 
The factors of the constant term -20 are . 

   
Step 2: List all of the factors of the leading coefficient. 
The factors of the leading coefficient 6 are . 
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 Step 3: List all the POSSIBLE rational zeros or roots. 

Writing the possible factors as 
q
p   we get:   

 
   
Note, that some of  the fractions are repeated, so they need to be reduced.   
Here is a final list of all the POSSIBLE rational zeros, each one written once and 
reduced:  

 
  

EXAMPLE 3:   

List all of the possible zeros, use synthetic division to test the possible zeros, find an 

actual zero and use the actual zero to find all the zeros of 
. 

List all of the possible zeros:  
The factors of the constant term 100 are 
.  
   
The factors of the leading coefficient 1 are .  

Writing the possible factors as 
q
p  we get:  

 
Use synthetic division to test the possible zeros and find an actual zero:  
Recall that if you apply synthetic division and the remainder is 0, then c is a zero or 
root of the polynomial function.  
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At this point you can pick any POSSIBLE rational root from the list of 
q
p .  I would 

suggest starting with smaller easier numbers and then going from there.  
 
Let choose 2:  

 
Since the reminder came out -126, this means f(2) = -126, which means x = 2 is NOT a 
zero for this polynomial function. We need to choose another number that comes from 
that same list of POSSIBLE rational roots.  
 
Let’s choose -2:  

 
Again, the reminder is not 0, so x = -2 is not a zero of this polynomial function.  
 
This time let’s choose - 4:  

 
At last, we found a number that has a remainder of 0. This means that x = - 4 is a zero 
or root of our polynomial function.
 
Use the actual zero to find all the zeros:  
Since, x = - 4 is a zero, that means x + 4 is a factor of our polynomial function.  
 
Rewriting f(x) as (x + 4)(quotient) we get:   

 
   
We need to finish this problem by setting this equal to zero and solving it: 
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*Factor the difference of squares  
   
*Set 1st factor = 0  
   
*Set 2nd factor = 0  
   
   
*Set 3rd factor = 0  
  

   
The zeros of this function are x = - 4, -5, and 5. 

 
EXAMPLE 4: 
List all the possible zeroes, use synthetic division to test the possible zeroes, find an 
actual zero and use the actual zero to find all the zeroes of . 
 
List all the possible zeroes:  
The factors of the constant term -16 are .  
   
The factors of the leading coefficient 1 are .  

Writing the possible factors as 
q
p  we get:  

 
 
Use synthetic division to test the possible zeros and find an actual zero:  
Recall that if you apply synthetic division and the remainder is 0, then c is a zero or 
root of the polynomial function.  

At this point you can pick any POSSIBLE rational root from the list of 
q
p .  I would 

suggest you start with smaller easier numbers and then going from there.  
 
Let’s choose -1:  
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Since the reminder came out -30, this means f(-1) = -30, which means x = -1 is NOT a 
zero for this polynomial function. We need to choose another number that comes from 
that same list of POSSIBLE rational roots.  
 
This time I’m going to choose 1:  

 
At last, we found a number that has a remainder of 0. This means that x = 1 is a zero 
or root of our polynomial function.

 
   

Use the actual zero to find all the zeros:  

Since, x = 1 is a zero, that means x - 1 is a factor of our polynomial function. 

Rewriting f(x) as (x - 1)(quotient) we get:   
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*Factor by grouping  
   
*Factor the difference of squares  
   
*Set 1st factor = 0  
   
*Set 2nd factor = 0  
   
   
*Set 3rd factor = 0  
   
   
*Set 4th factor = 0  
  

 
The zeros of this function are x = 1, 4, -2 and 2.
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     Descartes's Rule Of Signs 
   

  Let  be a polynomial where  are 
real coefficients.  
 
The number of POSITIVE REAL ZEROS of f  is either equal to the number of sign 
changes of successive terms of f(x) or is less than that number by an even number
(until 1 or 0 is reached).  
The number of NEGATIVE REAL ZEROS of f is either equal to the number of sign 
changes of successive terms of f(-x) or is less than that number by an even integer 
(until 1 or 0 is reached).
 
