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READING LIST:

2.0
SOLUTIONS OF DIFFERENTIAL EQUATIONS

To consider:



(1) Euler method

(2)  Improved Euler-Cauchy method (predictor — corrector method)

(3) Runge-Kutta method

INITIAL VALUE PROBLEM
Generally, f(x, y, y’) = 0, y(0) = yo, the solution must satisfy certain initial
conditions. It can be put as
Y =F069),Y(0) = Yo ververcerver e e e e e s (1)

Numerical Method for 1° Order Differential Equations
1. Euler Method

y(x+h) =y() +hy'(x) + h*y"(x) + - (2)
From (1)
y' = f by differentiating
" o__ I __ 5f (Sf !

y'=f"= x + (6y)y SIS ()|

and the Taylor series becomes
h2 3

YO+ h) = Y0 +hf + oo f o f @)
Where f', f", f"", ... . . ... ... are evaluated at (X, y(x)) make the approximation

y(x+h) =yx)+hf + - (5)

by neglecting higher powers of h.

Introduce the iteration process, where in the last step;

We compute
Which is approximately y(x;) = y(Xo + h). IN the 2" step, we compute

which is approximately
Y(X2) = y(%o + 2h) etc.
In general, we write

Va1 = Yn F R (00 Vi) e e e e e e e e e e e e e o (8)
Apply the Euler method to the initial value problem

y =x+y, y(0)=20



Choosing h = 0.2 & multiplying y1, Va,.....,¥n.

Hence f(X, y) = x + y and we see that equ. (8) becomes

:Vn+1 = yn + O-Z(xn + yn)

N Xn Yn 0.2(xn +Vy,) | Error Exact values
0 0.0 0.00 0.000 0.000 0.000
1 0.2 0.00 0.040 0.021 0.021
2 0.4 0.04 0.088 0.052 0.092
3 0.6 0.128 0.146 0.074 0.222
4 0.8 0.274 0.215 0.0152 0.426
5 1.0 0.489 0.229 0.718

An indication of the accuracy of the value may be obtained by applying the
Euler method again with 2h = 0.4 and comparing approximation they differ by 0.04 at
Xo = 0.4 and 0.110 at (xo) = 0.8 since the error is of order h? a switch from h to 2h
corresponds to a multiplication by 2° = 4, but since we need twice as many steps as
before, the error we have will be multiplied by 4, hence those differences indicate the
size of the error.
THE EULER-CAUCHY METHOD

The corresponding formulas can be represented in such a form that a
computation of the derivatives of f(x, y) is avoided. So an improved Euler-Cauchy
method is an example.

In each step of this method, we first compute the auxiliary;

Y*ne1 = Yo + hf(Xn, Yn)

and then the new value:

1
Yne1 = Yn T Eh[f(xn; yn) + f(xn+1» }/;;4.1)]

Cauchy — Euler method is a predictor corrector method.
The improved Euler method (Euler-Cauchy method) is a 2" order method. The
truncation error is of order h®.

Exercise: Apply the E.C method to solution of equation (1)




CHOICE OF STEP VALUE h
(a) The value of h should not be too small because otherwise the round-off error

and truncation error becomes too large.
(b) Also h should not be too large because large h implies large truncation error.

20 RUNGE-KUTTA METHOD
Is of greater accuracy and better practicable method than the other two methods

discussed. Let A, B, C, and D, and the new value y,.1.

Algorithm for Runge-Kutta method

Given an initial problem
y' =f&y), y(x0) = ¥o

where h is such that the problem has a unique solution y(x) on some interval
containing X,. Also, given h & n.

forn=0,1, ........... ,n-1, do

An = hf(xn, ¥n)

By = hf(tn+2hyn +=Ay)

Co = hf (n +5h Y0 +3By)

D, = hf(xn +h,yn + Cy)

Yns1 = Yn + ¢ (An + 2B, + 2C, + Dy,)
then y,.4 IS an approximation to y(Xq+1)
where

Xn+1 = Xo + (N + 1)h

Runge-Kutta method is a 4™ order method.