This can help narrow down your possibilities when you do go on to find the zeros. 
 

Example 5:   

Find the possible number of positive and negative real zeroes 

of  using Descartes’s Rule of Signs. 

In this problem it isn’t asking for the zeroes themselves, but what the possible numbers 
of zeroes are.  This can help narrow down your possibilities when you do go on to find
the zeroes.  

Possible number of positive real zeroes:  

 

The up arrows are showing where there are sign changes between successive terms,
going left to right.  The first arrow on the left shows a sign change from positive 3 to
negative 5.  The 2nd arrow shows a sign change from negative 5 to positive 2.  The 
third arrow shows a sign change from positive 2 to negative 1.  And the last arrow 
shows a sign change from negative 1 to positive 10.   

There are 4 sign changes between successive terms, which mean that is the highest 
possible number of positive real zeros.  To find the other possible number of positive 
real zeroes from these sign changes, you start with the number of changes, which in
this case is 4 and then go down by even integers from that number until you get to 1 or
0.  

Since we have 4 sign changes with f(x), then there is a possibility of 4 or 4 - 2 = 2 or 
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4 -  4 = 0 positive real zeroes. 
 
 Possible number of negative real zeros:  

 
Note how there are no sign changes between successive terms.   
 
This means there are no negative real zeros.   
Since we are counting the number of possible real zeros, 0 is the lowest number that 
we can have.  This piece of information would be helpful when determining real 
zeroes for polynomial.  
 
   
  
Example 6: 
Find the possible number of positive and negative real zeros of 

   using Descartes’s Rule of Signs. 
   
In this problem it isn’t asking for the zeros themselves, but what the possible 
numbers of zeroes are.  This can help narrow down your possibilities when 
you do go on to find the zeroes.  
 
Possible number of positive real zeroes:  

 
The up arrow is showing where there is a sign change between successive
terms, going left to right.  This arrow shows a sign change from positive 2 to 
negative 7.   
There is only 1 sign change between successive terms, which means that is
the highest possible number of positive real zeroes.  To find the other 
possible number of positive real zeroes from these sign changes, you start 
with the number of changes, which in this case is 1 and then go down by
even integers from that number until you get to 1 or 0.   
If we went down by even integers from 1, we would be in the negative
numbers, which is not a feasible answer, since we are looking for the 
possible number of positive real zeroes.  In other words, we can’t have a -1 
of them.   
Therefore, there is exactly 1 positive real zero. 
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Possible number of negative real zeroes:  

 

The up arrows are showing where there are sign changes between successive terms, going left
to right.  The first arrow on the left shows a sign change from negative 2 to positive 7.  The
2nd arrow shows a sign change from positive 7 to negative 8.   

There are 2 sign changes between successive terms, which mean that is the highest possible
number of negative real zeros.  To find the other possible number of negative real zeros from
these sign changes, you start with the number of changes, which in this case is 2, and then go
down by even integers from that number until you get to 1 or 0.  

Since we have 2 sign changes with f(-x), then there is a possibility of 2 or 2 - 2 = 0 negative
real zeros. 

 
Example 7:   
List all of the possible zeros, use Descartes’s Rule of Signs to possibly narrow it down, use
synthetic division to test the possible zeroes and find an actual zero, and use the actual zero to

find all the zeros of .  
 
Solution: 
List all the possible zeroes:  
The factors of the constant term -2 are .  
   
The factors of the leading coefficient 3 are .  

Writing the possible factors as 
q
p  we get:  

 
 
Before we try any of these, let’s apply Descartes’s Rule of Signs to see if it can help narrow
down our search for a rational zero.  
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Possible number of positive real zeros:  

 
The up arrows are showing where there are sign changes between successive terms, going left
to right.  
There are 3 sign changes between successive terms, which mean, that is the highest possible
number of positive real zeroes.  To find the other possible number of positive real zeroes from
these sign changes, you start with the number of changes, which in this case is 3, and then go
down by even integers from that number until you get to 1 or 0.  
Since we have 3 sign changes with f(x), then there is a possibility of 3 or 3 - 2 = 1 positive
real zeros. 
 