3.0 EXPANSION OF INIFINITE SERIES

Expansion of infinite series makes possible the numerical solution of many important
physical problems. The solution of certain differential equations that occur frequently in the
mathematical representation of many physical problem are expressed in terms of infinite
series.

Definitions



Sequence: - A sequence is a succession of terms formed according tosomefixed rules or laws
x3 x*
1x2' 1x2x3

eg.1,4,9 16,25 &x, x2, etc.

Series: - A series is the indicated sum of the terms of a sequencei.e.1+4+9+ 16 + 25and x +

x3 4

x? + + —— If the number of terms is limited, the sequence of the series is said to be
1x2 1x2x3

finite. The general term or nth term is the expression that indicates the law of formation of the

terms of the series eg. the series 1 + 4 + 9 + 16 + 25 =

n
z n?> =n termsisn?
i=0
and
n
2y x3 N x* nx"
x+ x = —_—
1x2 1x2x3 — n!
=
Wheren!=1x2x3x4....x(n-1)n
h n
nth term = nx™ = %
3.1 POWER SERIES
This is a series of the form:
S=ap+aX+ayt...+aX"
Where the coefficients ag, ay, ay, ....... are independent of x e.g. the Taylor’s series.

3.1.1 TheTaylor’s Seriesis a method of expanding a given function f(x) into a power series.

Consider

fx0+hf’(x)dx =f(xg+h)— f(xg) e cev v e cve v vve e (3.1)

X0

We can express the above in terms of x and t.

«—h-t —» < t

A 4

Xo X Xoth



Let us change the variable of integration from x to t by means of the equation
X= (XO + h) -1

Substituting into equation (3.1) gives

Xg+h 0 h o,
J f'(x)dx = —f f'(xg + h—t)dt = f f'(xg+h—1t)dt..........(3.2)
Xo h 0
Consider
[rotn f1 00X = Frg + ) = F(0) v (33)

We can integrate the above by part and substituting, we have

[ f' (o + h—t)dt = [tf'(xo+h—t1h+ [ tf" (o + h — t)dt
=hf' (o) + fi tf" (g + B = )AL ot (34)

After n integrations by parts, we have

Xo+h , D = hf h? ; h3 o h" N
[ G = b oo 4 3 PG 3 ) 4 )

htn
+f — [ (xy + h —t)dt
o Nl

~ f(xg +h) — f(xo)

The last integral can be written in the form:

htn 1 h
fo — pt)dt = afo A (L Rt SO ¢ )

Where @(t) = F@* D (g + h =) cee e cee et e cee e e v e e e e e (3.8)
The integral | may be regarded as representing the area under the curve y = t"o(t) from
the pointt =0, t = h. If @(t) is a continuous function of t", there will be some points such that 0 <

to< h for which we shall have
1 (" o(to) ("
I = — t"p(t)dt = —— | t"dt ..o v v v e . (3.9
n!jo () y jo (3.9)

Which gives



n+1 n+1
CE]] 1)!(p(to) = mf”“(xo +6h) 0<@<1 ... (3.10)
Where 6h = h — t,,

Hence
h , h? N h™ n
flxo+h)=f(xo) + Ff (%) + ?f (o) + -+ ﬁf (x0)
— f(n+D) Oh) 0<B<T.wuueeioeeeen. (311
Equation (3.11) is the Taylor’s formular with the Langragian form of the remainder. In derivation

of Taylor’s formular, it was assumed that f(x) possesses a continuous nth derivative. The term

n+1
L F®*+D (xy + Oh) is called the remainder after (n+1) terms. It may happen that

Ripsq = (n+1)!

f(x) possesses derivates of all orders and that the lim,,_,, R,,4; = 0. In that case, we have the

convergent infinite series:

M) W),

flro+h) = flxo) +— oy (3.12)
If we place xo=0 and h = x, we obtain
I 21 n (n)
f(x)=f(0)+ * ©) + X ) + 4 w... e e (3.13)

1! 2! n!
(3.13) is called the Maclaurin series.
Example (1): Obtain the Maclaurin series expansions of the function f(x) = e*.

Solution: using equ. 3.13

fO=1  fO)=1,..f™0 =1
x? x3 x* x"
et = 1+X+E+E+Z+W+H
Example (2): Obtain the Maclaurin series expansion for f(x) = cosx

Solution:

fO=1  f(@O=0 f'(0)=-1, f"0)=0

x2 x4 x6 (_1)n—1x2n—2
.. COSX = 1_E+Z_E+'" 2n—2)!

This converges for all values of x

SST: Try for f(x) = e*



3.1.2 The Binomial Series
If we consider the function f(x) = (1+x)" and expand it using Maclaurin series in powers

of x, we have:

\
f'(x) = n(1 - 2™
') =nn-1(1+x)"? > 3.14
f")=nn-1Dn-2)1+x)"3
ffx)=n(n—1)(n-2)(n—3) ...... nm—-r+1HA+x)" )

Substituting (3.14) into (3.13) we have

n-1) , nn-Dn-2) ,
T 3] X
nn-1)n-2).(n—-r+1

N ( )( r? ( )xT

n
I+x)"=1+nx+

e (3.15)

This series is convergent if |x| < 1 and divergent when |x| > 1. If n is a positive integer, the
series is infinite.
We may also write (a + b)" = a(1 + x)" if x=b/a
i.e.
n(n — 1)a" %h? nla™ " h"
T CEesT

(a+b)*=a™+na™ b+

4.0 NUMERICAL DIFFERENTIAL & INTEGRATION
4.1 DIFFERENTIATION

It happens very frequently in practical applications that one encounters a differential
equation describing some physical systems which cannot be readily solved by analytical
methods. The reason being that it is usually either too complex or non-linear and cannot be

solved analytically.
. . d , . . .
If f(x) is a function and f'(x) = d—i, we can use Taylor’s expansion to obtain a relation

which gives a value for f(x) at a point x + h and x — h as follows:

h' h? h*
fx+h)=Ff(x)+hf'(x)+ zf"(x) + Ef”’(x) + Zf<W>(x) + oo (4.1)

h? h3 h*
Flx—h) = f) = hf () + 51 f'() =5 [ + g fP@) + 0 (42)

If we subtract (4.2) from (4.1), we get the 1* derivative



fG+h) - f(x —h) =2hf'(x) + 2 f”’(x) 2 f(")(x) (4.3)
If h is very small so that h = 0, we may neglect the terms h® and h’ above so that

fx+h) = f(x —h) = 2hf'(x)

h)—f(x—h
.,.f,(x)zf(x+ )th(x ) (4.4)

Which is the Stirling’s formula, where h is the step size.

To get the 2™ derivate, add (4.1) and (4.2):

2

fO+h) + fx—h) = 2f () + & "(x) + —f(“’)(x) (4.5)

4.2 INTEGRATION
Suppose a function f is positive in an interval D = {a < x < b}. We seek the area under the

curve y = f(x) between x = a and x = b. This area is shaded in fig. Below and is equal to

fbf(x)dx

TR
. N

f(X) y f

A]
N _A N
A A N1 )
NN [
N

a b X

The interval has been divided into n strips; h being the width of the strips

5 Lenghtab = nh
yi = f(xi)
Yi Vi1 Yir1 = f(Xis1)
Avrea of rectangle ABCD = yjh.
Area of ABCD =y
a C b




Area of AADE =%h(yl-+1 - Vi)

A
D

Area of the total strip ABCE is
1 1 1
A=yh+ Eh(yi+1 —y) =yh+ Eyi+1h - Eyih
1

. . h
For a single strip, area =~ Vi + Vit1)
Xi+1

h
I; = fo)dx = 5()’1‘ + Vis1)

Xi
F Y Yo+ Vst Yot e (4.8)

Equation (4.8) is called the trapezoidal rule. There is error due to the truncation of the small
triangles.
There is another numerical integration method called the Simpson’s rule. Consider a

parabolic function f(x) = y(x) = yo+x x + Sx? shown below
y

P
|
=y

x=-h lo

Atx=0,y(0) =f(0) =yo
At x=-h, y(-h) =yp—ah + th (4.9)