Possible number of negative real zeros:  

 
Note that there are no sign changes between successive terms.   
 
This means there are no negative real zeros.   
Since we are counting the number of possible real zeros, 0 is the lowest number that we can 
have. This will help us narrow things down in the next step. 
 
   

Use synthetic division to test the possible zeroes and find an actual zero:  
Recall that if you apply synthetic division and the remainder is 0, then c is a 
zero or root of the polynomial function.  

At this point you pick any POSSIBLE rational root from the list of 
q
p . 

Above, we found that there are NO negative rational zeroes, so we do not 
have to bother with trying any negative numbers.  See how Descartes’s has 
helped us.  I would suggest we start with smaller easier numbers and then go 
from there.  
Let’s choose 1:  

 
Since the reminder came out -2, this means f(1) = -2, which means x = 1 is 
NOT a zero for this polynomial function. We need to choose another number 
that comes from that same list of POSSIBLE rational roots.  
 
This time I’m going to choose 2:
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At last, we found a number that has a remainder of 0. This means that x = 2 
is a zero or root of our polynomial function.
 
Use the actual zero to find all the zeroes:  
Since, x = 2 is a zero, that means x - 2 is a factor of our polynomial function.  
Rewriting f(x) as (x - 2)(quotient) we get:   

 
   
We need to finish this problem by setting this equal to zero and solving it: 

 
   

 
   
*Set 1st factor = 0  
   
*Set 2nd factor = 0  
*This is a quadratic that does not 
factor  
*Use the quadratic formula  
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  The zeros of this function are x = 2, , and . 
 
   
Example 8:  List all the possible zeroes, use Descartes’s Rule of Signs to possibly 
narrow it down, use synthetic division to test the possible zeroes and find an actual 
zero, and use the actual zero to find all the zeros 
of .  

List all the possible zeros:  
The factors of the constant term -18 are . 
   
The factors of the leading coefficient 1 are .  

Writing the possible factors as 
q
p  we get:  

 
Before we try any of these, let’s apply Descartes’s Rule of Signs to see if it can help 
narrow down our search for a rational zero.  
 
Possible number of positive real zeroes:  

 
The up arrow is showing where there is a sign change between successive terms, going 
left to right.  
There is 1 sign change between successive terms, which means that is the highest 
possible number of positive real zeroes.   
Since we have 1 sign change with f(x), then there is exactly 1 positive real zero. 
 
Possible number of negative real zeros:  

 
The up arrows are showing where there are sign changes between successive terms, 
going left to right. There are 4 sign changes between successive terms, which means 
that is the highest possible number of negative real zeros.  To find the other possible 
number of negative real zeros from these sign changes, you start with the number of 
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changes, which in this case is 4, and then go down by even integers from that number 
until you get to 1 or 0. Since we have 4 sign changes with f(x), then there are 
possibility of 4, 4 - 2 = 2 or 4 - 4 = 0 negative real zeros. 
 
Use synthetic division to test the possible zeros and find an actual zero:  

At this point you can pick any POSSIBLE rational root from the list of 
q
p .  Above, we 

found that there is exactly 1 positive rational zero.  Since we know that there is 1 for 
sure, then we may want to go ahead and start with trying  positive rational roots.  I 
would suggest starting with smaller easier numbers and then go from there.  
 
Let’s choose 1 to try:  

 
We found a number that has a remainder of 0.  This means that x = 1 is a zero or root 
of our polynomial function. 

 
Use the actual zero to find all the zeroes:  
Since, x = 1 is a zero, that means x - 1 is a factor of our polynomial function.  
Rewriting f(x) as (x - 1)(quotient) we get:   

 
   
We need to finish this problem by setting this equal to zero and solving it: 

 

 

 
   

*Set 1st factor 
= 0 
   
   

  
Looks like we can’t factor this one.  We are going to have to repeat this 
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process again, but this time we will use this factor that we found.  