At x = +h, y(h) = yo + ah + Bh? (4.10)




Adding (4.9) and (4.10 we have
y(h) +y(-h) = y(-h) + y(h) = 2yo + 2Bh’
2Bh*=y(-h) +y(h) = 2yo
_yE=h) +y)
= > S/ T T T T T

28h% Bh3
s =2h <y0 + T) N €% V)

Bh? e (£11)

Substitute (4.11) into (4.12) to get

| —on [3’0 N }(y(—h) +y(h) - 2yo>]

3 2

h
I'=3ly(h) +y(h) + 4y
For n even strips, area of strips fromn=0ton=2is
h
L = §[Yo + v, + 4y, ]
Area of stripsfromn=2ton=4
h
I, = 5[)’2 + 4 + 4ys5]
Area of stripsfromn=4ton=6

h
I; = §[3’4 + Y6 + 4ys]

Finally, area of strips from n-2 to n will be

h

I% = § [J’n—z + Yyt 4yn—1]

Adding all the areas of the strips, we get
b
I = f f(x)dx
a

h
=3 [yo +y, + 42 odd terms + 2 Z even terms] e e e e (4.13)

Example 1: Perform the following integration using Simpson’s rule and trapezoidal rule. In each

case use grid size of 0.2. Compare your results with the exact solution. The expression is

2
j x%e *dx
0

Solution



h = " =02 = n=10
y(x) = f(x) = x*e™*
Yo =y(0) =0

y: = v(0.2) = (0.2)%e702
y, = y(0.4) = (0.4)%e04

Vio = Y(2) = 4e™?

2
Izj x%2e *dx
0

0.2
=?[(0+y10)+4(y1+y3+y5 + 7 +Y9) +2(y2 + Ya + Y6 + ¥s)]

Example 2: The Debye function is encountered in the theory of specific heat of solids at

constant volume. The function is expressed as

D(x) = 3x‘3f > 1

0

( 4 )dy or D(x)=3x‘3f f(y)dy.
0

Evaluate this integral for x = 10.0 using Simpson’s rule. You may use the grid size as 0.5

4.3 ALGORITHM

Algorithm is a finite sequence of rules for performing computations on a computer such
that at each instance the rule determines exactly what the computer has to do next. These rules
include a “stopping rule” that makes the computer stop so it cannot run - on indefinitely. A
useful and good algorithm is one that is stable. Small changes in the initial data should give only
corresponding small changes in the final result. However, if small changes in the initial data
produces large changes in the final results, the algorithm is unstable.
4.3.1 Algorithm for Simpson’s Rule

x, f,j=0,1, .., 2m

J= f: f (x)dx from given values of f; = f(x;) at equidistant.

Xo=a,X1=Xo+h, ... Xom =Xo + 2mh

Where h = 2=2 (n=2m)
2m



Compute So = fo + fa (fam)

Si=fi+fzs+fs+...+f1

Sy=fr+fat....ifn

hzb—_a

2m

J =2 (S0 + 48, +25,)

Outputf
STOP
4.4  ERRORS OF NUMERICAL RESULTS

is they are not exact but involves errors. Such an error may result from a combination of the

Final results of computations of unknown quantities generally are approximations. That

following effects.

Round off errors — resulting from rounding off figures

Experimental errors — arises as a result o given data probably from measurement.

Truncating errors — resulting from truncating i.e. prematurely breaking off e.g. if a given series is

replace by the sum of its 1°' few terms.

These errors depend on the computational method used and must be dealt with

individually for each method.

4.4.1 Formulas for Errors

If @ is an approximate value of a quantity whose value is a, we call the difference error t.

The error tis given by

o R 7 A

The exact value is thus

i.e. True value = Approximation + error

Example

(i)
(i)

Ifa=10.2and d =105 ..t=-0.3
Ifa=182andd=1.60 ..t=0.22

The relative error t, of d can be defined as

t a—a Error

t,=—=

a p True value ===

e (81)

e (£.2)



Herea#0

Eq. (4.2) appears useless since a is unknown. However if |t| < |d@|, then we can use @ instead

o~

of aand obtain t/ = = oo (4.3)

Q

(4.3) still appears problematic because t is unknown. If it were known, we would have obtained
a = d + t, but this can be obtained in practice from a bound for @ i.e. a number B such that
|t| < B, hence
R Iy BN € %)

Where B is limiting absolute error. The limiting absolute error of an approximate number is any
number not less than the absolute error of that number. It tells us how far away from our
computed d the unknown a can at most lie. Similarly for the relative error, an error bound is a
number B, such that

|t < Br.

Thus we have

|a"&|fgﬁy.""."_".".""."”".".""."”"."."".QLS)
a

Where f3, is the limiting relative error and is defined as any number less than the relative error
of that number.
4.4.2 Error Bound for the Trapezoidal Rule

Error for a given function f(x) is given by

tn(x) = f(x) = Pn(x)

IO
=(x—x9)(x—xq) ... (x — x3) GraDyp e e (4.6)
With n =1, we have
i t
f(x) - py () = (x — x0) (x — ) =12

With suitable t depending on x, between xqo and 1. Integration over x from a = xp to X; = Xg+h

gives

Xo+h h
[ redr+ 217G + Fa)

Xoth "
f (x —x0)(x — xg —h)%(x))dx.......ﬂi)

X



Setting x — Xo = v and applying the mean value theorem of integral calculus, which we can use
because (x — Xo)(x — xo — h) does not change sign, we find that the right side equals
f'(® <h3 hz) f'@® -hr

h
_[0 v(v — h)dv T3

Where t is a suitable value between xo and x;. Hence the error t of trapezoidal rule is the sum of

n such contribution from the n subinterval.

b_
Since h = Ta, we thus obtain the total error

_—=(b-a)?

t
12n2

3 N R €% )

wheret is suitable value between a and b.
Finally, error bounds are now obtained by taking from f' the largest value M, and

smallest value M*, in the interval of integration obtaining

KMy St S KM3 oo e e e e e e e e e e e e e e e e =2 (4210)
_-0-a)®
Where K = ——— e (411)

Example: Evaluate

1
Ji =f e~ dx withn = 10
0

Solution

J Xj sz e_xf2

0 0 0 1.00000

1 0.1 0.01 0.990050
2 0.2 0.04 0.960789
3 0.3 0.09 0.91393
4 0.4 0.16 0.85214
5 0.5 0.25 0,77881
6 0.6 0.36 0.69768

7 0.7 0.49 0.61263



8 0.8 0.64 0.52729

9 0.9 0.81 0.444858
10 1.0 1.00 0.367879
1.367879 6.778167
Yoty
I=h[(%)+y1+yz+yn+---+yn-1] pob-¢
n
=0.1[0.5x 1.367879 + 6.778167] 1—0
=0.746211 ~ 10
Error estimate - 01

F(0) =2(2x% —1)e™*’
Ifo<x<1, f"(x) >0
M,=f"(1) = 0.735759
M*, = f"(0) = —2

1
T -1200

= —0.000614 <t < 0.001662
0.746211 — 0.00614 <] < 0.746211 + 0.001667
0.745597 < ] < 0.747878

4.4.3 Bounds for the Error t;

Assuming the 4™ derivative of f exist and is continuous in the interval of integration, the

result is
CMy S tg S CMy e e i s et e s et e e e et e e ae e e e e e (4012)
_ —(b-a)®

Where C = RO T e R R e e e s (4.13)

M4 and M*, are the largest and the smallest value of the 4™ derivative of in the interval of
integration.