Recall, that in Descartes’s Rule of Signs we already found that there is 
exactly one positive real zero.  It looks like we already found that, so when 
we are trying again we can focus on finding a negative real zero. 

Note that we can still pick from the same list of 
q
p  numbers as we did 

above, since we are still looking at solving the same overall problem.  
However when we set up the synthetic division, we will just look at the 
remaining factor, to help us factor that down farther.  

Let’s try -1:  

 

We found a number that has a remainder of 0. This means that x = -1 is a 
zero or root of our polynomial function. 
 
Use the actual zero to find all the zeros:  

Since, x = -1 is a zero, that means x +1 is a factor of our polynomial function. 

Rewriting f(x) as (x - 1)(x + 1)(quotient) we get:   

 
Looks like we can’t factor this one.  We are going to repeat this process 
again, but this time we will use this factor that we found.  

Recall, that in Descartes’s Rule of Signs we already found that there is 
exactly one positive real zero.  It looks like we already found that, so when 
we are trying again we can focus on finding a negative real zero. 

Note that we can still pick from the same list of 
q
p  numbers as we did 

above, since we are still looking at solving the same overall problem.  
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However when we set up the synthetic division, we will just look at the 
remaining factor, to help us factor that down farther.  

Let’s choose -2 :  

 

We found a number that has a remainder of 0. This means that x = -2 is a 
zero or root of our polynomial function. 

   

Use the actual zero to find all the zeros:  
Since, x = -2 is a zero, that means x + 2 is a factor of our polynomial 
function.  
 
Rewriting f(x) as (x - 1)(x + 1)(x + 2)(quotient) we get:   

 
   
We need to finish this problem by setting this equal to zero and solving it: 
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*Factor the trinomial
   
*Set 1st factor = 0
   
   
*Set 2nd factor = 0
   
   
*Set 3rd factor = 0
   
   
*Set 4th factor = 0
  

 
   

The zeros of this function are x = 1, -1, -2, and -3. 
 
Exercises 
1.     Use the Rational Zero Theorem to list all the possible rational zeros for the given
polynomial function. 

   
 

2.   Find the possible number of positive and negative real zeros of the given 
polynomial function using Descartes’s Rule of Signs. 

 

 
3.   List all the possible zeroes, use Descartes’s Rule of Signs to possibly narrow it down, use
synthetic division to test the possible zeroes and find an actual zero, and use the actual zero to 
find all the zeroes of the given polynomial function.  

a.   
b.  
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Zeroes of Polynomial Functions:  
Upper and Lower Bounds, Intermediate Value Theorem  

The Upper and Lower Bound Theorem 

Upper Bound  
If you divide a polynomial function f(x) by (x - c), where c > 0, using synthetic 
division and this yields all positive numbers, then c is an upper bound to the real roots 
of the equation f(x) = 0.  

Note that two things must occur for c to be an upper bound.  One is c > 0 or positive. 
The other is that all the coefficients of the quotient as well as the remainder are
positive. 
 
   
Lower Bound  
If you divide a polynomial function f(x) by (x - c), where c < 0, using synthetic division
and this yields alternating signs, then c is a lower bound to the real roots of the equation
f(x) = 0.  Special note that zeroes can be either positive or negative.   

Note that two things must occur for c to be a lower bound.  One is c < 0 or negative.  The
other is that successive coefficients of the quotient and the remainder have alternating
signs. 
 

Example 1:  
Show that all real roots of the equation   lie between - 4 and 
4. 
 
Solution 
In other words, we need to show that - 4 is a lower bound and 4 is an upper bound for real 
roots of the given equation.  

Checking the Lower Bound:  
Lets apply synthetic division with - 4 and see if we get alternating signs:  
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Note that c = -4 < 0 AND the successive signs in the bottom row of our synthetic division 
alternate.   

You know what that means?  

- 4 is a lower bound for the real roots of this equation. 
 

 
Checking the Upper Bound:  
Lets apply synthetic division with 4 and see if we get all positive:  
   
   

 
Note that c = 4 > 0 AND all the signs in the bottom row of our synthetic division are
positive.   
 