Example: Evaluate



2m =10, h=0.1

Using Simpson’s Rule

J Xj X; e~ %]
0 0 0 1.00000
1 0.1 0.01 0.990050
2 0.2 0.02 0.960789
3 0.3 0.09 0.91393
4 0.4 0.16 0.852144
5 0.5 0.25 0.778801
6 0.6 0.36 0.697676
7 0.7 0.49 0.612626
8 0.8 0.64 0.527292
9 0.9 0.81 0.444858
10 1.0 1.00 0.367879

1.367879 3.740266 3.037901

0.1
Y= [(1.367879 + 4(3.740266) + 2(3.037901)]

=0.746825

Estimate of error

By differentiating 4 times, we have

F7(x) = 4(4x* — 12x2 + 3)e™™"

The largest value occur at x =0

Smallest value occur at x =x* =2.5+ 0.5V 10

5 Mg =Y (0) =12, M*, = f¥(x*) = -7.359



-1
" (18000000)

=-0.00000056

2m=10,b-a=1= C

- 0.0000007 <t,< 0.00000056

4.5 GAUSIAN INTEGRATION FORMULAR
The integration formulars discussed so far involve function values for equidistant x

values exceeding a certain degree. More generally, we may set

fl FOx = Y Af (> F(35)) e (414)
N £

and determine the second constants

A, ... , Ap, X1, ....., XpS0 that equ. (4.14) gives exact results for polynomials of degree K as
high as possible. Since 2n is the number of coefficients of a polynomial of degree n-1, it follows
that k < 2n-1.

Gauss has shown that exactness for polynomials of degree not exceeding 2n-1 (instead
of n-1 or n) can be obtained iff the values xi, ..... ,Xn are the end zeroes of the Legendre
Polynomial Pn(x) where Pg = 1, P1(x) = X, Pa(X) = %(3x>-1), P5(x) = %(5x>-3x)

(-D)™(2n — 2m)!
~ 2"m!(n — m)!' (n — 2m)!

P,(x) = X2 i et et e e e e e e s (4215)

P.(x) = 2n! (2n —2)!

e T Tm-Dim— it T (4.16)

n n-1
Where m =7 or -

Pa(x) = 1/8(35x*-30x>+3)
Ps(x) = 1/8(63x° — 70x° + 16x)
and the coefficient A; are suitably chosen. The equ. (4.14) is called a Gaussian integration
formular.
We note that it can be shown that the variables can be expressed in a chosen coordinate

t which could vary from -1 to +1 as follows

X = (b er a) + (b > a) Ef oo e et e e oo (417)

Finally, we have the following table which summarizes the results




Zeros(i) t; A
1

2 iﬁ +0.5773502692 1
3 {0 0 8/9
+./3/5 +0.774596672 5/9
4 + \/ (15 —+/20)/35 +0.33999810436 0.6521451549
i\/(lS + \/20)/35 +0.8811363116 0.3478548451
Example: Evaluate
1 2
Ji =J e *dx
0

With the Gaussian formular for n =3 from 0 to 1 into an integral -1to 1
Solution: We use equ. (4.17) to obtain
x=%(t+1)

and dx=%dt

Thus

et ) 2

The Gaussian integration formula has the advantage of high accuracy. Its disadvantage is
the irregular spacing of x;, .....,x, and the somewhat the inconvenience values of the coefficients.
However this is not essential if f(x;) are also computed (not taking from table as we have done

or obtain from an experiment in which the x; can be set once and for all.



Where
ko = f(Xn Yn
ks = (2 + = B, Y + = hko)
ky = fQon + S h,yn + 5 hky)
ks = f(xn + B,y + hky)

1

h 1
- +—[k +z(1——)k +(
Yn+1 = Yn 61"t 2 2 2
Where
klzf(xn!yn
ky = (2 + 2 h, Y + > hky)

ks =f(xn+§h,yn+(—§+71§)hk1 + (1—%)th)

ka=f (% +hyn = Zhk, + (1+ %) RKg) co e

Select last equation as pivot equation
_3x1 + 2x2 + .X3 = 1

12x2 + X3 = 37
37 37

637 %

x3 =1 andsoon.

e (12)

e e (13)



5.0 NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS
51 EULER’S METHOD.

The numerical methods are for equations that cannot be solved analytically
or equations for which the solutions in terms of formulas are so complicated that one often
prefers to compile a table of values by applying a numerical method to such an equation .