You know what that means?  
4 is an upper bound for the real roots of this equation.
   
Since - 4 is a lower bound and 4 is an upper bound for the real roots of the equation, then
that means all real roots of the equation lie between - 4 and 4. 

 
The Intermediate Value Theorem 

Theorem 1: If f(x) is a polynomial function and f(a) and f(b) have different signs, then there is 
at least one value, c, between a and b such that f(c) = 0. 
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In other words, when you have a polynomial function and one input value causes the function
to be positive and the other negative, then there has to be at least one value in between them
that causes the polynomial function to be 0.   

This works because 0 separates the positives from the negatives.  So to go from positive to 
negative or vice - versa you would have to hit a point in between that goes through 0. 

Example 2:  

Show that  has a real zero between 2 and 3.  Use the Intermediate 
Value theorem to find an approximation for this zero to the nearest tenth. 
 
Solution: 
When finding functional values, you can either use synthetic division or directly plug the
number into the function.   

Finding f(2):  

 

Finding f(3):  

 

Since there is a sign change between f(2) = -2 and f(3) = 5, then according to the 
Intermediate Value Theorem, there is at least one value between 2 and 3 that is a zero of
this polynomial function.
   

Checking functional values at intervals of one-tenth for a sign change: 
 

   
Finding f(2.1):  

 
Finding f(2.2):  

 
Finding f(2.3):  

 
Finding f(2.4):  

 
Finding f(2.5):  
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Note that we have the sign change  
Now we want to find the zero to the nearest tenth.  So it is going to be x = 2.4 or x = 2.5. 
We can now check for the functional value which is closer to zero.  We will need to dig a 
little bit deeper and go by intervals of one-hundredths: 

 
   

 

Finding f(2.41):  

 

Finding f(2.42):  

 

Finding f(2.43):  

 

Finding f(2.44):  

 

Finding f(2.45):  

 
Now at last we have gotten a sign change between successive hundredths. 
That means we have narrowed it down which makes it a little bit bitter. 
There is a zero between 2.44 and 2.45.   
 
Since it would land slightly below 2.45, the nearest tenth would be 2.4.  
The work is not hard but a little bit tedious. 
 

 Theorem 2: 

If f(x) is a continuous function on some interval [a,b] and f(a) f(b) < 0, then the equation f(x) = 0 
has at least one real root or an odd number of real roots in the interval (a,b). 

We can set up a table of values of f(x) for various values of x and obtain a suitable initial 
approximation to the root. 

Examples:  

1. The equation 032128 23 =+−− xxx  
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has three real roots. Find the intervals each of unit length containing each one of these roots. 

Solution: 

We prepare a table of the values of the function f(x) for various values of x 

 

x -2 -1 0 1 2 3 

f(x) -105 -15 3 -3 15 105 
 

 

 

From the table, we find that the equation f(x) = 0 has roots in the intervals (-1,0), (0,1) and (1,2). 
The exact roots are -0.5, 0.5 and 1.5 

 

2. Obtain the interval which contains a root of the equation 0cos)( =−= xxexxf  

Solution: 

We prepare a table of the values of the function f(x) for various values of x 

x 0 0.5 1 1.5 2 

f(x) 1 0.0532 -2.1780 -6.6518 -15.1942 

 

From the table, we find that the equation f(x) = 0 has at least one roots in the intervals (0.5, 1). 
The exact root correct to ten decimal places is 0.5177573637. 
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UNIT 7 

BISECTION METHOD 

Bisection method is the simplest method of bracketing the roots of a function and requires an 
initial interval which is guaranteed to contain a root -- if a and b are the endpoints of the interval 
then f(a) must differ in sign from f(b). This ensures that the function crosses zero at least once in 
the interval. If a valid initial interval is used then these algorithm cannot fail, provided the 
function is well behaved.  

On each iteration, the interval is bisected and the value of the function at the midpoint is 
calculated. The sign of this value is used to determine which half of the interval does not contain 
a root. That half is discarded to give a new, smaller interval containing the root. This method can 
be continued indefinitely until the interval is sufficiently small. At any time, the current estimate 
of the root is taken as the midpoint of the interval.  