A differential equation of the 1* order is of the form
F(x,y,y') =0
and often it will be possible to write the equation in the exclusive form

y' =f(xy)

An initial value problem consist of a differential equation and a condition the solution must
satisfy (or several conditions reffering to the same value of x, if the equation is of the higher
order)

(5.1)

y, =f(x,y), y(xO) = Yo
X, =Xg+h, x3=x0+2h, x3= %3+ 30, e ces v e cer e e

The soluton of the equation (7.1) can be obtained using Taylor’s series as well i.e

2
y(x+h) =yx)+hy'(x) + h?y”(x) + o 2
for small h, h?,h°, ...... are very small . Thus,

y(x+h) = y(x) +hy'(x) = y(x) + hf (x,y)

To carry out the solution we follow the steps below :

i ¥ =Yoo+ hf (X0, ¥0)
y(x,) = yo(xo + )
i.  y(xz) =y(xo + 2h)
In general

yn+1 = Yn + hf(xnl yn) n=0,1,2, ..................................... (53)

Eqn(7.3) is simply called the Euler method. The omission of the further terms in eqn(7.2)
causes an error which is called the truncation error of the method.



For small h, the 3 and higher powers of h will be small compared with h?in the 1%
neglected term in (7.2) and we therefore say that the truncation error per step (local
truncation error) is of order h?. In addition, there are round off errors in these and other
methods which may affect the accuracy of the values ys, y2, v3, ...... etc more and more as n
increases.

Example 7.1: Apply the Euler method to the following initial value problem choosing h=0.3

and computing yi,....c....... ,Ys.
y =x+y y(0) =0
Solution

f,y) =x+y
Yn+1 = Yn T hf(xn: yn)

e Yni1=Yn+0.2(xy + yp)

forn=0,x%x,=0,yo=0

N Xn Yn 0.2(xn+Yn) Exact values Error
0 0.0 0.000 0.000 0.000 0.000
1 0.2 0.000 0.040 0.021 0.019
2 0.4 0.040 0.088 0.092 0.052
3 0.6 0.128 0.146 0.222 0.094
4 0.8 0.274 0.215 0.426 0.152
5 1.0 0.489 0.718 0.229

N.B: Exactsolutionis y(x) = e* —x — 1.

5.2 LINEAR DIFFERENTIAL EQUATION

(7.4)

y' +p)y=rk)




If r(x) =0 = (7.4) is homogenous else (7.4) is non-homogenous.

For homogenous equations,

y' +px)y=0
. dy
e —=-—-px)dx
y
=Inly| = — [p(x)dx + ¢
So that the solution is
y(x) — Ce—fp(x)dx (7.5)

For non-homogenous equations
(Py — r)dx +dy=0
Pdx + Qdy =0

Where P=P,-r, Q=1

1dF
F dx ()
F(x) = elpax

= el P (y" +p,) = (e/P¥rdx + ¢
Solve fory where h = [ pdx

~Ly(@) =e [ etrdx 4 o (56)

Question: Solve y' —y = e?¥

In practice the exact solution is unknown but an indication of the accuracy of the values can
be obtained by applying the Euler method once more with step 2h and comparing the
corresponding approximation.

Xn Yn 0.4(xn+yn) Yn Difference




0.0 0.000 0.000 0.000 0.000
0.4 0.000 0.160 0.040 0.040
0.8 0.160 0.274 0.1140

6.0 RUNGE-KUTTA METHODS

Euler’s method requires a very small step size in order to obtain reasonable accuracy. The
Runge-kutta methods attempt to avoid these problem by obtaining higher order accuracy by
simply evaluating the function at selected point. To derive this type of formula a different
method is used which is described in as follows:

The desired recurrence formular is of the form:
Yne1= Yn + arks + a2k e, 1
Where Kj = hf(Xn,Yn) coeeeeeenen. 2

Kz = hf (xa +ath, ya+ Bki)

To find an optimum scheme the values of a4, a,, a, and B are sought which make equ. 1 a
Taylor series.

h? h3
Y1) = y0Oem) + by Gen) + 3" Gen) + 5" () + 0(h*)

h? h3
= y(xn) + hf(xn, yn) + 7(fx + fy)n + ?(fxx + 2fxy + fyyfz + fxfy + fyzf)n + 0(h4) ------ 3