Bisection method has linear convergence. Linear convergence means that successive significant 
figures are won linearly with computational effort.  

When an interval contains more than one root, the bisection method can find one of them. When 
an interval contains a singularity, the bisection method converges to that singularity. 

Theorem (Bisection Theorem).  
Assume that   and that there exists a number such that  f(r) = 0.   
If  f(a) and f(b) have opposite signs, and represents the sequence of midpoints generated by 
the bisection process, then 
 

           for   , 
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and the sequence converges to the zero  .   
 

That is,      .  
 
 
Method 
The method is applicable when we wish to solve the equation f(x) = 0 for the real variable x, 
where f is a continuous function defined on an interval [a, b] and f(a) and f(b) have opposite 
signs. In this case a and b are said to bracket a root since, by the intermediate value theorem, the 
f must have at least one root in the interval (a, b). 

At each step the method divides the interval in two by computing the midpoint c = (a+b) / 2 of 
the interval and the value of the function f(c) at that point. Unless c is itself a root (which is very 
unlikely, but possible) there are now two possibilities: either f(a) and f(c) have opposite signs and 
bracket a root, or f(c) and f(b) have opposite signs and bracket a root. The method selects the 
subinterval that is a bracket as a new interval to be used in the next step. In this way the interval 
that contains a zero of f is reduced in width by 50% at each step. The process is continued until 
the interval is sufficiently small. 

Explicitly, if f(a) and f(c) are opposite signs, then the method sets c as the new value for b, and if 
f(b) and f(c) are opposite signs then the method sets c as the new a. (If f(c)=0 then c may be taken 
as the solution and the process stops.) In both cases, the new f(a) and f(b) have opposite signs, so 
the method is applicable to this smaller interval. 

Analysis 

The method is guaranteed to converge to a root of f if f is a continuous function on the interval 
[a, b] and f(a) and f(b) have opposite signs. The absolute error is halved at each step so the 
method converges linearly, which is comparatively slow. 

Specifically, if p1 = (a+b)/2 is the midpoint of the initial interval, and pn is the midpoint of the 
interval in the nth step, then the difference between pn and a solution p is bounded by 

 

This formula can be used to determine in advance the number of iterations that the bisection 
method would need to converge to a root to within a certain tolerance. 

 
Example: 
To find a root of x3 - 4x - 9 = 0 correct to 3 decimal places using bisection method, take f(x) = x3 
- 4x - 9.  
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First, f(2) = −9 < 0 and f(3) = 6 > 0 so a root lies between 2 and 3. 
The first approximation to the root is then x1 = 1/2(a + b) = 2.5.  
Then f(x1) = -3.375 < 0, so the root lies between x1 and 3.  
Thus second approximation to the root is x2 = 1/2(2.5 + 3) = 2.75.  
f(x2) = 0.7969 > 0, so the root lies between x1 and x2. 
Continue until the size of the intervals is less than the required tolerance .001, so 10 steps are 
required.  
This gives x10 = 2.706 as the required root 
 
Bisection Algorithm 
 
INPUT: Function f, endpoint values a, b, tolerance TOL, maximum iterations NMAX 
CONDITIONS: a < b, either f(a) < 0 and f(b) > 0 or f(a) > 0 and f(b) < 0 
OUTPUT: value which differs from a root of f(x)=0 by less than TOL 
 
N ← 1 
While N ≤ NMAX { limit iterations to prevent infinite loop 
  c ← (a + b)/2 new midpoint 
  If (f(c) = 0 or (b – a)/2 < TOL then { solution found 
    Output(c) 
    Stop 
  } 
  N ← N + 1 increment step counter 
  If sign(f(c)) = sign(f(a)) then a ← c else b ← c new interval 
} 
Output("Method failed.") max number of steps exceeded 
 
 
 