Where +o(h*) means plus of order h or less, all terms are evaluated at (x,,ys). Expanding
equation 2 using taylor’s series for a function of two variables,

k
+ = f oy + ah y, + Bky)

a’h? Zklzfy
= f(xn::Vn) + ahf, + ﬁklfy + fox + ahﬁklfxy +

Substituting into equation 1 using 2 gives:

2 2
Yn+1 = Yn + (a1 + ax)hf + azhz(afx + ﬁffy) + a2h3 (%fxx + aﬁffxy + %fzfyy>
N 01 (/) [P

Comparing the exact Taylor’s series with equation 5 we find that

hf (xp, V) = (@1 + @2)Rf v vi vt v e 6




hZ
& e+ ffdn = az R2(afy + Bfy) oo voevee eee eee 7

And
h3
?(fxx + foy + fyyfz + fxfy + fzyf

2 2
— a,h3 <a7fxx + aBffy, + %foyy> e B

Rewriting 6 and 7 we have:

a,+ a =1

1 1
a=a= 5 and a,f3 = e e e e e e e 9

From 6 and 7 we have derived three equations with four unknowns. By examining equation
8, 5 we find that another equation cannot be defined independently of f(x,y) so we must be
satisfied with obtaining agreement up to h. There are many solutions to equation 9, the
simplest being

Thus,
1
Yn+1 = Yn Tt E(kl + k3)

h
=y + 5 [(F G yn) + £ Con + 1+ Af o+ Y] 10

Equation 10 is known as the second order Runge-kutta method or the improved Euler
method.

Using the same approach, we can obtain higher order schemes by simply adding more
terms. The most commonly used scheme is the fourth order Runge-kutta method given by

h
Yn1 = Yo g (ko + 2k + 2ka + k3) + ] (/5 RS |

Where
ko = f(xn'yn
ks = 2y + = B, Y + = hko)



ky = fQon + S h,yn + 5 hky)
ks = f(tn + b Y + hk3)

NB: There are several other fourth-order method ascribed to kutta. Another most widely
used fourth order method is the one credited to hill and is given by

h 1 1
Yns1 = Yo+ 2 [k1 +2(1- ﬁ) kot (14 ﬁ) ks + k4] e (12)

Where
ki = f(xnYn
ky = (2 + 2 h, Y + > hky)

ks = f (xn +Thom + (=5 + %) hiey + (1 — ) k)

ko= f (n + hdn = 5k + (14 ) hks ) o (13)

6.1 TRUNCATION ERROR, STABILITY AND STEP-SIZE CONTROL IN THE RUNGE-KUTTA
ALGOROTHMS

In order to choose to a reasonable step size, one need some estimate of the error being
committed in integrating across one step. On the other hand, the step size should small
enough to achieve the required accuracy (if possible), on the other hand, it should be as
large as possible in order to keep rounding errors under control to avoid an excessive
number of derivatives evaluations. For nth order Runge-kutta, the local truncation is given
by

2™ (Yn41,2=Yn+1,1)
[, = Kh"t1 = : e (14)
t 1 2m_1

For the 4™ order, m=4 and (14) becomes

5 16
lt =Khy = E (Yn+1,2_: )’n+1,1)

Another criterion for selecting an algorithm for the solution of a differential equation with
given initial conditions is stability. In general, a solution is said to be unstable if errors
introduced at some stage in the calculations (for example, from erroneous initial condition



or local truncation or round off errors) are propagated without bound throughout
subsequent calculations. For example, consider the equation

dy
E—f(x,y)—xﬂ/

The analytic solution is:
y(x) =—=—x—1+[14+ x5+ y(xy)]e *0e*
With the initial condition y(0) = -1, the analytical solution is
yx)=—-x-1

i.e. the exponential term in the general solution vanishes because of the Particular choice
of initial condition. Inherent instability is usually associated with the equation being solved
and the initial conditions specified but do not depend on the particular algorithm being
used.

Depending on the equation being solved, its initial conditions, and the particular one-step
method being used, another form of instability, called partial instability, may be observed,

even when the equation is not inherently unstable. This phenomenon is related to the step
size chosen.
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