PROCEDURE Bisection(a,b,eps:Real; VAR xsol:Real); 
{ Required condition: f(a)*f(b)<0 } 
{ eps = accuracy of the root, e.g.: 0.000001 } 
VAR 
   c:Real; 
BEGIN 
   REPEAT 
     c:=(a+b)/2; 
     IF f(a)*f(c)<0 THEN b:=c 
     ELSE a:=c 

   UNTIL b-a<eps; 
   xsol:=c 
END; {Bisection method - Pascal code} 
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UNIT 8 

NEWTON'S METHOD 

Newton method is the standard root-polishing algorithm. Newton method, also called the 
Newton-Raphson method, is a root-finding algorithm that uses the first few terms of the Taylor 
series of a function f(x) in the vicinity of a suspected root.  

 

Newton algorithm begins with an initial guess for the location of the root. On each iteration, a 
line tangent to the function f is drawn at that position. The point where this line crosses the x-
axis becomes the new guess. 

  

 
 

Newton method converges quadratically for single roots, and linearly for multiple roots.  
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Example: . 

First, recall Newton's Method is for finding roots (or zeros) of functions. In order to use 
Newton's Method, you need to (1) make a first "guess" as to what you think the root is and (2) 
find the derivative of the function. You then use the following, easily-derived formula (where 
is your first guess) to arrive at your second guess, called : 

 

 Again, we are trying to find when . 

A good first guess is , since , and . 

Then 

 

We can then continue this process iteratively, using as our next "guess": 
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Newton Alogorithms 

The function below, written in Pascal and C, takes a simpler approach, ignoring the situation in 
which Newton method does not converge.  

PROCEDURE Newton(c, eps:Real; VAR xsol:Real); 
VAR 
   d:Real; 
BEGIN 
{ df(x) = value of the first derivative } 
{ eps = accuracy of the root, e.g.: 0.000001 } 
   REPEAT 
     d:=c; 
     c:=c-f(c)/df(c) 
   UNTIL Abs(d-c)<eps; 
   xsol:=c 
END; {Newton method - Pascal code} 
 

Newton.c 

// Implementation of the Newton algorithm in C 
 
#include <stdio.h>  
#include <math.h>  
 
double newton(double x_0, double tol, int max_iters,  
          int* iters_p, int* converged_p); 
double f(double x); 
double f_prime(double x); 
 
int main() { 
   double x_0;       /* Initial guess                */ 
   double x;         /* Approximate solution         */ 
   double tol;       /* Maximum error                */ 
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   int    max_iters; /* Maximum number of iterations */ 
   int    iters;     /* Actual number of iterations  */ 
   int    converged; /* Whether iteration converged  */ 
 
   printf("Enter x_0, tol, and max_iters\n"); 
   scanf("%lf %lf %d", &x_0, &tol, &max_iters); 
 
   x = newton(x_0, tol, max_iters, &iters, &converged); 
 
   if (converged) { 
    printf("Newton algorithm converged after %d steps.\n",  
         iters); 
    printf("The approximate solution is %19.16e\n", x); 
    printf("f(%19.16e) = %19.16e\n", x, f(x)); 
   } else { 
    printf("Newton algorithm didn't converge after %d steps.\n",  
          iters); 
    printf("The final estimate was %19.16e\n", x); 
    printf("f(%19.16e) = %19.16e\n", x, f(x)); 
  } 
 
   return 0; 
}  /* main */ 
 
 
double newton(double x_0, double tol, int max_iters,  
          int* iters_p, int* converged_p) { 
   double x = x_0; 
   double x_prev; 
   int    iter = 0; 
 
   do { 
      iter++; 
      x_prev = x; 
      x = x_prev - f(x_prev)/f_prime(x_prev); 
   } while (fabs(x - x_prev) > tol && iter < max_iters); 
 
   if (fabs(x - x_prev) <= tol) 
      *converged_p = 1; 
   else 
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      *converged_p = 0; 
   *iters_p = iter; 
    
   return x; 
}  /* newton algorithm */ 
 
 
double f(double x) { 
   return x*x-2; 
}  /* f */ 
 
double f_prime(double x) { 
   return 2*x; //the derivative 
}  /* f_prime */ 
 
 

 


